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Robots, firm relocation, and air pollution: unveiling
the unintended spatial spillover effects of emerging
technology
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Amidst the global upsurge in industrial robot deployment, there remains a notable gap in our

understanding of their environmental impact. This paper explores how the introduction of

industrial robots has changed air quality at both the local and neighborhood levels in China.

Using the Spatial Durbin Model, we investigate the regional spillovers of PM 2.5 con-

centration and the diffusion of this innovative technology. Our findings reveal that the rise of

robots significantly reduces air pollution in the local area, while exacerbating it in neighboring

regions. This contrast is mainly because pollution-intensive industries are more inclined to

relocate to neighboring regions than their cleaner counterparts, after the local use of robots

increases. Throughout the process, internal costs rather than external costs dominate firms’

relocation decisions. This study provides novel insights into the complex environmental

externalities associated with the spread of industrial robots and highlights the critical issue of

growing environmental inequality in the era of emerging technologies.
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Introduction

Among all the emerging technologies, the development of
industrial robots stands out significantly. Since the 1990s,
robotics technology has made significant advancements.

In recent years, a number of developing nations have capitalized
on the wave of the ongoing Industrial 4.0 revolution (Kozul-
Wright, 2016). This trend has facilitated a rapid dissemination of
robotic utilization across developing countries, exhibiting a nearly
tenfold increase from 2000 to 2015. This increase is significantly
faster than the growth seen in developed countries (World Bank,
2021). As shown in Fig. 1, by the end of 2019, the global
inventory of industrial robots amounted to 2.7 million units, with
applications spanning various sectors such as electronics, logis-
tics, chemicals, and processing and manufacturing. Notably,
China has emerged as the leading purchaser of industrial robots
starting from 2013, reflecting its remarkable economic growth
over the past four decades.

The widespread adoption of industrial robots is expected to
alter economic structure (Aghion et al. 2019) and enhance pro-
ductivity (Acemoglu and Restrepo, 2020; Dauth et al. 2021;
Gihleb et al. 2022). However, the potential for harmonizing
economic growth and environmental improvement remains
uncertain. While numerous studies have explored the influence of
technological progress on environmental quality, findings have
been inconsistent. Specifically, research on the environmental
effects of industrial robots is limited, often focusing on the
average effects rather than specific impacts (Luan et al. 2022).
Given the potential disparities in global technological progress,
the environmental externalities of uneven diffusion of new
technologies should be well studied.

This paper attempts to fill this gap by investigating whether the
use of industrial robots generates environmental externalities
from a spatial perspective. We argue that the introduction of
robots could reshape the uneven distribution of production effi-
ciency across different regions (Luan et al. 2022). Greater robot
penetration may improve local air quality by directly improving
industrial structures, increasing energy efficiency, and reducing

local pollution abatement costs, which is identified as the first
environmental externality (Wang et al. 2022; Li et al. 2023; Wu,
2023). Furthermore, a regional increase in robot usage can also
make former high-polluting industries uncompetitive locally,
prompting physical or operational relocation to other regions
with less emerging technology coverage (Acemoglu and Restrepo,
2020). This scenario represents the second environmental
externality.

It is particularly important for China to discuss these envir-
onmental externalities in depth. China has experienced significant
regional imbalances alongside notable economic growth. In the
case of industrial robots, China’s industrial robots are mainly
concentrated in the economically developed coastal regions. At
the same time, air quality varies widely from region to region. As
society develops, people’s demand for health and environmental
comfort increases, while air pollution remains the most important
environmental risk factor contributing to the burden of disease,
disproportionately impacting vulnerable groups in China. It is
therefore important to understand whether and to what extent
this emerging technology contributes to uneven pollution dis-
tribution in China.

We use the Spatial Durbin Model (SDM) to test the whether
the rising industrial robots in one area would reduce local air
pollution while exacerbate it in neighboring areas. We trans-
formed industry-level robot exposure data from the International
Federation of Robotics (IFR) into a measure of robot penetration
rate in Chinese cities. The spatial distance between cities, and the
PM2.5 concentration of the cities were also mapped out. The
results suggest a negative and significant relationship between
robot exposure and local PM2.5 concentration, indicating that the
adoption of industrial robots was accompanied by a decrease in
PM2.5 concentration by about 6.89 μg/m3 during 2006 to 2019.
However, considering the possibility of the pollution nearby
transfer, the net effect of industrial robots on overall air quality
may not be as straightforward. There is a positive spillover effect
of robot use on PM2.5 concentrations in neighboring areas,

Fig. 1 Industrial Robot Installations, % of total by country from 1993 to 2019. Note: calculated and made by the author.
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suggesting that the increasing exposure to robots in the local area
actually “pollutes” their neighborhood. Through rigorous analy-
sis, alternative explanations were discounted. By revealing the
complexity of environmental consequences associated with
increased robot exposure, our study provides insights into equi-
table and sustainable policies in an era of emerging technologies.

This study fills in a significant gap in existing literature by
offering a novel and comprehensive understanding of the com-
plex environmental ramifications of emerging technologies. Pre-
vious research has focused on robots’ effects on carbon emissions,
but the nuanced spillover effects on air pollution and their micro-
mechanisms have been largely underexplored. Our paper intro-
duces the concept of two-sided externalities from a micro per-
spective by examining the influence of technological
advancements on corporate investment and location decisions
using Chinese data samples. In addition, we delve into the the-
oretical underpinnings of industrial robots’ impact on environ-
mental pollution and empirically validate two primary
mechanisms: the industrial structure effect and the internal cost
effect. Furthermore, our findings suggest that emerging technol-
ogies may intensify environmental inequality, supporting obser-
vations that developing countries bear a disproportionate burden
of environmental pollution.

In addition to the above-mentioned, this study also contributes
to numerous empirical literatures on assessing the environmental
impact of industrial robots (Liu et al. 2022; Ding et al. 2023), the
drivers of environmental inequality (Bell and Ebisu, 2012; Zheng
et al. 2022), the analysis of externalities using spatial econometrics
(Anselin, 2003; Autant‐Bernard and LeSage, 2011; Wu et al. 2023;
Chiu et al. 2024), and the study of pollution industry transfer
dynamics (Ben Kheder and Zugravu, 2012; Dou and Han, 2019).

The rest of the paper is organized as follows. Section “Litera-
ture review and research hypothesis” presents a theoretical model,
formulates the hypotheses, and summarizes the two-sided
externalities of industrial robots on air pollution. The data
descriptions, variable definitions, and spatial econometric speci-
fications are described in Section “Materials and methods”. Sec-
tion “Empirics results” presents the empirical results with
robustness checks. Further discussion on the space-time char-
acteristics of industrial robot induced pollution near transfer (IR-
PNT), with the embodied mechanism, is presented in Section
“Further discussion on IR-PNT”. The last section concludes
the paper.

Literature review and research hypothesis
This study focuses on the environmental externalities of indus-
trial robots in China from a spatial perspective, including both
local and neighboring impacts. Recognizing the multifaceted ways
in which emerging technologies influence air quality, we analyze
these impacts as two-sided externalities. First, industrial robots
directly affect local air quality by improving the overall industrial
structure of the local area, increasing energy efficiency, and
reducing the cost of pollution control. Second, the diffusion of
this technology may indirectly worsen the ambient quality of the
neighborhood by facilitating the relocation of pollution-intensive
business (Chun et al. 2015). The specific mechanism is
discussed below.

First externality: cleaning the air. It is supposed that the
industrial robots have a direct impact on local air quality by
improving the local industrial structures, boosting energy effi-
ciency, and reducing pollution control expenses.

First, the introduction of industrial robots can lead to an
advanced industrial structure, which is widely acknowledged for
promoting cleaner production and reducing pollutant emissions

(Gao and Yuan, 2021). The incorporation of industrial robots
facilitates knowledge and technological spillovers, accelerating the
development of new technologies and products across diverse
sectors, thereby reshaping the industrial landscape. As supported
by a growing body of research, the introduction of robots plays a
pivotal role in industrial upgrading, fostering industrialization
and modernization (Hägele et al. 2016; Jung and Lim, 2020). On a
detailed technological level, the application of industrial robots
exhibits a dual impact on labor demand, characterized by
substitution and heterogeneity. Automation primarily targets
the replacement of repetitive tasks and positions typically held by
low-skilled workers, consequently shifting the industrial structure
towards a more capital-intensive configuration (Graetz and
Michaels, 2018). Aghion et al. (2017) demonstrated how the
integration of artificial intelligence and traditional production
methods in different industrial sectors influences the evolution of
industrial structure. This effect is dominant in the manufacturing
sector, as the application of industrial robots promotes the
expansion of this very manufacturing sector, where the use of
industrial robots also stimulates growth in related service
industries through the manufacturing scale effect (Acemoglu
and Restrepo, 2020).

