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Association between biological 
aging and diabetic retinopathy
Haoxian Tang 1,2, Nan Luo 1,3, Xuan Zhang 1,4, Jingtao Huang 1,5, Qinglong Yang 1,6, 
Hanyuan Lin 1,6 & Xinyi Zhang 7*

The impact of aging on diabetic retinopathy (DR) remains underestimated. The current study aimed 
to investigate the association between biological aging and DR, in contrast to chronological age 
(CA). Using the National Health and Nutrition Survey data from 2005 to 2008. Biological aging was 
evaluated through the biological age (BA) and phenotypic age (PA), which were calculated from 
clinical markers. DR was identified in participants with diabetes mellitus (DM) when they exhibited 
one or more retinal microaneurysms or retinal blot hemorrhages under retinal imaging, with or 
without the presence of more severe lesions. Survey-weighted multivariable logistic regression 
was performed, and the regression model was further fitted using restricted cubic splines. The 
discriminatory capability and clinical utility of the model were evaluated using receiver operating 
characteristic (ROC) curves and decision curve analysis (DCA). Based on weighted analyses, of the 
3100 participants included in this study, of which 162 had DR. In the adjusted model, BA (odds ratio 
[OR] = 1.12, 95% CI, 1.06–1.18) and PA (OR = 1.11, 95% CI, 1.07–1.14) were associated with DR, while 
CA was not significantly (OR = 1.01, 95% CI, 0.99–1.03). Narrowing the analysis to DM participants and 
adjusting for factors like insulin showed similar results. ROC and DCA analyses indicate that BA/PA 
predicted DR better than CA and offer greater clinical utility. The positive association between BA/PA 
and DR was consistent across subgroups despite potential interactions. Biological aging heightens DR 
risk, with BA/PA showing a stronger association than CA. Our findings underscored the importance of 
timely anti-aging interventions for preventing DR.
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Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus (DM) and remains the 
leading cause of avoidable blindness among individuals of working age1. The Global Burden of Disease study 
highlights the substantial prevalence and impact of DR2. While the age-standardized prevalence of blindness 
caused by factors like cataracts, glaucoma, refractive errors, and macular degeneration decreased between 1990 
and 2020, DR stood out as an exception2. In 2020, DR resulted in over 2.9 million cases of moderate or worse 
vision impairment among adults aged 50 years and older2. The global population of individuals with DM is 
projected to exceed 780 million by 2045, while DR and related visual impairment are expected to affect approxi-
mately 160.5 million individuals3,4. Given that early detection and timely intervention can significantly prevent 
visual impairment and blindness associated with DR, it is crucial to prioritize the targeting of DR as a key focus 
for prevention and treatment efforts.

Aging entails gradual loss of physiological integrity, resulting in impaired function and heightened vulnerabil-
ity to mortality5. The underestimated contribution of aging to DR development necessitates further investigation, 
despite shared risk factors identified in previous studies6. While chronological age (CA) is a powerful risk factor 
for aging-related diseases and mortality, individuals of the same age may experience different rates of biological 
aging and susceptibilities7. Considering the modifiability of biological aging, interventions to slow its progression, 
and the preventability of DR, distinguishing CA from physiological aging early in life is imperative for timely 
identification and intervention in at-risk individuals or groups8. Various methods, like DNA methylation age 
(DNAmA) and leukocyte telomere length, measure biological aging; however, they only capture a limited aspect 
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of the comprehensive changes associated with the multifactorial process of aging8. In contrast, Klemera and 
Horvath et al.’s clinical biomarker-based measurements of biological aging (biological age [BA] and phenotypic 
age [PA]) capture multiple indicators of aging at the cellular and intracellular levels9,10, closely align with disease 
progression and individualized biological aging levels7,11, and serve as practical and reliable predictors of aging 
outcomes for large-scale implementation in public health surveillance settings12.

The current study aimed to investigate the association of biological aging (measured by BA and PA) with DR 
in a nationally representative sample and compare it with CA.

