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Artificial intelligence for volumetric 
measurement of cerebral 
white matter hyperintensities 
on thick‑slice fluid‑attenuated 
inversion recovery (FLAIR) 
magnetic resonance images 
from multiple centers
Masashi Kuwabara 1, Fusao Ikawa 1,2*, Shinji Nakazawa 3, Saori Koshino 4, Daizo Ishii 1, 
Hiroshi Kondo 1, Takeshi Hara 1, Yuyo Maeda 1, Ryo Sato 3, Taiki Kaneko 3, Shiyuki Maeyama 3, 
Yuki Shimahara 3 & Nobutaka Horie 1

We aimed to develop a new artificial intelligence software that can automatically extract and measure 
the volume of white matter hyperintensities (WMHs) in head magnetic resonance imaging (MRI) 
using only thick-slice fluid-attenuated inversion recovery (FLAIR) sequences from multiple centers. 
We enrolled 1092 participants in Japan, comprising the thick-slice Private Dataset. Based on 207 
randomly selected participants, neuroradiologists annotated WMHs using predefined guidelines. The 
annotated images of participants were divided into training (n = 138) and test (n = 69) datasets. The 
WMH segmentation model comprised a U-Net ensemble and was trained using the Private Dataset. 
Two other models were trained for validation using either both thin- and thick-slice MRI datasets or 
the thin-slice dataset alone. The voxel-wise Dice similarity coefficient (DSC) was used as the evaluation 
metric. The model trained using only thick-slice MRI showed a DSC of 0.820 for the test dataset, which 
is comparable to the accuracy of human readers. The model trained with the additional thin-slice 
dataset showed only a slightly improved DSC of 0.822. This automatic WMH segmentation model 
comprising a U-Net ensemble trained on a thick-slice FLAIR MRI dataset is a promising new method. 
Despite some limitations, this model may be applicable in clinical practice.

Keywords  White matter hyperintensity, Artificial intelligence, Magnetic resonance imaging, Fluid-
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EPVS	� Enlarged perivascular space
FLAIR	� Fluid-attenuated inversion recovery
FN	� False negative
FP	� False positive
GPU	� Graphics processing unit
MRI	� Magnetic resonance imaging
PR	� Private Dataset
PVH	� Periventricular hyperintensity
T1WI	� T1-weighted image
T2WI	� T2-weighted image
TP	� True positive
WMH	� White matter hyperintensity
WMHC	� WMH Segmentation Challenge

White matter hyperintensities (WMHs) are common neuroimaging findings characterized by high signals either 
as periventricular hyperintensities (PVHs) or deep subcortical WMHs (DSWMHs) in fluid-attenuated inversion 
recovery (FLAIR) sequences of head magnetic resonance imaging (MRI)1. Many reports have shown associa-
tions of the WMH degree with ischemic stroke, depression, dementia, and emotional disorders2–8. Although 
the WMH prevalence is higher in older individuals, studies of healthy younger people have reported that the 
WMH degree is also correlated with the execution of speed-demanding functions, that is, subfrontal cortical 
functions, such as word recall6–10.

Brain Dock is a widely implemented brain checkup system that uses MRI and magnetic resonance angiog-
raphy to detect asymptomatic brain diseases, such as unruptured cerebral aneurysms and WMHs at an early 
stage, thereby preventing stroke and dementia in healthy individuals in Japan11,12. During a Brain Dock, the 
evaluation of WMHs is required, using a standard database with the aim of accumulating data on the diagnosis 
and early detection of disease risk11–13. To date, manual interpretation by neuroradiologists has been considered 
an effective method for quantitatively assessing WMHs14. However, this approach is not only time-consuming 
and labor-intensive but also has the disadvantage of high interrater variability (10–68%), which can be expected 
to result in significant bias, making large-scale studies using quantitative evaluation difficult14–17.