Second, the integration of robots in the initial stages of the
production process can enhance the energy transition and boost
energy efficiency, thereby reducing enterprises’ pollution emis-
sions. China faces significant environmental pollution problems
resulting from inefficient energy consumption (Zhang et al.
2013). Energy inefficiencies are prevalent across various stages,
including development, processing, conversion, transmission,
distribution, and end-use. Emerging technologies offer a pathway
to the energy transition by bolstering the efficacy of energy
systems and reducing transition costs (Bocca et al. 2021). They
can also accelerate the adoption and application of renewable
energy sources and equipment. For example, the application of
robots in enterprises can optimize technological processes of coal
combustion or encourage the adoption of cleaner energy
alternatives, subsequently enhancing energy efficiency and
reducing pollution emissions (Sheng and Bu, 2022). Overall, by
facilitating the energy transition at the production level, industrial
robots reduce pollution emissions.

In addition, the clean effect of robotics can be further explained
from a microscopic perspective through the variation of
abatement costs. For example, industrial robots can reduce
material losses in manufacturing and supply chain operations.
They also facilitate the implementation of digital environmental
monitoring and accounting systems, enabling efficient measure-
ment, reporting, and verification of environmental impacts.
Concepts like smart recycling systems, which repurpose waste
into high-quality reusable materials, further illustrate this point
(Dusík et al. 2018; Wilts et al. 2021). Consequently, the adoption
of industrial robots is associated with reduced abatement costs
(Wang and Feng, 2022). However, abatement costs are not
constant across firms. In regions where the majority of firms do
not utilize industrial robots, abatement costs will be relatively
higher due to less efficient in terms of profitability and resource
efficiency. Faced with this disparity, companies will generally
consider whether to leave or stay according to the level of
abatement costs (Shen et al. 2017). They may either invest in eco-
friendly technologies to manage their emissions or relocate robots
to areas with lower relative emission costs to gain operational and
abatement advantages. This decision-making process is further
detailed in the following subsection (see the next subsection for
details).

Moreover, these effects demonstrate variability linked to local
developmental stages and industrial configurations. In some
contexts, the rebound effect of robot usage on environment have
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been found in nations of different development stages and
industrial structures (see, e.g., Li et al. 2022; Luan et al. 2022; Zhu
et al. 2023). For instance, sectors such as manufacturing,
agriculture, and utilities, including electricity, gas, and water
supply, the deployment of industrial robots markedly enhances
the efficiency of energy equipment. This leads to a notable
reduction in emissions, especially in high-pollution enterprises
and those in regions with more relaxed environmental regula-
tions, as identified by Zhu et al. (2023). Therefore, Proposition 1
can be summarized as follows.

Proposition 1: The diffusion of industrial robots could
generally improve local air quality, but the impact may vary
due to heterogeneity in regional development stages and
industrial structures.

Second externality: industrial robot induced pollution nearby
transfer (IR- PNT). From a micro perspective, technological
progress not only drives local enterprises to further innovate
and reduce pollution emissions, but also affects the location
decisions of enterprises. According to the new economic geo-
graphy theory, technological progress is a critical determinant
of the location of firms (Fujita and Krugman, 2004), while
migration (in a broad sense, including the relocation in the
physical sense and transfer of heavy pollution production
business) is one of the main strategies with which firms respond
to the penetration of new technologies (Pellenbarg et al. 2002;
Aduba and Asgari, 2020). Then, intuitively, this technological
advancement intuitively reshapes the uneven distribution of
production efficiency across regions (Florida et al. 2008). A
higher local adoption rate of emerging technologies corresponds
to an increased likelihood of the relocation of highly polluting
firms, which tend to have lower production capacities, to
neighboring areas (Milani, 2017). Subsequently, the movement
of these polluting entities on a micro level result in a substantial
reduction of local air pollution. However, this also gives rise to a
contrasting trend in neighboring regions, where the risk of
environmental degradation emerges (Bommer, 1999). Realistic
examples confirm the possibility of the existence of this effect:
in Langfang and Zunhua, Hebei, which are adjacent to Beijing,
the share of value added in the secondary sector is still rising
from 2014 to 2017.

In other words, the introduction of industrial robots will also lead
to the so-called “Baumol’s disease”, where the application of new
technologies changes the local industrial layout and factor endow-
ment, leading to huge variations in the competitive advantages of
different regions (Bartelsman and Doms, 2000; Juhász et al. 2020;
Benhabib et al. 2021). Even if only a limited number of firms adopt
industrial robots in their operations in a given area, the rest of the
firms can more easily learn from the “forerunners” and thus benefit
much more from the positive externality of knowledge diffusion
through the industrial chain and business ecosystem (Aghion et al.
2017). In this way, the adoption of industrial robots in a certain
region can affect the costs and returns of firms, which can further
encourage firms to innovate or relocate.

Next, a theoretical illustration of this view is provided. The
model proposed by Levinson and Taylor (2008) and Shen et al.
(2017) is extended to a multi-regional model, where the
penetration of industrial robots is considered as the dominant
factor influencing the variation in production costs, as it
determines whether it is feasible and realistic for a firm to
implement automation in its production, as well as the
significant savings in labor costs that can be achieved by
replacing humans with robots (Soergel, 2015; Graetz and
Michaels, 2018).

Three regions, numbered “I”, “II”, “III” are considered. The
model is partial equilibrium, and the price of production factors
and is exogenous. Without loss of generality, we have made the
following three assumptions: From a regional perspective, the
production cost is greatly reduced due to the improvement in
productivity; 2) For a representative company without indus-
trial robots, the relative cost of emitting pollutants is χI > χII >
χIII. The introduction of robots by other firms can increase the
relative cost of pollution for firms without robots; 3) The
demand of investment in abatement technologies is generally
higher for pollution-intensive enterprises. The intuition is that
the average productivity of enterprises will increase after the
popularization of industrial robots. But for representative
enterprises without robots, it is equivalent to losing their
relative productivity and facing a higher cost of emitting
pollutants. In the initial state, the continuum of industries of
region I is indexed by ν 2 ½0; 1� while there are no industries in
regions II and III; The pollution intensity of industry ν is σðνÞ
and σ 0ðνÞ>0; 0<σðνÞ<1. The production cost per unit product in
regions are cI ; cII ; cIII , and cI<cII<cIII . Labor and capital flow
freely between regions, and the relocation costs of fixed assets
should be taken into consideration when industry ν in region I
moves to regions II and III; The distance between region I and
region III is greater than that between region II and region III,
so the production cost per unit product of industry ν in region
II is higher.

θ is the share of enterprises’ inputs used in environmental-
friendly technologies. The production function F K νð Þ; L νð Þð Þ
satisfies the constant returns to scale (CRTS). The output QðνÞ
and the pollution discharge EðνÞ are as follows:

Q νð Þ ¼ 1� θ νð Þ½ �F K νð Þ; L νð Þð Þ
EðνÞ ¼ ½1� θðνÞ�1σFðKðνÞ; LðνÞÞ ð1Þ

The representative enterprise in region I aims at the maximum
profit by choosing θ:

max
P;θ νð Þ

P � cI
� �

1� θ νð Þð ÞF � θ νð ÞcIF þ χI 1� ð1� θðνÞÞ1σ
h i

F; s:t:0⩽ θ⩽ 1

ð2Þ
The first order derivative w.r.t θ is:

∂θ

∂χI
¼ σ 1� θð Þ

1� σð ÞχI
> 0 ð3Þ

This is consistent with our intuition above that the greater the
penetration of local industrial robots, the greater the pollution
abatement efforts of enterprises in the area, thus improving air
quality.

Based on Eq. (1), the production function with pollution
emission and finished products as input factors can be written as:

QðνÞ ¼ EðνÞσ ½F K νð Þ; L νð Þð Þ�1�σ ð4Þ
As χI and cI are the shadow prices of pollution emissions and

production, respectively. The first order derivative w.r.t ν is:

CI νð Þ ¼ 1� σ

σ

� �σ�1

þ 1� σ

σ

� �σ
" #

χσI c
1�σ
I ð5Þ

For the same reason, the unit costs of enterprise in regions II
and III are:

CII νð Þ ¼ 1�σ
σ

� �σ�1 þ 1�σ
σ

� �σh i
χσIIc

1�σ
II

CIII νð Þ ¼ 1�σ
σ

� �σ�1 þ 1�σ
σ

� �σh i
χσIIIc

1�σ
III

ð6Þ
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The condition for an enterprise to relocate from region I to
region II is:

cI
cII
> χII

χI

� � σ
1�σ ð7Þ

Suppose an interior threshold industry level ev meets
CIIðevÞ ¼ CIðevÞ:

cI
cII

¼ χII
χI

� � σð~vÞ
1�σð~vÞ ð8Þ

As σ 0ðvÞ>0; 0<σðvÞ<1, the EQ. (7) holds under v>ev, suggesting
that the rational decision for enterprise in region I is to relocate to
region II.