Methods
Data sources
The National Health and Nutrition Survey (NHANES) was a continuous cross-sectional survey conducted by 
the National Center for Health Statistics (NCHS), implementing a sophisticated stratified, multistage probability 
cluster sampling approach to holistically assess the health and behavioral patterns of the non-institutionalized 
U.S. population. Given that retinal imaging was exclusively undertaken on participants aged 40 years and older 
during NHANES 2005–2006 and 2007–2008, this study incorporated solely non-identifiable data from this sub-
set of participants. The NHANES protocol obtained approval from the institutional review board at the NCHS, 
with all participants granting written informed consent upon enrollment. This study adhered to the revised 2013 
Declaration of Helsinki. Utilizing publicly available de-identified data, the study qualifies for exemption from the 
requirement of informed consent in accordance with the applicable regulations of the Shantou University Medi-
cal College Institutional Review Board. The study followed the Strengthening the Reporting of Observational 
Studies in Epidemiology (STORBE) reporting guideline.

Study design and population
As shown in Fig. 1, from an initial group of 7081 participants aged ≥ 40 years, we excluded 1726 due to una-
vailable retinal imaging and BA/PA data, and removed 373 with missing demographic information (including 
sex, race/ethnicity, educational level, poverty income ratio [PIR], and marital status). An additional 1882 were 
excluded due to missing data on other covariates (including physical activity, Healthy Eating Index-2015 [HEI-
2015] score, drinking status, smoking status, body mass index [BMI], cardiovascular disease [CVD] history, and 
hypertension). The final analysis included 2938 participants without DR and 162 with DR.

Assessment of biological aging
Biological Aging was evaluated through the assessment of BA and PA. BA and PA employ distinct computational 
algorithms and integrate diverse biomarkers to quantify the process of biological aging. BA and PA acceleration 
are defined as whether BA/PA is greater than CA.

The Klemera–Doubal method was employed to determine BA, relying on the assessment of 8 biomark-
ers: Ln-C-reactive protein (Ln-CRP), serum creatinine, glycosylated hemoglobin, serum albumin, serum total 
cholesterol, serum urea nitrogen, serum alkaline phosphatase, and systolic blood pressure9,13,14. Its calculation 
process mainly includes the following steps13.

7081 Participants aged ≥40y

 1726 Excluded
 1377 With unavailable retinal imaging data

349 With unavailable biological and phenotypic
age data

5355 With available exposure and
outcome data

2938 Without DR

3100 Available for analysis

162 With DR

2255 Excluded
373 With unavailable demographics data (sex,

race/ethnicity, educational level, PIR and
marital status)

1882 With unavailable data for other covariates
(physical activity, HEI-2015 score, drinking
status, smoking status, BMI, CVD history,
and hypertension)

Figure 1.   Flow diagram of the screening and enrollment of study participants. BMI body mass index, CVD 
cardiovascular disease, DR diabetic retinopathy, HEI-2015 Healthy Eating Index-2015, PIR poverty income ratio.
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Step 1: Construct a series of regressions of individual biomarkers on CA, and obtain the regression slope (k), 
intercept (q), root mean squared error (s), and variance explained (r2).

Step 2: Preliminary calculation of biological age based on the parameters from Step 1, where j denotes the 
number of biomarkers and BAE represents the optimum estimate of BA in linear case.

Step 3: Subsequent calculation of the characteristic correlation coefficient (rchar) and scaling factor (SBA
2) to 

consider the influence of CA in Eq. (1), where i denotes the number of samples.

Step 4: Incorporate CA into Eq. (1) and calculate the final BA.

PA was determined through algorithms derived from multivariate analysis of mortality hazard15. These algo-
rithms incorporated 10 aging-related variables, namely CA, albumin, creatinine, glucose, CRP, lymphocyte 
percent, mean cell volume, red blood cell distribution width, alkaline phosphatase, and white blood cell count7.

xb = − 19.907 − 0.0336 × Albumin (g/L) + 0.0095 × Creatinine (μmol/L) + 0.1953 × Glucose (mmol/L) + 0.0954 × Ln-
CRP (mg/dL) − 0.0120 × Lymphocyte Percent (%) + 0.0268 × Mean Cell Volume (fL) + 0.3306 × Red Cell Dis-
tribution Width (%) + 0.00188 × Alkaline Phosphatase (U/L) + 0.0554 × White Blood Cell Count (1000 cells/
μL) + 0.0804 × CA (years)13.

Diagnosis of DR
The diagnostic criteria for DM encompass a doctor’s diagnosis, glycohemoglobin (HbA1c) levels exceeding 6.5%, 
fasting glucose levels of 7.0 mmol/L or higher, random/2-h oral glucose tolerance test (OGTT) blood glucose 
levels reaching 11.1 mmol/L or above, or the utilization of DM medication/insulin16.