Recently, artificial intelligence (AI) has been used for automated reading and volumetric measurements. 
Although many publications have reported the use of AI to assess brain atrophy on T1-weighted images (T1WIs), 
reports on AI algorithms for automated WMH segmentation using only FLAIR images are limited15,18. The size, 
number, shape, and location of WMHs are heterogeneous and age-dependent, making them difficult to evalu-
ate using AI. Moreover, WMHs are present in a variety of diseases, requiring background information, such 
as patient history and disease course, and multiple MRI sequences for differentiation15,19,20. Only a few of the 
reported AI algorithms are applicable in clinical practice because many are limited to specific diseases, have 
small sample sizes, evaluate multiple sequences, or require a thin slice thickness as the imaging condition19,21,22. 
To ensure applicability in large-sized clinical practice for brain screening, accurate results must be provided 
consistently under imaging protocols for various WMHs, often requiring multicenter collaborative studies23,24. 
Only a few studies to date have validated the AI algorithm for automatic WMH segmentation by FLAIR alone 
in a multicenter setting25. If AI algorithms for automated WMH segmentation using only FLAIR images were 
developed and automatically classified in Brain Dock, the scientific contribution to preventive medicine in 
healthy people would be immeasurable. The initial purpose of this study was to develop a new AI software that 
can automatically extract and measure WMH volumes on head MR images using only thick-slice FLAIR images 
from multiple centers, in accordance with the Japan Brain Dock Society standards. In the future, we plan to 
develop an AI software that can automatically classify WMHs.

Results
According to the five neuroradiologists participating in this study, the average WMH volume was 
18.11 ± 22.07 mL, with a maximum of 109.45 mL and a minimum of 0.00 mL indicating the absence of a WMH. 
The distribution of WMH volumes in the Private Dataset (PR) (Fig. 1a) closely resembled that in the WMH 
Segmentation Challenge (WMHC) Dataset (Fig. 1b). Given the potential for biased evaluation data to negatively 
impact generalization performance on unseen data, the PR was expected to evaluate generalization performance 
with similar accuracy to that of the WMHC Dataset. Moreover, the unannotated images of 885 participants were 
utilized for pseudo-labeling to enhance model performance.

Quantitative analysis
Table 1 shows the evaluation results of WMH segmentation based on the Dice similarity coefficient (DSC), Recall, 
precision, and modified Hausdorff distance (95th percentile of the Hausdorff distance in mm) were compared. 
The test results for the PR and WMHC Dataset are shown separately. The PR model demonstrated high perfor-
mance with a DSC of 0.8 or higher on the PR, whereas its performance on the WMHC Dataset was not as high. 
The PR + WMHC model, which included the WMHC Dataset for training, showed improved performance and 
the ability to handle both thick- and thin-slice MRI datasets simultaneously. However, its performance on the 
PR improved only marginally, with a DSC increase of only 0.002. This modest degree of improvement might 
be attributed to domain differences between these datasets, suggesting that the thin-slice dataset does not sig-
nificantly enhance performance on the thick-slice dataset. Additionally, the model trained only on the WMHC 
Dataset exhibited overfitting to the test dataset.
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Regarding the performance of the existing commercial software that served as the basis for the algorithm in 
this study, it had a DSC of 0.635 for the PR, whereas the new algorithm showed a DSC of 0.820.

Qualitative analysis
Figure 2 shows the segmentation results of the PR and WMHC Dataset models used with the test dataset. The 
top row presents a participant with a relatively small WMH volume. All models successfully detected regions that 
were similar to the ground truth. In a participant with extensive WMHs, as in the second row, both the PR and 
PR + WMHC models accurately detected the WMH regions, whereas the WMHC model exhibited false nega-
tives (FNs), leading to a lower DSC. However, in a participant with small punctate WMHs, as observed in the 
right hemisphere in the third row, the WMHC model demonstrated better results compared with the other two 
models. The differences between the PR and the PR + WMHC models are shown in the last row. False positives 
(FPs), which occurred in the PR model, were reduced in the PR + WMHC model. For all other participants, the 
difference between these two models was minimal, which resulted in a slight DSC difference of 0.002.