And Eq. (9) show the negative association between ev and χI :

ev ¼ σ�1 ln χIIð Þ�ln χIð Þ
ln cIð Þ�ln cIIð Þ þ 1

� 	�1
( )

∂~v
∂χI

¼ σ 0ðvÞ ln cIð Þ�ln cIIð Þ
χIðln cIð Þ�ln cIIð Þþln χIIð Þ�ln χIð ÞÞ2

� 	
<0

ð9Þ

Hence the following Propositions 2a and 2b is
straightforward:

Proposition 2a: Considering the penetration of industrial
robots, the pollution-intensive enterprises would choose either to
innovate locally or to relocate to the neighborhood; moreover, the
greater the comparative disadvantage of the pollution-intensive
enterprises, the more likely they are to choose to relocate to the
neighborhood.

Proposition 2b: As the penetration of industrial robots
increases, the likelihood that highly polluting enterprises will
relocate nearby will increase, resulting in worse air quality in the
neighborhood (IR-PNT effect).

Extend the conclusion to three areas. Consider the interior
threshold industries v meets CIðvÞ<CIIðvÞ ¼ CIIIðvÞ:

cII
cIII

¼ χIII
χII

� � σ vð Þ
1�σ vð Þ ð10Þ

As χII > χIII , σ
0 vð Þ>0; 0<σðvÞ<1, the enterprise would like to

move again from region II to region III.
In practice, a company’s decision to relocate relies heavily on

an overall cost-benefit analysis. The costs of relocation can
generally be divided into external and internal costs. For example,
the external cost of firm relocation usually includes transportation
links and information infrastructure, which are crucial for
maintaining connectivity and operational efficiency post-
relocation (Audirac, 2005); Internal costs, on the other hand,
encompass aspects like the reallocation of current assets and
employee wages, which significantly influence a firm’s financial
capabilities and willingness to relocate (Pennings and Sleuwaegen,

2000). Additionally, the distance for relocation emerges as a
pivotal factor, influencing both the feasibility and cost-
effectiveness of the move. This aspect forms the basis for the
spatial econometric models used in our analysis (Ben Kheder and
Zugravu, 2012). Based on the conclusion of this part of the
analysis, Propositions 3a and 3b can be proposed as follows:

Proposition 3a: The IR-PNT effect is influenced by geogra-
phical distance. Firms tend to relocate to closer areas due to lower
overall migration costs, resulting in a more pronounced
concentration of industrial activities in nearby regions, and
thereby intensifying the IR-PNT effect.

Proposition 3b: The heterogeneity of the IR-PNT effect is
significantly shaped by the varying levels of external and internal
migration costs faced by local firms. These costs influence firm
decisions on relocation, affecting the distribution and intensity of
the IR-PNT effect across different regions.

Materials and methods
Data sources. The raw data is obtained from the IFR, which
contains the number of robots by industry, country and year,
based on the annual surveys of robot suppliers. The data of China
used in this paper is extracted from 2006 to 2019, because the
robot industry in China was undeveloped in the 90s and its boom
started in 2006, the industry-specific data was only provided in
2006. Therefore, the consistent data of robots in 7 broad indus-
tries (roughly at the two-digit level), i.e., agriculture, forestry, and
fishing; mining; manufacturing; utilities; construction; education,
research, and development; and non-specific industries, are
adopted. In manufacturing, consistent data on the use of robots
are collected for 11 industries for more detail (roughly at the
3-digit level): food and beverage, plastics and chemical products,
rubber and plastic products (non-automotive), fabricated metal
products (non-automotive), electrical machinery, electronic
components/devices, semiconductors, liquid crystal display
(LCD), light-emitting diode (LED), automotive, motor vehicles,
engines and bodies, unspecified auto parts, and other vehicles.

In terms of outcome variables, surface PM2.5 data from van
Donkelaar et al. (2021), who lead an annual global satellite-based
estimate combining the instruments of NASA MODIS, MISR,
and SeaWIFS and calibrated using a geographically weighted
regression, are used to construct measures of annual PM2.5
concentration for each prefecture-level city (For details, see:
https://sites.wustl.edu/acag/datasets/surface-pm2-5/).

To control for the potentially confounding factors that are not
of interest here, information from the China Statistical Yearbook,
the China Energy Statistics Yearbook, the China Environmental
Statistics Yearbook, and the China Energy Statistics Yearbook is
collected, and a set of economic and environmental indicators are
obtained to primarily mitigate the bias from omitted variables

Table 1 Summary of Main Variables.

Label Definition Obs. Mean Std. Dev. Min Max

lnPM Particulate matter 2.5 (PM2.5) concentrations (μg/m3) in logarithm 3766 3.773 0.333 2.591 4.690
IRexp Exposure to robots in logarithm 3766 0.173 0.083 0.000 1.485
GDP Logarithm of regional gross domestic product 3766 0.062 0.066 0.001 1.007
INS Ratio of secondary industry divided by GDP (%) 3766 0.115 0.215 0.000 5.180
POP Growth rate of population (%) 3766 0.093 0.122 0.002 1.410
OPEN Ratio of foreign direct investment divided by GDP (%) 3766 0.706 1.543 0.003 16.803
GOV Ratio of government expenditure divided by GDP (%) 3766 3.773 0.333 2.591 4.690
ENE Ratio of energy sector employment divided by total (%) 3766 −3.978 1.624 −9.599 0.796
Mine Ratio of extractive sector employment divided by total (%) 3766 16.307 0.981 13.637 19.760
Traffic Ratio of traffic sector employment divided by total (%) 3766 48.102 10.824 10.680 90.970
Green Percentage of forest cover (%) 3766 5.745 5.326 −16.640 40.780

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03100-7 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2024) 11:577 | https://doi.org/10.1057/s41599-024-03100-7 5

https://sites.wustl.edu/acag/datasets/surface-pm2-5/


(Wu et al. 2023; Jiang et al. 2024). See Table 1 for the detailed
definition of the covariates.

Indicators of exposure to robots. We focus on the industrial
robot use at the city level and mainly use the IFR dataset. As the
most detailed data source available on industrial robots, IFR data
have been popular in many studies such as those by Giuntella and
Wang (2019), Anelli et al. (2019), and Acemoglu and Restrepo
(2020). However, there are still some challenges in calculating the
number of industrial robots per worker using IFR data. First, the
different industrial classification methods make it difficult to map
the raw data one-to-one to the Chinese Industry Classification
System (CICS). Second, data on the distribution of labor in some
industries are not available in China. In view of this, the IFR data
are mapped to CICS, and the focus is only on the robotic
installations with available labor data, which account for 29.2% of
the total raw data.

In light of these challenges, our methodology aligns with
established practices in the existing literature (Acemoglu and
Restrepo, 2020), where the robot usage at the city level is
calculated to represent the technological impact of robots. The
first step is to calculate the exposure to robots at the industry
level:

Robotit ¼
MRit

Li;t¼2005
ð11Þ

where MRit donates the stock of industrial robots of industry i in
year t, and Li;t¼2005 is the number of labors of i industry based
on 2005.

Second is to construct the city-level industry robot usage index:

Robotjt ¼ ∑
I

i¼1

Li;j;t¼2005

Mean Li;t¼2005
� MRit

Li;t¼2005
ð12Þ

where I represents the collection of various industries. Li;j;t¼2005 is
the number of labors of industry i in city j in 2005. Mean Li;t¼2005

is the mean of labors of industry i in 2005. It is notable that
Li;j;t¼2005=Mean Li;t¼2005 is the proportion of number of labors in
industry i and region j to the average number of labors of the
industry, representing the relative labor force proportion.

Since the industry classification standard in China’s statistical
system is not exactly the same as the IFR, we apply the
employment data at the city and industry level from the China
Labor Statistics Yearbook and merge it with the major industries
provided by the IFR, so as to obtain the relative share of labor in
industry i at the city level in year t. Then, we calculate and obtain
the target variable Robotjt .

Finally, since the distribution of cities’ exposure to robots is
substantially right-skewed, we adopt its logarithmic version,
which is essentially the normal distribution in the empirics.