NHANES 2005–2008 utilized the Canon CR6-45NM ophthalmic digital imaging system and Canon EOS 10D 
digital camera (Canon, Tokyo, Japan) to capture two digital images per eye without pharmacological dilation of 
the pupils17. The digital images underwent grading using a modified version of the Airlie House classification 
scheme for retinopathy at the University of Wisconsin Ocular Epidemiologic Reading Center (Madison, WI)18. 
In cases where retinopathy severity could not be graded in one eye, an analogous grade was assigned based on 
the other eye. DR was identified in participants with DM when they exhibited one or more retinal microaneu-
rysms or retinal blot hemorrhages, with or without the presence of more severe lesions, adhering to the grading 
standards set by the Early Treatment Diabetic Retinopathy Study (ETDRS)19.

Covariates
Age, sex, race/ethnicity, PIR, marital status, education level, physical activity, HEI-2015 score, drinking status, 
smoking status, BMI, CVD history, and hypertension were deemed potential confounding variables. Self-reported 
race/ethnicity data was categorized into five distinct groups: Mexican American, non-Hispanic White, non-
Hispanic Black, other Hispanic, and others, which encompassed individuals with multiracial backgrounds16. 
Marital status was classified into four categories: married, never married, living with a partner, and others, which 
included individuals who were widowed, divorced, or separated16. Education level was segmented into three 
tiers: less than high school, high school or equivalent, and above high school16. physical activity encompasses 
self-reported time spent on activities like walking, biking, household chores, work-related tasks, and recreation 
during the week. HEI-2015 score evaluated diet quality based on 13 components, summing to a 100-point score 
indicating adherence to 2015–2020 Dietary Guidelines20, with details in Table S1. Drinking status was catego-
rized into five groups: never (consumed < 12 drinks in lifetime), former (< 12 drinks in lifetime, none in the past 
year), mild (≤ 1 drink per day for females, ≤ 2 drinks per day for males in the last 12 months), moderate (≤ 2 
drinks per day for females, ≤ 3 drinks per day for males in the last 12 months), and heavy (≥ 3 drinks per day 
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for females, ≥ 4 drinks per day for males in the last 12 months)21. Smoking status can be categorized into three 
groups: never (less than 100 cigarettes smoked in life), former (more than 100 cigarettes smoked but currently 
quit), and now (more than 100 cigarettes smoked and currently smoking16. BMI was calculated as the weight (in 
kilograms) divided by the square of the height (in meters)22. CVD history was documented as a history of being 
diagnosed with heart failure, coronary heart disease, angina, heart attack, or stroke. The average blood pressure 
is calculated, excluding zero diastolic readings unless all are zero; for a single reading, it serves as the average, 
and for multiple readings, the first is excluded. Hypertension is diagnosed when systolic is ≥ 140 mmHg or dias-
tolic is ≥ 90 mmHg. Age, PIR, physical activity, HEI-2015 score, and BMI were treated as continuous variables 
in the model. Additionally, age was categorized as < 60, 60–69, and ≥ 70 when utilized as an exposure variable 
or considered in subgroup analyses.

Statistical analysis
The NHANES employed a complex multi-stage probability sampling method. Each sample person was assigned a 
sample weight, which could be considered a measure of the number of individuals represented by that particular 
sample person. When data from NHANES were weighted, the sample was deemed representative of the U.S. 
civilian noninstitutionalized population. In our analyses, we incorporated the weights, clustering, and stratifica-
tion information of the samples23.

Participant characteristics were calculated based on the presence or absence of DR. Categorical variables were 
presented as numbers (percentages, %), while continuous variables with a normal distribution were reported 
as means (Standard Error, SE). To analyze differences in characteristics across different patterns, Chi-squared 
test with Rao and Scott’s second-order correction (for categorical variables), Wilcoxon rank-sum test (for non-
normally distributed continuous variables), and t-tests (for normally distributed continuous variables) were 
employed.

Traditional regression approaches may produce biased results, potentially leading to underestimated stand-
ard errors and confidence intervals, as well as an elevated risk of class I errors in hypothesis testing24. Aligning 
with recommendations from the existing literature, we adopted survey-weighted multivariable logistic regres-
sion, which fits a model to complex survey data, with inverse-probability weighting and design-based standard 
errors24,25.