A tendency toward FPs and FNs was observed in the PR model in areas with small punctate WMHs, near 
the lateral ventricles, near the septum pellucidum, lacunar infarcts, or where the boundary between WMHs 
and other structures was ambiguous. As shown in Fig. 2, row 3, the model missed the small punctate WMHs 
in the left hemisphere. Conversely, in the example from Fig. 2, row 4, punctate FPs can be observed in the left 
hemisphere. The figure also shows FPs near the surface of the lateral ventricle body, a region where the bound-
ary between a WMH and other structures might be indistinct. In the same example, the FPs were only observed 
in the PR and PR + WMHC models. For such cases with ambiguous boundaries, the PR model tends to detect 
slightly excessively, suggesting the possibility of slight over-annotation in the PR for training. While the examples 
in Fig. 2, rows 1 and 2, are generally accurate, an unintended “hole” appeared in the right hemisphere of Fig. 2, 
row 2. Furthermore, the recall of the PR model was lower than its precision, indicating that the model tended to 
have an under-detection bias on the PR.

To better understand variations on a case-by-case basis, the DSC for each case was calculated using the PR 
model results of the PR. The DSC values ranged from a minimum of 0.158 to a maximum of 0.901. Figure 3a,b 
show the cases with the lowest and highest DSCs, respectively. The case with the lowest DSC, at 0.158, missed 
small punctate WMHs, and the missed area accounted for a large portion of the total WMH area. Conversely, the 
case with the highest DSC (0.901) showed a larger total WMH area. Although some FNs or FPs were observed, 
their proportions to the total count were limited, resulting in a high DSC.

Figure 1.   Histograms showing the WMH volume distributions throughout the annotated Private Dataset 
(n = 207) and WMHC Dataset (n = 170). The WMH volume histograms of the Private Dataset (a) and WMHC 
Dataset (b) are shown. The x-axis represents the total WMH volume in each participant, and the y-axis 
represents the counts. WMH: white matter hyperintensity, WMHC: white matter hyperintensity segmentation 
challenge.

Table 1.   Assessment of WMH segmentation by the U-Net ensemble models. DSC: Dice similarity coefficient, 
H95: modified Hausdorff distance (95th percentile [mm]), PR: Private Dataset, WMH: white matter 
hyperintensity, WMHC: white matter hyperintensity segmentation challenge.

Model name Training dataset

Private Dataset for the test dataset 
(n = 69)

WMHC Dataset for the test dataset 
(n = 110)

DSC Recall Precision H95 DSC Recall Precision H95

PR Private Dataset 0.820 0.788 0.855 14.50 0.742 0.862 0.653 22.78

PR + WMHC Private and WMHC Datasets 0.822 0.789 0.858 14.92 0.826 0.877 0.781 7.97

WMHC WMHC Dataset 0.676 0.531 0.931 16.20 0.833 0.874 0.796 5.61
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Processing time analysis
Processing time measurements were conducted for thick-slice MR images, revealing an average processing time 
of 18.5 s per case.

Discussion
In this study, we evaluated the performance of an AI using automatically extracted volumetric measurement of 
WMH lesions on head MR images on thick-slice FLAIR images. The results showed that the DSC in our study 
reached 0.820, which is comparable to human reading accuracy.

Although various algorithms for AI-based automated volumetric measurements of WMHs have been reported 
in recent years, very few are applicable in clinical practice19,21,22. This is because most previous studies on AI 
and volumetric measurements of WMHs, many were limited to specific diseases, such as Alzheimer’s disease 
or multiple sclerosis, and had relatively small sample sizes of approximately 100 patients26–28 and an algorithm 
that used three-dimensional (3D) networks with thin-slice image data with 1–3 mm slice thicknesses27,29,30. 
Indeed, thin-slice MRI is reportedly superior to thick-slice MRI in detecting lesions in small areas, such as the 
brainstem, and in segmentation accuracy31. Thick-slice MRI, as used in this study, may reduce the accuracy of 
volumetric measurements in small lesions. However, thin-slice MRI is only widely applied in some developed 
countries and is not currently commonly used worldwide and in developing countries; MRI with thick slices 
of approximately 5 mm, as used in this study, remains the most commonly applied method for routine work14. 
Because thick-slice data is the mainstream in Brain Dock and we aimed to develop a calculation method based 
on existing Brain Dock data and the default imaging method, we used thick-slice data in this study. The size, 
number, shape, and location of WMHs are heterogeneous and age-dependent, making reliable and objective 
assessments difficult14,24. In the future, if thin-slice FLAIR imaging becomes the mainstream for brain screening, 
additional considerations may be necessary.