Spatial econometric model. We selected the SDM for its effec-
tiveness in addressing the issue of spatial dependence in the study
of the environmental impacts of emerging technologies. The
SDM’s spatial weight matrix captures the geographical distribu-
tion and interactions of economic activities, which is essential for
understanding the diffusion of pollutants and the influence of
environmental policies across regions. Furthermore, its flexibility
allows it to be adapted to specific research contexts, making it
suitable for exploring the micro-mechanisms of spillover effects.
In addition, our dataset fits well with the data requirements of the
SDM, promising insightful results. The accuracy and theoretical
relevance of this model outperform other models considered,
making it the optimal choice for our study.

Spatial correlation test. Spatial correlation test reflects whether
there is a correlation between any two geographical entities. The
global Moran’s I value (GMI) is used to test the existence of
spatial correlations, defined as:

GMI ¼
N∑N

i¼1 ∑
N
j¼1 wij xi � �x

� �
xj � �x

� �
W∑N

i¼1 xi � �x
� �2 ð13Þ

where N is the number of observations, i and j are the two
dimensions of coordinates. xi i are the observations of cell i with
the mean �x. And there is a theoretical possibility that the global
spatial correlation test may ignore the features of atypical local
area, Anselin (1995) therefore proposed a local version Moran’s I
value (LMI) formulated as follows:

LMI ¼ N xi � �x
� �

∑n
i¼1 xi � �x

� �2 ∑n
j¼1

wij xj � �x
� �

ð14Þ

where wij is the spatial weight of two adjacent regions based on
the specific spatial relationships and W is the double summation
of wij on i and j that W ¼ ∑n

i¼1 ∑
n
j¼1 wij. Take the geographical

adjacency weight matrix wa
ij for instance, it follows the rule that it

is equal to 1 if regions i and j are spatially adjacent, and 0
otherwise. An alternative method used in this paper is to assign
weights using the decay functions, such as the geographical dis-
tance weight matrix wd

ij:

wa
ij ¼

1;

0;



i is adjacent to j

otherwise
i≠j
� �

wij ¼ 1
d2ij

ð15Þ

dij ¼ arcos sin ϕi ´ sinϕj

� �
þ cos ϕi ´ cos ϕj ´ cosðΔτÞ

� �h i
´R

ð16Þ
where ϕi and ϕj donate the spherical coordinates of the centroids
of regions i and j respectively, Δτ is the difference of coordinates
between regions i and j. R is the earth radius, approximately
3958.761 miles. The geographical distance weight matrix is
standardized by rows and its diagonal elements are set to 0.

Spatial econometric model. Spatial autoregressive model (SAM)
and spatial error model (SEM) are two typical categories for
spatial econometric setting (LeSage and Pace, 2009). And LeSage
et al. (2015) construct a spatial panel data model called SDM, in
consideration of the spatial correlation of the dependent variables
as well as the independent variable by adding the spatial lag terms
of endogenous and exogenous factors. Since the spatial effect of
industrial robot exposure and environmental pollution in a cer-
tain region may both be correlated with environmental pollution
in nearby regions, we apply the SDM, and the model of this paper
is expressed as follows:

lnPMit ¼ ρ ∑
n

j¼1
wijlnPMjt þ βIR expjt þ ∑

n

j¼1
θwijIR expjt þ φX þ λþ ϵit

ð17Þ
where lnPMit denotes the particulate matter concentrations in the
logs of each city I in year t; IR expjt denotes the industrial robots’
exposure in the logs of each city j in year t; X consists of a vector
of control variables, and as noted above. wij represents the ele-
ments of the n×n order spatial weight matrix and the geo-
graphical adjacency weight matrices and geographical distance
weight matrix is used in this paper. λ includes the prefecture-level
city and year fixed effects. Besides, the ρ and θ in Eq. (17)
represent the spatial regression coefficient of the explanatory
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variable and the explained variable, respectively. Specifically, ρ
reflects the spatial dependence of environmental pollution in
neighboring regions, and θ reflects the degree of influence of
industrial robot exposure in neighboring regions on environ-
mental pollution in the local area.

After analyzing the impact of industrial robots on environ-
mental pollution using the spatial econometric model in Section
“Empirics results”, the IR-PNT effects are further discussed in
Section “Further discussion on IR-PNT”. By using SDM, it is also
shown that by changing the factors of comparative resource
abundance of a region, the installation of robots will inevitably
affect the relocation decision of enterprises and factories, and
then the air quality of neighboring areas.

Empirics results
Spatial correlation tests. The results of the GMI (see Table 2)
show that all Moran’s I indices of PM 2.5 from 2006 to 2019 are
significantly greater than zero, indicating that the air pollution
levels of cities in China are basically spatially autocorrelated.
Moreover, the GMI of PM 2.5 is relatively stable during the study
period, indicating the consistency of the level of spatial agglom-
eration. Therefore, the spatial econometric model is necessary to
explore the relationship between air pollutants and other factors.

The above results are consistent with the previous literature,
generally Chen et al. (2017) and Feng et al. (2019). Urban air
quality in China is spatially autocorrelated with a stable trend. It
is widely recognized that due to geographical relationships, the
mutual transmission of pollutants exacerbates regional pollution.
In fact, the formation of PM 2.5 is not only related to physical and
chemical factors (such as atmospheric conditions, temperature
and humidity, etc.), but also related to anthropogenic economic
activities, such as the distribution of heavily polluting and energy-
consuming enterprises. In this case, since neighboring cities tend
to have similar socio-economic characteristics, and the PM 2.5 of
these cities are also quite similar.

To investigate the local characteristics of PM 2.5, the local
Moran’s I scatterplots of PM 2.5 at the beginning and end of the
study period are also presented (see Fig. 2). The scatterplots can
be divided into four quadrants, which indicate the local spatial
correlations between regions (Feng et al. 2019). The first and third
quadrants represent positive spatial correlations, while the second
and fourth quadrants represent negative spatial correlations.
From Fig. 2, it is clear that PM 2.5 is positively correlated in most
cities, with a shorter spatial distance between different regions
indicating a similar concentration of PM 2.5. Overall, highly
polluted cities in China tend to cluster together, as do clean cities
throughout the study period.

Baseline regressions. In order to clarify the relationship between
industrial robots and local air pollution, we first estimate how the
presence of industrial robots affects the average level of air pol-
lution, and present the results in Table 3. Columns (1) and (3)
show the case without control variables, while columns (2) and
(4) include them sequentially. To test the robustness of the
results, the first two columns use the (0–1) adjacency matrix,
while the last two columns use the geographical distance matrix.

Unlike traditional non-spatial models, the spatial econometric
model incorporates circular feedbacks between independent and
dependent variables in local and nearby areas. Therefore, the
estimated coefficients in the first two rows of Table 3 cannot
reflect the marginal effects of the independent variables on the
dependent variable. As outlined by Elhorst (2014), the marginal
effects should be explained by the direct and indirect effects in the
SDM, respectively, and we estimate these effects accordingly.

For the direct effect, the coefficients of IRexp indicate a
negative and significant correlation between industrial robot

Table 2 Global Moran’s I value of PM 2.5 in China during
2006–2019.

Year I z P-value

2006 0.2128 28.1626 0.0000
2007 0.2121 28.0531 0.0000
2008 0.1905 25.2103 0.0000
2009 0.2117 27.9668 0.0000
2010 0.2200 29.0393 0.0000
2011 0.1996 26.4132 0.0000
2012 0.2007 26.5678 0.0000
2013 0.2070 27.4041 0.0000
2014 0.1918 25.4432 0.0000
2015 0.2261 29.8690 0.0000
2016 0.2270 29.9971 0.0000
2017 0.2111 27.9032 0.0000
2018 0.2252 29.7247 0.0000
2019 0.2283 30.1331 0.0000

Fig. 2 Local Moran’s I scatterplots of PM 2.5 in 2006 and 2019. A Local Moran’s I in 2006 B Local Moran’s I in 2019. Note: Due to the length of the
paper, only part of the results are shown, but we accept any request for results.
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exposure and PM2.5 after controlling for socio-economic
variables and city-level fixed effects, which verifies the proposition
of the first environmental externality (local cleaning effect), i.e.,
Proposition 1. Taking column (4) as an example, cities with the
highest exposure to industrial robots experience a 61%
(0.0184 × (2.22 - 0.065) / 0.065) reduction in PM2.5 concentra-
tions compared to that of cities with average exposure to
industrial robots, simply due to the increasing exposure to
industrial robots in the local area (with the highest and average
values of exposure to industrial robots being 2.22 and 0.065,
respectively). Moreover, the resulting value suggests that during
the period 2006 - 2019, the introduction of industrial robots will
reduce the average PM2.5 concentration by approximately
6.89 μg/m3 (50.6*0.0184 × ((0.126 - 0.015) / 0.015), where
50.6 μg/m3 is the actual PM2.5 concentration in 2006. Based on
the empirical dose-response relationship estimated by Burnett et
al. (1999) and Pope et al. (2008), this reduction of 6.89 μg/m3

from 2006 to 2019 averted the risk of hospitalization for
cardiopulmonary disease and heart failure by 2.27%
(6.89 × (0.33%) and 9.03% (6.89 × (1.31%), respectively,
nationally.