Survey-weighted multivariable logistic regression was performed to assess associations of BA/PA/CA and 
BA/PA acceleration with DR. Model 1 was the crude model without adjustment for covariates. Model 2 was 
adjusted for age, sex, race/ethnicity, PIR, marital status, and education level. Model 3 was adjusted as for model 
2, additionally adjusted for physical activity, HEI-2015 score, drinking status, smoking status, BMI, CVD history, 
and hypertension. Linear trend tests were conducted by treating categorical variables as continuous parameters. 
Splines were fit by a logistic regression model based on restricted cubic splines (3 knots at 10%, 50%, and 90%) 
and adjustments as used in Model 3.

Receiver operating characteristic (ROC) curves were used to assess the diagnostic value of BA/PA/CA for DR, 
with the area under the curve (AUC) measured by the C-statistic used to quantify predictive power. Decision 
curve analysis (DCA) was employed to evaluate the clinical utility of these models by estimating net benefits at 
various threshold probabilities.

Stratified analyses were performed based on age (< 60, 60–69, or ≥ 70 years), gender (female or male), race/
ethnicity (Mexican American, non-Hispanic Black, non-Hispanic White, other Hispanic, or other), CVD history 
(yes or no), hypertension (yes or no), smoking status (never, former, or now), and drinking status (never, former, 
mild, moderate, or heavy). To test for interaction, a cross-product term was added to the regression model to 
examine the effect of one variable on the outcome based on the level of another variable16.

For sensitivity analyses, we restricted the study population to DM and repeated the regression analysis. Fur-
thermore, considering potential confounding from different types of DM, we additionally adjusted for fasting 
insulin and the homeostasis model assessment of insulin resistance (HOMA-IR) to assess the robustness of the 
results. The calculation formula for HOMA-IR is as follows: fasting plasma glucose (mmol/L) × fasting insulin 
(μU/mL)/22.526.

All analyses were conducted using R, version 4.2.2 (R Project for Statistical Computing), along with the survey 
package (version 4.2-1) and Free Software Foundation statistics software, version 1.9.2. Statistical significance 
was determined by two-sided P values below 0.05.

Ethics approval and consent to participate
The National Health and Nutrition Examination Survey (NHANES) is conducted by the Centers for Disease 
Control and Prevention (CDC) and the National Center for Health Statistics (NCHS). The NCHS Research 
Ethics Review Committee reviewed and approved the NHANES study protocol. All participants signed written 
informed consent.

Results
Characteristics of the participants
Utilizing weighted analyses, the study encompassed 3100 participants, representing 70,772,414 individuals 
nationwide, with a weighted mean age of 55.53 years (SE, 0.45), with 1464 females (weighted percentage, 50.40%). 
162 participants were diagnosed with DR. Participants in the DR group display higher CA, BA, and PA, with a 
higher proportion of males and non-Hispanic black, lower educational level, lower PIR, higher BMI, and former 
smoking or alcohol use. A notable proportion of participants within the DR group present a history of CVD or 
hypertension, as detailed in Table 1.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10123  | https://doi.org/10.1038/s41598-024-60913-x

www.nature.com/scientificreports/

Table 1.   Characteristics of participants in the NHANES 2005–2008 cycles. BMI body mass index, CVD 
cardiovascular disease, DR diabetic retinopathy, HEI-2015 Healthy Eating Index-2015, PIR poverty income 
ratio, SE standard error. All means and SEs for continuous variables and percentages for categorical variables 
were weighted.

Characteristics Total (n = 3100) Without DR (n = 2938) With DR (n = 162) P value

Weighted population 70,772,414 68,362,538 2,409,875

Chronological age, mean (SE), years 55.53 (0.45) 55.38 (0.46) 59.97 (0.74) < 0.001

Chronological age, no. (%) 0.01

 < 60 1651 (67.07) 1587 (67.63) 64 (51.01)

 60–69 788 (19.30) 731 (18.98) 57 (28.52)

 ≥ 70 661 (13.63) 620 (13.39) 41 (20.47)

Sex, no. (%) < 0.001

 Female 1464 (50.40) 1405 (50.98) 59 (33.87)

 Male 1636 (49.60) 1533 (49.02) 103 (66.13)

Race/ethnicity, no. (%) < 0.001

 Mexican American 431 (4.36) 405 (4.31) 26 (5.80)