WMHs result primarily from aging processes, such as demyelination and axonal loss, both of which occur 
as a result of small vessel disease of the brain7. Thus, WMHs are frequently observed in older asymptomatic 
patients, although they can also occur in a variety of other diseases, including demyelinating diseases such as 

Figure 2.   Segmentation results for Private Dataset and WMHC Dataset models used with the test dataset. The 
columns from left to right show the original FLAIR image, ground-truth WMH annotations, and segmentation 
results for the PR, PR + WMHC, and WMHC models. The first row shows a TP case in which all models 
correctly detected WMHs, the second shows FN regions in the WMHC results, and the third row shows small 
FN regions in the PR and PR + WMHC results. The last row shows the difference in FP regions between PR 
and PR + WMHC results. FLAIR: fluid-attenuated inversion recovery, FN: false negative, FP: false positive, PR: 
Private Dataset, TP: true positive, WMH: white matter hyperintensity, WMHC: WMH Segmentation Challenge.
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multiple sclerosis; genetic diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy; infectious diseases such as human immunodeficiency virus encephalopathy; psychi-
atric disorders such as depressive disorders and schizophrenia; and various other diseases such as autoimmune 
diseases, neoplastic diseases, intoxication, and hypoxic encephalopathies32. Therefore, volumetric detection of 
WMHs in younger people is an important aspect of brain checkups, and lifestyle improvements are needed in 
examinees with increased WMH volume over time.

This study proposes a new AI software that solves these problems, and its major feature is the analysis of 
5-mm thick-slice FLAIR images. Moreover, this study evaluated both the PR and the WMHC Dataset as thick 
(5 mm) and thin (1–3 mm) slices, respectively, with a sample size of over 200 participants. The results showed 
that the WMH segmentation accuracy based on two-dimensional (2D) FLAIR images with 5 mm slices, which 
is widely used in general hospitals, was comparable to that of previous studies. This suggests that the proposed 
AI algorithm can be applied in clinical practice.

We only identified 39 publications that analyzed the automatic segmentation of WMHs on head MRI using 
AI similar to the procedure in the present study. Of these, we reviewed 17 publications since 2018, including the 
present study (Table 2). The sample size varied from 20 to 1092 overall, with the sample size of this study being the 
largest. Multiple MRI sequences analyzing both T1WI and FLAIR images were identified in 12 studies20,22,26,33–38, 
and only one study in addition to the present study evaluated only FLAIR images. Regarding the MRI field 
strength, nearly all studies, including ours, used 3 T MRI. Regarding the segmentation accuracy, the DSC values 
ranged from 0.41 to 0.83, showing a wide range of accuracy. The DSC of the AI model in this study was 0.820, 
indicating higher accuracy compared with that of previous studies overall. Therefore, the model developed in 
the present study demonstrably has a better performance than that of existing AI models.

The unique feature of our study is that we have developed an AI that performs better than previous AI models 
using “thick slices” and “FLAIR images only” in accordance with the standards of the Japan Brain Dock Society. 
Notably, the performance of this AI model was tested on the largest sample size in a study of this type of more 

Figure 3.   Segmentation results of the PR model for cases with the lowest and highest DSC values from the 
Private Dataset. (a) The case with the lowest DSC value of 0.158; (b) the case with the highest DSC value of 
0.901. The columns titled “Original FLAIR,” “WMH annotation,” and “PR” display the original FLAIR images; 
the ground-truth WMH annotations and the segmentation results of the PR model are shown in green and red, 
respectively. DSC: Dice similarity coefficient, FLAIR: fluid-attenuated inversion recovery, PR: Private Dataset, 
WMH: white matter hyperintensity.
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than 1000 cases, using data from multiple institutions. In addition, the processing time when performing segmen-
tation was as fast as 18.5 s per case for our AI model. When corrected for comparison with a previous study, the 
equivalent value was approximately 1.8 min. This is faster than the approximate processing time of 5 min using 
a supervised deep learning-based method reported in the previous study32. Therefore, this AI algorithm seems 
more appropriate for real-world clinical adaptation. MRI with thick slices and FLAIR imaging are only simple 
methods for brain checkups but have an advantage in that MRI examinations are easily accessible for patients 
and versatile. Our findings can also be used as a basis for PVH and DSWMH grading as proposed by the Japan 
Brain Dock Society. The ultimate goal of our AI model is to classify PVH and DSWMH grading to screen normal 
participants at risk of early-onset dementia to prevent or delay the onset of dementia through lifestyle guidance.