However, considering the possibility of IR-PNT, the overall
cleaning effect of industrial robots may be limited. For the
indirect effect, the coefficients of W_IRexp indicate that the
industrial robot exerts a positive spillover effect on PM2.5 in
neighboring regions, which means that the higher the exposure to
industrial robots in the local area, the higher the PM2.5 in the
neighboring areas will be. It can be understood as the fact that the
higher exposure to industrial robots will “pollute” its neighbor-
hood. This result confirms the proposition of the second
environmental externality (IR-PNT) proposed hereby, i.e.,
Propositions 2a and 2b. Specifically, column 4 shows that the
1% increase in exposure to industrial robots in neighboring
regions increases the PM 2.5 in the local area by 0.11% on
average, although this effect is insignificant. It will be further
specified in the next section.

Additionally, the coefficients of S_rho show that air pollution
has a significant positive spillover effect: The 1% increase in PM
2.5 in neighboring regions leads to at least 0.23% higher PM 2.5 in
the local area, which is consistent with the spatial correlation test
mentioned above in Table 2.

Overall, industrial robots have a spillover effect on air quality,
leading to increased pollution. This finding is consistent with
Nguyen et al. (2020) and Liu et al. (2022), which indicate that the
development of new and emerging technologies is not always
good for the environment. Our finding is also similar to Chen

et al. (2022), which found that emission reduction efforts in clean
energy development are offset by CO2 transfer effect.

Heterogeneity analysis. In this section, the heterogeneous effects
of industrial robots on air pollution are analyzed. Column (2) in
Table 4 performs the spatial regression according to the location
of the cities, while column (3) in Table 4 performs the spatial
regression according to the size of the cities. For the direct effect,
the coefficients of East_ IRexp and Metro_ IRexp are negative,
unlike W_ IRexp in the baseline, indicating that as the number of
industrial robots increases in the east and in the metropolis, the
local cleaning effect is even greater. For the indirect effect,
combining the coefficients of IRexp, East_ IRexp and Metro_
IRexp, there will be a “cleaning” effect in the metropolis and a
small one in the eastern areas, although not significant. This
result differs from the baseline. This may be because there is a
stronger climate in the east that encourages firms to invest in
green and innovative technologies rather than relocating to pol-
lute neighboring areas (Zhang et al. 2024).

Our findings are not consistent with Ding et al. (2023), whose
heterogeneity analysis suggests that AI reduces carbon emissions
through spatial spillovers, with the effect being stronger in the
Midwest. In contrast, our analysis indicates a stronger effect in
the Eastern regions. This discrepancy may be attributed to
differences in the data scales used: Ding et al. (2023) employed
provincial panel data, our study is based on city-level data. At the
same time, the firms that emit large amounts of carbon and cause
air pollution do not exactly overlap. This variation in the
distribution of high-emission firms may significantly influence
the regional impact of AI on environmental outcomes.

From Table 5, we can see that the regression results of PM2.5 at
different quartiles show significant variations, and the local
cleaning effect of industrial robots is stronger in areas with higher
PM2.5. From the perspective of effect decomposition, the indirect
effect dominates the total effect of the pollution reduction effect
of industrial robots in the cities with PM2.5 at different quantiles.
Surprisingly, the increase in robots in clean areas increases the
pollution of neighboring regions considerably, and this effect
gradually declines as PM2.5 is mitigated into a cleaning effect in
neighboring regions. This suggests that the IR-PNT effect that we
find in the baseline regression is mainly caused by the
introduction of industrial robots in the cleaning area. This may
be because polluters in cleaner areas already face high marginal
abatement costs, exacerbating their relative local disadvantage. As
a result, they are more likely to relocate to nearby areas to avoid
competition.

Table 3 Baseline results: effects of automatization on PM2.5.

Outcome PM2.5

(1) (2) (3) (4)

IRexp −0.0827*** (0.0020) −0.0460*** (0.0029) −0.0190*** (0.0041) −0.0174*** (0.0040)
W_ IRexp 0.0235*** (0.0009) 0.0209*** (0.0009) 0.0209*** (0.0044) 0.0207*** (0.0048)
LR_Direct
IRexp −0.0827*** (0.0020) −0.0446*** (0.0029) −0.0165*** (0.0042) −0.0184*** (0.0042)
LR_Indirect
IRexp 0.0009 (0.0033) 0.0446*** (0.0038) 0.2148 (0.1830) 0.1145 (0.0897)
LR_Total
IRexp −0.0817*** (0.0036) −0.0001 (0.0053) 0.1984 (0.1838) 0.0961 (0.0898)
S_rho 0.2819*** (0.0038) 0.2330*** (0.0049) 1.0156*** (0.0041) 1.0166*** (0.0039)
Controls NO YES NO YES
N 3500 3500 3766 3766
R2 0.012 0.073 0.114 0.001

Note: ***stands for 1% significant levels, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator definitions. The first two columns
use the adjacency matrix, while the last two columns use the geographical distance matrix.
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Robustness checks. To assess the robustness of the effect of
industrial robots on air pollution, the sample window from 2009
to 2017 in column (1) is narrowed to eliminate the boundary
effect of the data, as shown in Table 6. In addition, a region-based
placebo test is adopted in column (2) by randomly assigning the

exposure to industrial robots of each region in a normal dis-
tribution manner. Column (3) includes the first and second lags
of the dependent variables to overcome the serial correlation.
Lastly, in column (4), a difference-in-difference model is set up to
test the effect of industrial robots on air pollution, taking the

Table 4 Heterogeneity results: location and cities’ sizes.

Outcome PM 2.5

(1) (2) (3)

Baseline Geographical location Urban scale

IRexp −0.0174*** (0.0040) −0.0160*** (0.0041) −0.0156*** (0.0041)
W_ IRexp 0.0207*** (0.0048) 0.0246*** (0.0053) 0.0274*** (0.0053)
W_ IRexp×East −0.0140* (0.0079)
W_ IRexp×Metró −0.0527*** (0.0177)
LR_Direct
IRexp −0.0184*** (0.0042) −0.0135*** (0.0047) −0.0123*** (0.0047)
East_ IRexp −0.0037 (0.0031)
Metro_ IRexp −0.0142 (0.0088)
LR_Indirect
IRexp 0.1145 (0.0897) 0.5981 (0.4306) 0.8260* (0.5018)
East_ IRexp −0.9737 (0.8214)
Metro_ IRexp −3.7158 (2.3362)
LR_Total
IRexp 0.0961 (0.0898) 0.5845 (0.4328) 0.8137 (0.5040)
East_ IRexp −0.9774 (0.8245)
Metro_ IRexp −3.7300 (2.3450)
S_rho 1.0166*** (0.0039) 1.0169*** (0.0039) 1.0169*** (0.0039)
Controls YES YES YES
N 3766 3766 3766
R2 0.073 0.001 0.000

Note: *** and ** stand for 1 and 5% significant levels, respectively, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator
definitions. The geographical distance matrix is used in all regressions. The indicators East and Metró are omitted and included in the fixed effects.

Table 5 Heterogeneity results: different quantiles of outcomes.