 Non-Hispanic Black 525 (7.12) 470 (6.70) 55 (19.01)

 Non-Hispanic White 1875 (82.24) 1810 (82.72) 65 (68.61)

 Other Hispanic 177 (2.46) 164 (2.34) 13 (5.77)

 Other Race 92 (3.83) 89 (3.94) 3 (0.81)

Marital status, no. (%) 0.66

 Married 1976 (68.29) 1877 (68.39) 99 (65.50)

 Never married 202 (5.80) 194 (5.84) 8 (4.69)

 Living with partner 135 (4.44) 129 (4.47) 6 (3.75)

 Other 787 (21.46) 738 (21.30) 49 (26.06)

Educational level, no. (%) 0.004

 Less than high school 712 (22.97) 655 (13.83) 57 (25.94)

 High school or equivalent 759 (24.48) 716 (24.42) 43 (30.69)

 Above high school 1629 (52.55) 1567 (61.75) 62 (43.37)

PIR, mean (SE) 3.51 (0.07) 3.52 (0.07) 3.11 (0.17) 0.01

Physical activity, mean (SE), min/week 664.16 (34.21) 663.70 (35.90) 677.25 (144.75) 0.34

HEI-2015 score, mean (SE) 55.30 (0.53) 55.23 (0.56) 57.20 (0.95) 0.10

BMI, mean (SE), kg/m2 28.75 (0.19) 28.64 (0.19) 31.90 (0.62) < 0.001

Smoking status, no. (%) 0.02

 Never 1458 (48.19) 1367 (47.73) 91 (61.21)

 Former 1048 (32.62) 999 (32.81) 49 (27.40)

 Now 594 (19.19) 572 (19.47) 22 (11.39)

Drinking status, no. (%) < 0.001

 Never 364 (9.23) 352 (12.33) 10 (4.37)

 Former 732 (19.46) 341 (9.01) 23 (15.50)

 Mild 1198 (43.40) 1150 (43.67) 48 (35.86)

 Heavy 362 (12.05) 660 (18.72) 72 (40.36)

 Moderate 444 (15.85) 435 (16.27) 9 (3.90)

CVD history, no. (%) < 0.001

 No 2704 (90.50) 2590 (91.15) 114 (71.96)

 Yes 396 (9.50) 348 (8.85) 48 (28.04)

Hypertension < 0.001

 No 1503 (48.48) 1463 (54.26) 40 (31.49)

 Yes 1597 (51.52) 1475 (45.74) 122 (68.51)

Biological age, mean (SE), years 54.85 (0.48) 54.46 (0.49) 65.74 (1.05) < 0.001

Biological age acceleration, no. (%) < 0.001

 No 1822 (60.16) 1781 (61.34) 41 (26.88)

 Yes 1278 (39.84) 1157 (38.66) 121 (73.12)

Phenotypic age, mean (SE), years 51.29 (0.50) 50.74 (0.51) 67.00 (1.31) < 0.001

Phenotypic age acceleration, no. (%) < 0.001

 No 2396 (81.02) 2336 (82.58) 60 (36.86)

 Yes 704 (18.98) 602 (17.42) 102 (63.14)
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A total of 598 participants were diagnosed with DM, of which the prevalence of DR was 27.1%. Additionally, 
among DM participants, CA showed no significant difference between DR and non-DR individuals, while BA 
and PA were significantly higher in the DR group (Supplementary Table S2).

Association of BA/PA/CA and BA/PA acceleration with DR
Table 2 presents the results of the sample-weighted multivariable logistic regression analysis examining the asso-
ciation between BA/PA/CA and DR. In the crude model, each one-year increase in PA was associated with a 7% 
higher risk of DR, while a one-year increase in BA/CA was associated with a 4% higher DR risk. After adjusting 
for confounding factors (Model 3), the association between BA/PA and DR persisted, revealing a non-linear 
trend (Fig. 2). Participants who experienced aging acceleration had a significantly higher risk of developing DR 
compared with those who did not (BA acceleration: OR = 3.80, 95% CI, 2.01–7.18; PA acceleration: OR = 6.52, 
95% CI, 3.45–12.32). Conversely, the association between CA and DR lost its statistical significance (OR = 1.01, 
95% CI, 0.99–1.03). Upon further stratification based on CA (< 60, 60–69, and ≥ 70), no increased risk of DR 
was observed in older age brackets compared to younger ones.