This study had several limitations. First, approximately 10 physicians diagnosed the images for annotation, 
possibly leading to individual differences in physician judgment, resulting in diagnostic bias. However, all phy-
sicians in this study were board-certified radiologists from the Japan Radiological Society or neuroradiologists 
with more than 7 years of experience and board-certified neurosurgeons from the Japan Neurosurgical Society; 
therefore, the diagnostic results should be of a uniformly high standard. Second, because only high-intensity 
areas on FLAIR images were evaluated in this study, lacunar infarction might not have been clearly distinguished 
because only two lacunar infarctions were included in the training dataset. We would like to develop another AI 
to distinguish between WMHs and lacunar infarctions after acquiring a lacunar infarctions dataset in the near 
future. Third, a detailed analysis differentiating between PVH and DSWMH within WMHs was not conducted 
in this study; however, our research is currently ongoing. Fourth, although the data in this study was normal-
ized by scaling the data to the range of 0.0–1.0, some bright artifacts might have affected the scaled value of 
the lesion. Although various methods are used for normalization, we used a simple normalization method and 
managed the intensity variations through contrast augmentation. Other approaches, such as ensuring uniform 
contrast during the normalization stage, were not validated in this study. Finally, this study was based only on 
FLAIR images for our purpose, which were not combined with other sequence images such as T1WIs, T2WIs, 
diffusion-weighted images, and other images that are useful for differentiation. Because the most clinically 
important imaging method is FLAIR for the diagnosis of WMHs, we believe that the development of a new AI 
software automatically extracting and measuring WMH volumes using only thick-slice FLAIR images is most 
meaningful for initial brain screening. As the next step, we plan to create an AI algorithm that combines FLAIR 
images with other sequences such as T1WIs to differentiate lesions and classify WMHs in the near future.

In conclusion, the automatic WMH segmentation model based on a U-Net ensemble trained on a thick-slice 
FLAIR MRI dataset showed a DSC of 0.820 and a promising AI algorithm. This model may be applicable in 
clinical practice for brain checkups.

Methods
Ethics approval and informed consent
This study was approved by the Institutional Review Board of Hiroshima University (approval number: E2022-
0262). All study protocols were developed according to the guidelines of Hiroshima University Hospital. 

Table 2.   Review of recent studies on the automatic segmentation of cerebral white matter hyperintensities in 
head MRI using AI. AI: artificial intelligence, DSC: dice score coefficient, FDR: false discovery rate, FLAIR: 
fluid-attenuated inversion recovery, FNR: false negative rate, FPR: false positive rate, MRI: magnetic resonance 
imaging, N/A: not applicable, T: Tesla, T1WI: T1-weighted imaging, T2WI: T2-weighted imaging, TPR: true 
positive rate.

Author/year Sample size Breakdown of samples

MRI

Type of segmentation
Average spatial agreement with 
reference segmentationSequence Field strength (T)

Manjón JV/2018 128 N/A T1WI, FLAIR 1.5, 3 Deep learning DSC: 0.78

Knight J/2018 96 N/A FLAIR 1.5, 3 Supervised DSC: 0.41–0.70

Qin C/2018 88 N/A T1WI, FLAIR 3 Deep learning DSC: 0.67

Ling Y/2018 156 N/A T1WI, FLAIR 1.5, 3 Supervised DSC: 0.76

Park BY/2018 148 N/A T1WI, FLAIR 1.5 Supervised DSC: 0.65–0.67

Atlason HE/2019 170 Train: 60, test: 110 T1WI, T2WI, FLAIR 1.5, 3 Unsupervised DSC: 0.53–0.67, TPR: 0.25–0.40

Sundaresan V/2019 133 N/A T1WI, T2WI, FLAIR 1.5, 3 Supervised DSC: 0.77, TPR: 0.73–0.98