Outcome PM2.5

(1) (2) (3) (4)

~25th 25th~50th 50th~75th 75th~

IRexp −0.0148*** (0.0036) −0.0163*** (0.0041) −0.0185*** (0.0041) −0.0199*** (0.0039)
IRexp×PM_1 0.0112*** (0.0008)
IRexp×PM_2 −0.0015** (0.0007)
IRexp×PM_3 −0.0029*** (0.0008)
IRexp×PM_4 −0.0125*** (0.0012)
W_IRexp −0.0161*** (0.0041) 0.0250*** (0.0045) 0.0348*** (0.0046) 0.0459*** (0.0046)
W_IRexp×W_PM_1 0.1395*** (0.0056)
W_IRexp×W_PM_2 −0.0258*** (0.0063)
W_IRexp×W_PM_3 −0.0533*** (0.0064)
W_IRexp×W_PM_4 −0.0739*** (0.0067)
LR_Direct
IRexp −0.0208*** (0.0039) −0.0139*** (0.0044) −0.0143*** (0.0045) −0.0135*** (0.0046)
PM_quantile_IRexp 0.0411*** (0.0088) −0.0086*** (0.0029) −0.0171*** (0.0049) −0.0334*** (0.0069)
LR_Indirect
IRexp −1.5952*** (0.4541) 0.5854** (0.2609) 1.0563*** (0.4052) 1.6247*** (0.5789)
PM_quantile_IRexp 7.7783*** (2.3279) −1.8554** (0.7625) −3.6909*** (1.3223) −5.4473*** (1.8550)
LR_Total
IRexp −1.6161*** (0.4555) 0.5715** (0.2622) 1.0420** (0.4068) 1.6111*** (0.5812)
PM_quantile_IRexp 7.8194*** (2.3367) −1.8640** (0.7654) −3.7080*** (1.3272) −5.4806*** (1.8618)
S_rho 1.0135*** (0.0044) 1.0133*** (0.0046) 1.0122*** (0.0048) 1.0105*** (0.0051)
Controls YES YES YES YES
N 3766 3766 3766 3766
R2 0.142 0.107 0.029 0.086

Note: *** and ** stand for 1 and 5% significant levels, respectively, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator
definitions. The geographical distance matrix is used in all regressions.
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document of Guiding Opinions of the Ministry of Industry and
Information Technology on Promoting the Development of
Industrial Robot Industry as a shock that occurred in 2013 and
taking the proportion of employees in tertiary industries as the
policy treatment effect, a difference-in-difference model is
established to check the effects of industrial robots on air
pollution.

In summary, the result drawn here has passed all the
robustness checks, and the pseudo-shock cannot reject the null
hypothesis even at the 10% significance level. It is clear that the
effect of industrial robots on PM2.5 is still significant and
negative, which is consistent with the previous result and the
main conclusion here.

Alternative interpretations. This section discusses several latent
competing stories that may also create a spurious link between
industrial robots and pollution. Possible confounding factors fall
into three categories: differentiated environmental regulation
(including formal or informal), contemporaneous historical
events (e.g., the Air Pollution Prevention and Control Action
Plan, carbon emission trading system, low-carbon city pilots), and
other emerging technologies (the development of information
and communication technology).

Environmental regulations. Increasing environmental awareness
and the quest for better living conditions is an inevitable trend
that accompanies socio-economic development. To meet the
demand for a better environment, the Chinese government has
implemented a series of policies to control pollution and improve
environmental quality. This process is synchronized with socio-
economic development, and may be a latent factor in compre-
hensively reducing environmental pollution. If the increase in
environmental awareness and regulation overlaps with the
penetration of industrial robots, the resulting air pollution control
effect of robots is likely to be overestimated.

To assess the potential problem, the effect of the level of local
environmental regulation (broadly defined) on PM2.5 is exam-
ined. Environmental regulation includes not only the mandatory
environmental policies set by the government (formal regulation),
but also the participation of environmentalists and the general

public, who assume environmental rights and responsibilities,
and will negotiate and consult with polluters (informal regula-
tion). Theoretically, the level of environmental regulation can
exert pressure on the behavior of heavy polluters and residents.
The frequency of environmental-related terms, such as “green,”
“low-carbon,” “ecology,” “pollution discharge,” “emission reduc-
tion,” “environmental protection,”, etc., is collected from the
Government Work Reports of each city as a proxy for formal
environmental regulation. In addition, following the work of
Pargal and Wheeler (1996), indicators such as income level,
education level, population density, and age structure are selected
to comprehensively measure the intensity of informal regulation
in each city. The results of columns (1) and (2) in Table 6 show
that the estimated cleaning effect of industrial robots on PM 2.5
remains highly significant, suggesting that it is unlikely that the
present results can be explained by the effect of environmental
regulations.

Contemporaneous historical events. Some might argue that it is
not industrial robots that have improved local air quality, but
rather the impact of concurrent events, such as the introduction
of more direct air pollution policies during the study period. In
China, the Air Pollution Prevention and Control Action Plan
(Action Plan) from 2013 to 2017 sets clear and quantifiable tar-
gets for the reduction of atmospheric particulate matter, and is
considered a milestone for the improvement of China’s ecological
environment (Geng et al. 2021), while the introduction of the
carbon emission trading scheme (ETS) market is considered an
effective way to reduce carbon emissions (Cui et al. 2021). In turn,
carbon dioxide has a similar source with PM2.5, and promoting
carbon markets may have synergistic effects in reducing PM2.5.
Similarly, the two waves of low-carbon city pilot projects laun-
ched in 2010 and 2012 are also considered to be the driving force
for improving air quality (Yu and Zhang, 2021).

In order to assess the potential influence of the above
contemporaneous events, the data in the year after 2013 are
excluded in the baseline specification when the Action Plan was
implemented. A number of carbon ETS market and low-carbon
city pilots are also excluded by assigning a value of 0 to cities with
a carbon ETS market or low-carbon cities and a value of 1 to
cities without a carbon ETS market or non-low-carbon cities, in

Table 6 Robustness checks: alternative specifications and scenarios.

Outcome PM2.5

(1) (2) (3) (4)

Label Narrow sample window Region-based Placebo
test

Exclude serial correlation Shocks from robot industrial
policies

IRexp −0.0350*** (0.0087) −0.0193*** (0.0040)
W_ IRexp 0.0496*** (0.0098) 0.0262*** (0.0050)
False_ IRexp 0.0006 (0.0006)
W_false_ IRsexp 0.0027 (0.0023)
AR (1) 0.0024* (0.0013)
AR (2) 0.0011 (0.0012)
Industrial Treat*Post13 −0.0003** (0.0002)
Industrial Treat 0.0004** (0.0002)
W_Industrial Treat*Post13 0.0005*** (0.0002)
W_Industrial Treat 0.0010* (0.0005)
S_rho 1.0162*** (0.0051) 1.0145*** (0.0044) 1.0136*** (0.0047) 1.0169*** (0.0040)
Controls YES YES YES YES
N 2421 3766 3766 3766
R2 0.029 0.002 0.022 0.039

Note: ***, **, and * stand for 1, 5, and 10% significant levels, respectively, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator
definitions. The geographical distance matrix is used in all regressions.
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order to control for the effect. The results in columns (3), (4), and
(5) of Table 6 indicate that the estimated cleaning effect of
industrial robots remains significant. Although the magnitudes
become somewhat smaller when excluding the carbon ETS
market and low-carbon cities, this does not indicate that the
impact of industrial robots can be ignored.

Other emerging technologies. A potential concern is that the
increase in industrial robots may be accompanied by other
emerging technologies that have actually been the main con-
tributors to pollution reduction. For example, the development
of information and communication technology (ICT) is con-
sidered to be a feasible possibility to reduce PM2.5 concentra-
tions, as it increases production efficiency and technological
innovation, and promotes the evolution of the regional indus-
trial structure in a progressive way (Gouvea et al. 2018).
Moreover, ICT is almost synchronized with the development of
industrial robots. To exclude the potential inference of ICT in
the present baseline model, the level of ICT development in
cities is calculated by extracting the first principal component of
total telecommunication services, the number of local telephone
users, and the number of internet users. Cities with an above-
average level of digital economy are then assigned a value of 1
and otherwise 0 to eliminate the confounding effect of ICT
development. The results in column (6) of Table 7 show that the
estimated cleaning effect of industrial robots on PM2.5 remains
highly significant, although its magnitudes become smaller.
Overall, there is convincing evidence that the main results are
unlikely to be overturned by the alternative interpretations
mentioned above.

Further discussion on IR-PNT
In order to unravel the more specific characteristics of IR-PNT,
this section discusses its spatial and temporal variations, as well as
the main driving factors behind, including the changing industrial
layout (from a macro perspective) and the relocation of firms
(from a micro perspective).

Spatial variation of IR-PNT. Based on the spatial weight matrix
of reciprocal geographical distance, we set different thresholds d*

to study the pollution nearby transfer effects. Specifically, starting
from 25 km, we withhold the spatial weight of neighboring cities
with distance dij smaller than the threshold d*, and set the weight
of more distant cities to 0. This geographical distance threshold
model is expressed as follows:

PRit ¼ ρyd ∑
n

j¼1
w
1� dij<d

�ð Þ
ij PRjt þ βydAI expjt þ ∑

n

j¼1
θydw

1� dij<d
�ð Þ

ij AIexpjt þ φXþ

λþ ϵit; d
� ¼ 25; 50; 75; ¼ ; 300; 400

ð18Þ

where PRit denotes the PM2.5 concentrations in logs of each city i
in year t, Wij is the spatial weight as defined above, AI expjt
denotes the industrial robots’s exposure in logs of each city j in
year t, X consists of a vector of control variables, λ i ncludes the
city and year fixed effects at the prefecture level. Other variables
are defined as in Eq. (17). In this part, we focus on the coefficient
of βyd in this specification.