The ROC curve shows that BA (AUC = 0.7495) and PA (AUC = 0.7931) outperform CA (AUC = 0.6311) in 
predicting DR (Fig. 3a). DCA indicates that when the threshold is below 50%, BA/PA has a higher net benefit 
than CA (Fig. 3b).

Subgroup and sensitivity analyses
Interactions of age with BA, and sex with PA were observed (P for interaction < 0.05). However, a consistent 
positive association of BA/PA with DR was observed in all subgroups (Supplementary Table S3). It is noteworthy 

Table 2.   Association of biological, phenotypic, and chronological age with diabetic retinopathy. CI confidence 
interval, OR odd ratio. Model 1 was the crude model without adjustment for covariates. Model 2 was 
adjusted for age, sex, race/ethnicity, PIR, marital status, education level. Model 3 was adjusted as for model 2, 
additionally adjusted for physical activity, HEI-2015 score, drinking status, smoking status, BMI, CVD history, 
and hypertension. Age was not adjusted for in the regression model for chronological age.

Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Biological age 1.04 (1.02–1.06) < 0.001 1.10 (1.06–1.14) < 0.001 1.12 (1.06–1.18) 0.001

Biological age acceleration

 No 1 [Reference] 1 [Reference] 1 [Reference]

 Yes 4.32 (2.76–6.76) < 0.001 4.35 (2.59–7.31) < 0.001 3.80 (2.01–7.18) 0.002

Phenotypic age 1.07 (1.06–1.09) < 0.001 1.12 (1.09–1.14) < 0.001 1.11 (1.07–1.14) < 0.001

Phenotypic age acceleration

 No 1 [Reference] 1 [Reference] 1 [Reference]

 Yes 8.12 (5.36–12.30) < 0.001 7.00 (4.36–11.25) < 0.001 6.52 (3.45–12.32) < 0.001

Chronological age 1.04 (1.02–1.05) < 0.001 1.03 (1.02–1.05) < 0.001 1.01 (0.99–1.03) 0.19

 Subgroups

  < 60 1 [Reference] 1 [Reference] 1 [Reference]

  60–69 1.99 (1.09–3.66) 0.03 1.94 (1.02–3.69) 0.04 1.34 (0.66–2.72) 0.36

  ≥ 70 2.03 (1.38–2.97) < 0.001 1.85 (1.23–2.78) 0.01 1.06 (0.60–1.89) 0.81

  Trend test < 0.001 0.003 0.64
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Figure 2.   Association of biological, phenotypic, and chronological age with diabetic retinopathy. Data were 
fit by a survey-weighted multivariable logistic regression model based on restricted cubic splines. Data were 
adjusted for age, sex, race/ethnicity, PIR, marital status, education level, physical activity, HEI-2015 score, 
drinking status, smoking status, BMI, CVD history, and hypertension (Model 3). Age was not adjusted for in the 
regression model for chronological age.
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that a significant positive correlation between CA and DR was observed among participants aged < 60 (OR = 1.08, 
95% CI, 1.01–1.15), as compared to the age groups of 60–69 and ≥ 70 years, despite the absence of significant 
interaction effects.

Restricting the analysis to DM patients produced results consistent with previous findings (Supplementary 
Table S4). Upon accounting for insulin secretion and resistance, the associations between BA/PA/CA and DR 
remained consistent with our conclusions (Supplementary Table S5).

Discussion
In this nationally representative cross-sectional study, after adjusting for confounding factors such as demograph-
ics, lifestyle, and medical history, participants with higher BA/PA were found to have a higher risk of DR, while 
the association between CA and DR was not significant. ROC curves and DCA suggest BA/PA outperforms CA 
in predicting DR, with higher clinical utility. Despite potential interactions, the positive association between 
BA/PA and DR remained consistent across subgroups. When narrowing the analysis to DM participants and 
accounting for confounding factors like insulin secretion and resistance, our conclusion remained unchanged.

The aging process impacts the retina in various ways. Mohamed et al. discovered that the overall retinal thick-
ness decreased in male albino rats as they aged, particularly in the inner nuclear layer (INL)27. A similar trend was 
observed by Barboni et al. using optical coherence tomography (OCT) imaging in both dominant optic atrophy 
(DOA) patients and healthy individuals, with a decline in the retinal nerve fiber layer (RNFL) thickness as they 
aged28. Furthermore, aging is linked to reduced retinal macular blood flow29, slower motility and injury response 
of retinal microglia, increased cell density, and smaller dendritic spindles30, as well as heightened susceptibility 
of Müller cells to oxidative stress31.