Wu D/2019 135 Train: 15, test: 120 T1WI, FLAIR 3 Supervised DSC: 0.62, FPR: 0.35, FNR: 0.37

Wu J/2019 60 N/A T1WI, FLAIR 1.5, 3 Deep learning DSC: 0.78

Ding T/2020 20 Train: 15, test: 5 T1WI, FLAIR 3 Supervised DSC: 0.78, TPR: 0.70

Fiford CM/2020 80 Train: 20, test: 60 T1WI, FLAIR 3 Unsupervised DSC: 0.74

Hong J/2020 148 N/A T1WI, FLAIR 3 Deep learning TPR: 0.87, FDR: 0.10

Liu L/2020 60 Test: 60 T1WI, FLAIR 1.5, 3 Deep learning DSC: 0.83

Rachmadi MF/2020 60 Test: 60 T1WI, T2WI, FLAIR 3 Unsupervised DSC: 0.47–0.56, TPR: 0.47

Tran P/2022 60 N/A T1WI, FLAIR N/A N/A DSC: 0.67

Zhu W/2022 1,045 Cross-validation: 849 T1WI, FLAIR 1.5, 3 Supervised DSC: 0.792

Present study/2023 1,092 Train: 138 + 885, test: 69 FLAIR 1.5, 3 Supervised DSC: 0.820
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Individual data were anonymized and collected during routine Brain Dock examinations; thus, all partici-
pants provided informed consent based on an opt-out method. Moreover, in this study, we were provided with 
anonymized data; therefore, the authors did not have access to personally identifiable participant information 
during or after data collection.

Study design
In this study, a new automatic WMH segmentation model was developed based on existing commercial software 
(EIRL Brain Metry version 1.13.0, LPIXEL Inc., Tokyo, Japan). This software employs U-Net for segmentation. 
Although the core usage of U-Net remains consistent, we replaced the backbone network with a new model and 
also explored the model ensembles.

The WMH segmentation model of the software was updated using a newly collected dataset, the PR. This 
new model was named “PR” as it was trained using the PR. The model performance was also evaluated using the 
publicly available WMHC Dataset29. The WMHC Dataset has thinner slices than those in the PR.

For validation, two additional models were trained using the same training procedure. One was a model 
trained using both the PR and the WMHC Dataset (PR + WMHC model) to evaluate the effect of adding an 
MRI dataset with thin slices to the PR with thick slices. The other was a model trained using only the WMHC 
Dataset (the WMHC model) to evaluate the performance of a model trained using only a thin-slice MRI dataset.

Private dataset
For this dataset, 1092 FLAIR MR images were collected from three clinics in Japan. To minimize potential biases 
related to the WMH severity, data were gathered in a manner that ensured a balanced distribution of PVH/
DSWMH grades (0–4) as determined by each clinic. The WMH annotation process was restricted to 207 ran-
domly selected participants because of the annotation costs. Nearly all the annotated WMHs were age-related, 
and 2 of these 207 participants had lacunar infarcts. The slice thickness of the annotated data ranged from 5 to 
6 mm, with an average of 5.37 mm for the entire dataset. Detailed spatial characteristics, including slice thick-
ness, are presented in Table 3. The data were acquired using nine different types of scanners, and the detailed 
MRI parameters are listed in Supplementary Table S1.

Five neuroradiologists shared the annotation efforts of WMHs for the 207 selected participants. To minimize 
interrater variability and ensure annotation quality, an annotation guideline was developed under the supervision 
of neuroradiologists. The following guidelines were provided for areas prone to individual variations: (a) the area 
around the ventricles, sulci, and longitudinal fissure may show a non-WMH signal; therefore, an annotation is 
only made when a WMH is clearly visible on neighboring upper and lower slices, (b) the septum pellucidum of 
the lateral ventricles should not be annotated, (c) only WMHs in the cerebrum should be annotated, and (d) lacu-
nar infarcts and enlarged perivascular spaces (EPVSs) should be excluded. The imaging differentiation between 
lacunar infarcts, EPVSs, and WMHs is that a WMH is depicted as a clear hyperintense lesion on FLAIR, whereas 
an EPVS is depicted as an iso-to-hypointense lesion and a lacunar infarct is depicted as an iso-to-hyperintense 
lesion with a hypointense center11,13. In addition, WMHs are found mainly in the cerebral white matter, whereas 
EPVSs and lacunar infarcts are found in the basal ganglia, in addition to the cerebral white matter.