Figure 3 shows the estimated coefficient results of the PNT
effect of industrial robots. It can be seen that the effect of IR-PNT
shows an inverted U-shaped curve, which first increases and then
decreases with the increase of geographical distance, and the peak
point is around 90 km. This result confirms the Proposition 3a.
The reasons for this curve may be that: (1) due to technology
spillovers, firms in local and very nearby areas tend to experience
similar impacts of industrial robots, as well as similar environ-
mental regulations, so there is less motivation for polluting
enterprises to relocate their business within a certain distance
(Porter, 2000); (2) when the distance exceeds 150 km, the IR-PNT
effect gradually decreases, probably due to the fact that as the
distance increases, the costs of supporting facilities and relocation
increase, so heavy polluters are reluctant to relocate. Examples of
this can be seen in reality. The IR-PNT effect is more pronounced
in neighboring regions, such as Langfang near Beijing and
Kaifeng near Zhengzhou, when industrial robots penetrate.

Table 7 Other checks: addressing various confounding factors.

Outcome PM2.5

(1) (2) (3) (4) (5) (6)

Label Eliminate
environmental
regulations

Eliminate non-
environmental
regulations

Exclude Action Plan
(2013–2017)

Exclude carbon
ETS market

Exclude low-
carbon cities

Eliminate ICT
technologies

IRexp −0.0172*** (0.0040) −0.0181*** (0.0040) −0.0179***

(0.0040)
−0.0094***

(0.0018)
−0.0022**

(0.0010)
−0.0027**

(0.0013)
W_ IRexp 0.0196*** (0.0049) 0.0203*** (0.0048) 0.0168*** (0.0049) 0.0095***

(0.0028)
0.0040**

(0.0018)
0.0041*

(0.0024)
Irexp×ER −0.0004 (0.0006)
ER 0.0001 (0.0027)
Irexp×NER −0.0019 (0.0012)
NER −0.0073 (0.0055)
W_Irexp×ER 0.0037 (0.0039)
W_ER 0.0392* (0.0213)
W_Irexp×NER 0.0149** (0.0067)
W_NER 0.1002*** (0.0299)
S_rho 1.0150*** (0.0043) 1.0155*** (0.0042) 1.0149*** (0.0064) 1.0160*** (0.0041) 1.0159***

(0.0041)
1.0163***

(0.0040)
Controls YES YES YES YES YES YES
N 3766 3766 1883 3766 3766 3766
R2 0.012 0.018 0.022 0.003 0.008 0.001

Note: ***, **, and * stand for 1, 5, and 10% significant levels, respectively, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator
definitions. The geographical distance matrix is used in all regressions.
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Temporal Variation of IR-PNT. In this part, the cross-terms
between the spatial lag terms of industrial robots and the year
dummy variables are introduced into the regression to study the
temporal variation of the IR-PNT effect. The model is expressed
as follows:

PRit ¼ ρyd ∑
n

j¼1
w
1�ðdij<d��Þ
ij PRjt þ βydAI expjt þ βk ∑

2019

k¼2006
Dk

ti0
∑
n

j¼1
θydw

1�ðdij<d��Þ
ij AI expjt

þφX þ λþ ϵit ; d
�� ¼ 25; 50; 75; ¼ ; 150

ð19Þ
where the variables are all defined as in Eq. (17). We focus on the
coefficient of βk in this specification.

The results are shown in Fig. 4. According to the estimated
results of the full sample, the overall magnitudes of IR-PNT vary
in the same pattern, and there is an inverted U-shaped curve of
IR-PNT with the increase of the geographical distance as shown
in Fig. 3. However, over time, the effect increases after an initial
decrease, with the extreme value in 2014. Specifically, the IR-PNT
effect is similar to that of the overall estimate, showing a
downward trend from 2006 to 2013, which becomes an upward
trend from 2014 to 2019. The possible explanations are that the
Chinese government started to attach importance to environ-
mental protection and introduced a package of laws and
regulations during this period, including the inclusion of air
quality in the evaluation of local officials’ promotion, which led to
an increase in PNT penalties (Zhang et al. 2013). However, the
IR-PNT effect has rebounded since 2015, showing that more
attention needs to be paid to these years and justifying the
practical significance of the present research.

Scale-structure trade-offs and mechanism embodied in IR-
PNT. The PNT can be attributed to the economic scale and
industrial structure change (Antweiler et al. 2001). Therefore, we
try to explore the scale-structure trade-offs embodied in the IR-
PNT mechanism: As industrial robots become more widespread,
does the city, to which companies are relocated, changes in the
absolute number of pollution-intensive industries (scale effect) or
rather in the relative amount (structural effect)? A priori, if the
relative share of pollution-intensive industries in neighboring
cities is not significantly affected, but the absolute number is, the
scale effect dominates; otherwise, the structural effect dominates.

Therefore, two indicators, i.e., P_ratio and P_scale, are
constructed with the proportion and amount of the output value
of pollution-intensive industries, respectively. The selection of
pollution-intensive industries includes 11 industries from the

First National Pollution Source Census released by the China’s
State Council in 2006. The data are from China Bureau of
Statistics.

Table 8 shows the results of the scale structure trade-offs
embodied in the IR-PNT mechanism. Columns (1) and (2) show
that in the local area, the installation of industrial robots can
promote the transformation of the local industrial structure and
make it cleaner, while it can significantly worsen the pollution
intensities of the local industrial structure in neighboring regions.
There is significant impact of the penetration of industrial robots
on the proportion of the output value of polluting industries, but
no significant impact on the absolute amount of the output value
of polluting industries, suggesting that the effects of IR-PNT are
led by the structural effect.

Further examination is conducted over whether the structure
and scale of the pollution-intensive industries have a significant
impact on the PM2.5 concentrations. As shown in Columns (3)
and (5), the increase in the proportion of the output value of
pollution-intensive industries will significantly increase the local
PM2.5 concentrations at a 1% statistical level, and the rise in the
amount of the output value of pollution-intensive industries in
adjacent areas can also benefit the local ambient air quality at a
10% statistical level. In any case, considering the changes of the
absolute and relative quantity of the output value of pollution-
intensive industries, it is found that the increase in the PM2.5
concentration in the adjacent areas is dominated by the fact that
the industrial structure changes toward a more pollution-
intensive state.

At the firm level, as the penetration of industrial robots
increases, the pollution-intensive firms will choose either to
innovate locally or to relocate to the neighborhood. There are two
factors that can affect their relocation decision, thus forming the
mechanism of IR-PNT, namely external and internal costs. For
the external cost of relocation, two principal components are used
as proxies. The first principal component is extracted from the
volume of freight among road, air, water and rail to proxy the
degree of transport connectivity. In addition, the second principal
component is extracted from the gross telecommunications
business, telephone and internet users to proxy the level of
information infrastructure. We assume that the more transport
links and information infrastructures there are, the lower the
barriers to relocation. For the internal costs of relocation, we
focus on the inertia of production factor inputs. The share of
current assets and employee wages are constructed to measure the
internal costs of relocation.

Fig. 3 Geographical Characteristics of IR-PNT Relationships. Note: The black solid line is the estimated coefficient of IR-PNT, and the gray dashed lines
are the lower and upper bounds of its confidence interval (CI) at the 95% level of statistical significance.
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Table 9 shows the results for external costs in the IR-PNT
mechanism. According to columns (1) and (3), the estimated
coefficients of W_IRexp×W_Trans and W_IRexp×W_ICT are
negative, although the coefficients of W_IRexp×W_Trans are not
significant, indicating that on average the higher the external costs of
relocation, the more reluctant the pollution-intensive firms would be
to relocate, thus there will be no strong effect of IN-PNT.

Table 10 shows the results for internal costs in the IR-PNT
mechanism. The estimated coefficients of W_IRexp×W_Quick are
positive at the 5% statistical level, while those ofW_IRexp×W_Wages
are negative at the 1% statistical level. The results in columns (1) and
(2) indicate that the higher the current asset ratio of pollution-
intensive industries, the higher the probability of relocation. However,
the conclusion from column (3) that rising wages can prevent the

relocation of pollution-intensive industries is relatively unexpected.
One explanation is that higher wages imply a higher level of human
capital, which makes firms reluctant to relocate to neighboring
regions to avoid the sunk costs of employee training (Weiss, 1995;
Philippon and Reshef, 2012). Overall, compared to the coefficients of
external costs, the internal nature is more dominant in the willingness
to relocate. This result confirms the Proposition 3b.