Aging, characterized by hallmarks such as genomic instability, epigenetic alterations, telomere attrition, 
mitochondrial dysfunction, and cellular senescence5, impacts cellular function. The interplay between aging 
and the progression of DR encompasses intricate mechanisms. In DR, senescent cells accumulate in the retina, 
exacerbated by DM-induced acceleration of aging and inflammatory pathways32,33. Retinal pigment epithelial 
cell damage and impaired immune responses further contribute34, potentially explaining the increased risk of 
DR with age. Oxidative stress and aging-related changes in autophagy also play roles in retinopathy’s progres-
sion in older individuals6,35.

While CA is considered an important risk factor for aging-related diseases, including DR, it may not accu-
rately predict the occurrence of DR. In an Iranian study, the prevalence of DR increased with age from 1.0% in 
the 55–59 years group, peaking at 8.2% in the 70–74 years group36. However, for participants aged ≥ 75 years, 
the prevalence of DR was 2.4% and did not show further increases. Similarly, a study by Zhang et al. based on 
NHANES data found no significant difference in the prevalence of DR between individuals aged 40–64 years 
and those aged ≥ 65 years37. The multivariable logistic regression analysis also showed a non-significant associa-
tion between CA and DR (OR = 0.99, 95% CI, 0.95–1.02), which is consistent with our findings. Furthermore, 
subgroup analysis in the current study revealed a significant positive association between CA and DR in partici-
pants aged < 60 years, but not in those aged 60–69 and ≥ 70 years. These results may seem contradictory to the 
concept of DR as an age-related disease, but they can be explained by the variability in biological aging among 
individuals of the same age. BA reflects an individual’s physiological condition, and can differ from their CA 
due to factors like genetics, lifestyle, and overall health. This variability in biological aging can lead to differences 
in susceptibility to aging-related diseases, including DR. Thus, while CA is an important risk factor for aging-
related diseases, its impact on disease occurrence and progression may be influenced by individual differences 
in biological aging, highlighting the need for personalized approaches to disease management.
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Zhu et al. utilized retinal fundus and OCT imaging from 11,052 disease-free participants in the UK Biobank 
to develop a deep learning model for retinal age estimation, defining the difference between retinal age and 
CA as the retinal age gap (RAG). Their research suggested a J-shaped relationship between RAG and all-cause 
mortality, indicating a significant threshold effect; when RAG exceeded 0, the risk of death began to slightly 
increase (HR = 1.01). However, the association between RAG and CVD or cancer mortality was not significant. 
Furthermore, subgroup analyses revealed that the association between RAG and all-cause mortality was not 
significant among individuals with DM38. Building on the conceptual framework established by Zhu et al., 
Gonzalez et al. employed a similar approach to model and analyze 13,544 fundus images, including 7694 images 
from DM patients without DR and 5850 images from DM patients with DR. They observed that the RAG in DM 
patients with DR was consistently higher than in those without DR, with RAG increasing with the severity of 
DR. However, this study was limited to a descriptive analysis of RAG, as the authors did not further investigate 
potential confounding factors39. Building upon Zhu et al.’s model, Chen et al. further analyzed 2311 DM patients 
and found that for each additional year of the RAG, the risk of DR increased by 7%. They grouped RAG into 
quartiles based on percentage and found a significantly higher prevalence of DR only in the highest quartile 
compared to the lowest quartile, suggesting a possible non-linear relationship. However, Chen et al. did not 
further fit the model using RCS40.

The RAG concept proposed by Zhu et al. and the BA/PA concept in the current study shared similarities, 
providing different perspectives on aging with their strengths and limitations. For example, RAG evaluated 
aging from retinal imaging, while BA/PA was based on biochemical markers in the blood. Additionally, RAG 
was computed using a deep learning model, which achieved higher precision but sacrificed some interpretability. 
On the other hand, BA/PA in this study was based on regression equations from different dimensions, offering 
higher interpretability but potentially lower precision compared to the deep learning model. Furthermore, as 
previously mentioned, aging is a complex process, and the RAG concept did not take into account the roles of 
various bodily systems in aging. Also, as demonstrated in the series of studies by Zhu et al., there was a significant 
association between RAG and CVD, stroke, kidney failure, obesity, metabolic syndrome, and inflammation41–44, 
and it was also found that cardiovascular health and blood glucose status had an impact on RAG​45,46, all of which 
were potential or important pathways for the progression of biological aging. In contrast, BA/PA considered the 
distinct rates of aging across various bodily systems (such as metabolism, the immune system, liver, kidneys, etc.) 
and their respective contributions to the overall aging process at its conceptual stage. For instance, it took into 
account factors like albumin and glucose, which Putin and Mamoshina had highlighted as the most important 
blood biochemical predictors of biological aging through different methods and sample populations47,48. However, 
the algorithm of BA/PA did not consider biomarkers specific to the eyes.

The conceptualization and quantification of the RAG were groundbreaking but warranted further considera-
tion. For instance, Zhu et al.’s series of studies indicated that the association patterns between RAG and health 
outcomes were mostly significant only in the high quartile, often suggesting non-linear relationships and thresh-
old effects. However, Zhu et al. did not utilize RCS to visualize non-linear relationships in all studies. While 
some of Zhu et al.’s studies compared the predictive performance of RAG and traditional risk factors using ROC 
analysis, none found a significant difference in the AUC between RAG and traditional risk factors41,49. Addition-
ally, Chen et al.’s study did not further compare the predictive performance of RAG and CA for DR. However, 
our study, as indicated by ROC curves and DCA, suggested that BA and PA could better predict DR compared to 
CA, with higher clinical utility. Since the inception of BA/PA, their ability to identify aging and predict diseases 
has been extensively validated. In contrast, the concept of RAG was still in its nascent stage, requiring further 
validation and optimization to enhance model interpretability and representativeness. Additionally, efforts should 
be made to increase RAG’s sensitivity to individualized biological aging.

The findings of the current study were not in conflict with those of Zhu, Gonzalez, and Chen but rather 
complemented each other. In the future, further discussion is needed to explore the differences between RAG 
and BA/PA from various perspectives, including their ability to identify aging, clinical utility, and public health 
implications. Additionally, further exploration of biomarkers closely associated with DR is warranted, examining 
the relationship between biological aging and DR from a multi-system, multi-omics perspective.

BA and PA assessment offers several key advantages. It is easily understood by the general population, unlike 
complex medical tests, making it a valuable tool for health education. Knowing their BA/PA can provide indi-
viduals with insights into their overall health and potential risks, empowering them to make informed decisions 
about their health and adopt healthier lifestyles. In clinical practice, BA/PA assessment using blood-derived 
biomarkers aligns with standard procedures, making it easy to integrate into routine healthcare. This assess-
ment allows healthcare professionals to personalize interventions and treatments, improving the precision and 
effectiveness of care. Additionally, monitoring changes in BA/PA over time can help identify trends indicating 
increased disease risk, enabling early intervention and potentially preventing disease onset or progression. By 
prioritizing resources based on biological aging rather than CA, BA/PA assessment can change public health, 
providing a more accurate and personalized approach to health management.

Through meticulous quality control procedures and sophisticated sampling techniques employed in the 
NHANES dataset, the collected data provides a representative insight into the connection between biological 
aging and DR among U.S. adults. However, it is essential to acknowledge certain limitations. First, due to the 
cross-sectional study, we could not establish a definitive temporal relationship between biological aging and DR. 
Second, the possibility of measurement errors and recall bias cannot be completely avoided. Third, despite con-
sidering demographic characteristics, lifestyle factors, and specific medical conditions, the presence of potential 
confounding variables cannot be entirely excluded. Finally, although a large portion of the study sample consists 
of non-Hispanic white individuals, subgroup analyses showed consistent associations between BA/PA/CA and 
DR, regardless of ethnicity, with no significant interactions. This suggests the results may be generalizable beyond 
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non-Hispanic whites. However, since this study only used U.S. samples, further research in diverse populations 
worldwide is warranted.

Conclusion
BA and PA are more accurate in identifying DR Risk than CA. Our results confirm the significance of aging in 
DR development and underscore the preventive potential of early detection and timely anti-aging interventions.

Data availability
The National Health and Nutrition Examination Survey data are publicly available at https://​wwwn.​cdc.​gov/​
nchs/​nhanes which is publicly available.
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