These findings complement the literature on the relationship
between firm location behavior and pollution (see, e.g., Dou and
Han, 2019). We verify that, in addition to environmental
regulations, firms make location decisions that take into account
their relative competitiveness in emerging technologies and adapt
by relocating their operations or flexing their industrial layout,
which affects local and neighboring air quality.

Fig. 4 Time period characteristics of IR-PNT relationships from 2006 to 2019. Note: The black solid line is the estimated coefficient of IR-PNT, and the
gray dashed line is the fit line smoothed with a sixth-order polynomial function.
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Conclusions and policy implications
Environmental problems are frequently the result of externalities.
With the rapid development of industrial robots in China, this
emerging technology is anticipated to profoundly transform
economic structure and productivity. However, whether it can
harmonize the goals of economic growth and environmental
improvement remains a question. Grounded in the new economic
geography theory, this study focuses on the two-sided environ-
mental externalities caused by industrial robots and investigates
how the greater penetration of robots in the economy affects local
and neighboring air quality using the spatial econometric model.

Our theoretical model suggests that the level of penetration of
industrial robots in different regions will shape the locational

choices of diverse firm types by changing their relative compe-
titive advantages. The empirical results proved that the presence
of robots significantly mitigates air pollution in the local area, yet
paradoxically intensify it in neighboring areas. This phenomenon,
termed IR-PNT, underscores the presence of pollution transfer at
a regional level. To investigate the cause of the IR-PNT, a
mechanism analysis is further conducted. Consistent with our
theoretical model, it is found that the structural effect mainly
contributes to the increase of PM2.5, which shows that as the
penetration of industrial robots increases, pollution-intensive
business is more likely than others to relocate to neighboring
cities, often replacing cleaning firms in their neighboring cities. It
is shown that developed cities with advanced technologies tend to

Table 8 Mechanism embedded in the IR-PNT.

Outcome P_ratio P_scale PM2.5 PM2.5 PM2.5

(1) (2) (3) (4) (5)

IRexp −0.1103*** (0.0285) −0.0244 (0.0338) −0.0165*** (0.0040) −0.0174*** (0.0040) −0.0159*** (0.0041)
W_ IRexp 0.1315*** (0.0336) −0.0273 (0.0401) 0.0195*** (0.0048) 0.0211*** (0.0048) 0.0179*** (0.0049)
P_ratio 0.0077*** (0.0022) 0.0138*** (0.0040)
P_scale 0.0034* (0.0019) −0.0063* (0.0033)
S_rho 0.8943*** (0.0336) 0.8186*** (0.0420) 1.0162*** (0.0040) 1.0164*** (0.0040) 1.0163*** (0.0040)
Controls YES YES YES YES YES
N 3766 3766 3766 3766 3766
R2 0.034 0.057 0.009 0.002 0.013

Note: *** and * stand for 1 and 5% significant levels, respectively, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator
definitions. The geographical distance matrix is used in all regressions.

Table 9 External cost in the IR-PNT mechanism.

Outcome P_ratio P_scale P_ratio P_scale

(1) (2) (3) (4)

IRexp −0.1129*** (0.0288) −0.0292 (0.0342) −0.1028*** (0.0288) −0.0187 (0.0341)
W_IRexp 0.0994*** (0.0378) −0.0372 (0.0451) 0.1026*** (0.0397) −0.0415 (0.0470)
W_Trans 0.5780** (0.2665) 0.5457* (0.3256)
W_IRexp×W_Trans −0.0645 (0.0508) 0.0002 (0.0605)
W_ICT −0.4230*** (0.1595) −0.4374** (0.1923)
W_IRexp×W_ICT −0.0464 (0.0316) −0.0281 (0.0380)
S_rho 0.8789*** (0.0367) 0.7902*** (0.0466) 0.8887*** (0.0348) 0.8336*** (0.0410)
Controls YES YES YES YES
N 3766 3766 3766 3766
R2 0.053 0.099 0.032 0.044

Note: ***, **, and * stand for 1, 5, and 10% significant levels, respectively, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator
definitions. The geographical distance matrix is used in all regressions.

Table 10 Internal Cost in the IR-PNT Mechanism.

Outcome P_ratio P_scale P_ratio P_scale

(1) (2) (3) (4)

IRexp −0.1193*** (0.0286) −0.0358 (0.0340) −0.0990*** (0.0285) −0.0142 (0.0338)
W_IRexp −0.0200 (0.0903) −0.2507** (0.1163) 1.4765*** (0.2833) 1.5051*** (0.3358)
W_Quick 0.7893 (0.8433) 1.3082 (1.0731)
W_IRexp×W_Quick 0.3973** (0.1787) 0.5532** (0.2276)
W_Wages −0.1290 (0.1290) −0.4807*** (0.1580)
W_IRexp×W_Wages −0.1314*** (0.0269) −0.1472*** (0.0319)
S_rho 0.8661*** (0.0396) 0.7773*** (0.0496) 0.8552*** (0.0418) 0.7996*** (0.0485)
Controls YES YES YES YES
N 3766 3766 3766 3766
R2 0.051 0.092 0.052 0.063

Note: *** and ** stand for 1 and 5% significant levels, respectively, in the statistics. Robust standard errors are in brackets. All control variables are in logarithms. See Table 1 and text for indicator
definitions. Geographical distance matrix is used in all regressions.
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relocate highly polluting business to neighboring cities, imposing
an unfair burden on their “neighbors”.

Furthermore, we identified both heterogeneous and rebound
effects of robots on air quality. Firstly, an increase in industrial
robots in the east and in the metropolis has larger local cleaning
and IR-PNT effect. Conversely, cities with initially cleaner air
tend to experience a rebound effect post robot integration, linked
to their distinct industrial structures and advanced robotic tech-
nologies. Notably, operational robots can produce waste, like
discarded batteries, and their deployment necessitates consider-
able material use. If these materials are sourced or processed in a
way that harms the environment, it can counteract the initial
environmental gains. In China, the penetration rate of robots in
cleaner areas is relatively lower and more likely to be in the stage
of triggering rebound effects.

Due to limitations in data availability, the analyses in this study
do not cover all industries in China, nor do they address the
spatial spillovers of robotics across sectors. In addition, although
not a central aspect of this study, the identification of causality
remains potentially underdeveloped. This study has improved
causal validity to some extent through robustness tests and the
exclusion of competing hypotheses. Future research should aim to
more definitively establish and confirm the relationship between
industrial robotics and environmental quality using more robust
causal inference methods. In addition, it should be emphasized
that our conclusions regarding the local cleaning effect and the
IR-PNT effect are derived from a specific Chinese sample. In
order to formulate more generalizable findings, further verifica-
tion through cross-national studies is essential.

In general, considering the IR-PNT effect, policy makers may
need to consider how to minimize, reduce and offset the
externalities caused by the unequal distribution of industrial
robots. First, researchers are expected to assess the pollution
nearby transfer effect of emerging technologies in different policy
scenarios (Moni et al. 2020). For example, the tradable permit
policy, such as cap-and-trade, can improve the optimal allocation
of resources in technological change through the improvement of
pollutant property rights, making it easier to achieve the balanced
goals of pollution control and economic development (Liu et al.
2020; Wu and Wang, 2022).

Second, we find that the IR-PNT effect is mainly caused by the
relocation of polluting firms from clean areas to neighboring
regions. This suggests that regional cooperation in pollution
reduction is crucial. Particular attention must be paid to the air
quality around the clean area., to avoid cleaning at the expense of
polluting someone else’s backyard. To achieve this, a synergistic
approach is essential, integrating technological, financial and
administrative strategies in regional cooperation.

Lastly, the study shows that IR-PNT effects are lower in
metropolitan areas and urban agglomerations, and there is even a
cleaning effect. In this case, the expansion of urban agglomera-
tions tends to reduce the environmental inequality caused by
technological progress. On the one hand, the externalities of
pollution are resolved by internalizing them in larger urban
clusters; on the other hand, the expanded urban agglomerations
increase the area of cities and the distance and costs of relocating
polluting firms (Tabuchi, 1998), thus reducing pollution transfer
and reducing environmental inequality.

Data availability
The datasets generated during and/or analyzed during the current
study are available in the Harvard Dataverse repository, https://
doi.org/10.7910/DVN/9BYJYD.
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