For the model development, the annotated datasets were randomly divided into training (n = 138) and test 
(n = 69) datasets. To ensure an accurate evaluation, a second annotation review was conducted on 69 test par-
ticipants. The review was performed by three neuroradiologists who differed from the five physicians employed 
in the initial annotation process. The reviewers were asked to modify the previously annotated WMH regions 

Table 3.   Characteristics of the Private Dataset comprising annotated images of 207 participants. a Scanner type 
ID: a unique ID for each combination of scanner and magnetic field strength; T: Tesla.

Vendor Scanner type IDa Scanner model
Magnetic field strength 
(T) Acquisition matrix Slice thickness (mm) Training Test

GE Healthcare 1 DISCOVERY MR750w 3 320 × 192 6.0 32 0

(Chicago, IL, USA)

2 Optima MR450w 1.5 224 × 224 5.0 0 2

3 SIGNA Architect 3 288 × 224 5.0 3 4

4 SIGNA EXCITE 1.5 288 × 224 6.0 0 6

5 Signa HDxt 1.5 288 × 224 5.0 0 1

5 Signa HDxt 1.5 320 × 320 6.0 1 0

5 Signa HDxt 1.5 288 × 224 6.0 0 1

5 Signa HDxt 1.5 224 × 192 6.0 37 0

6 Signa HDxt 3 288 × 192, 224 5.0 6 11

Philips 7 Ingenia 1.5 268 × 246 5.0 19 8

(Amsterdam, the Neth-
erlands)

7 Ingenia 1.5 320 × 223 5.0 1 0

7 Ingenia 1.5 320 × 198, 242 5.0 8 25

Siemens Healthineers 8 Avanto 1.5 256 × 117 5.0 15 5

(Erlangen, Germany) 9 Symphony 1.5 320 × 211, 230 5.0 16 6
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if needed. As a result, several modifications were made to the test dataset, thereby ensuring the reliability of the 
evaluation criteria.

WMH segmentation challenge dataset
For the evaluation using an external dataset, the WMHC Dataset was employed29. A competition using this 
dataset was originally held at the 20th International Conference on Medical Image Computing and Computer-
Assisted Intervention in 2017 in Quebec City, Quebec, Canada. After the competition, models could be submitted 
via their website until December 2022. Afterward, the previously undisclosed test dataset was made available. 
Several previous studies have used this dataset15,26,31,32, and our study assessed performance using the same data-
set. Although the dataset included both FLAIR images and T1WIs, only FLAIR images were used in this study.

The WMHC Dataset consisted of 60 training and 110 test participants. These participants were sourced from 
three institutes located in the Netherlands and Singapore. The data were acquired using five different types of 
scanners. The average slice thickness of the FLAIR sequences in this dataset was 2.23 mm. Notably, the average 
slice thickness was approximately 41% that of the PR. The WMH volume averaged 16.92 ± 21.52 mL, with a 
minimum of 0.78 mL and a maximum of 195.15 mL29.

WMH segmentation model
The algorithm for WMH detection in the software comprised a 2D convolutional neural network (CNN) model 
that processes individual MRI slices sequentially. Initially, pixel values of the input MR images were normalized 
to fall within the range of 0.0–1.0. Notably, image processing-based bias field corrections were not applied. We 
made this decision because the effect of the contrast augmentation during training was anticipated to accom-
modate such variations. Then, the normalized image was resized to 512 × 512 pixels and input into the main 
CNN model. This CNN model was an ensemble of two U-Net models, each with distinct characteristics. The 
first U-Net model utilized ResNext50 as the encoder, and the ImageNet pretrained weights were used as the 
initial weights. The learning rate was set to 0.001, the batch size was set to 15, and the model was trained for 15 
epochs using the Adam optimizer. These hyperparameters were obtained using a grid search. During training, 
the learning rate was decayed using a cosine-annealing learning-rate reducer to facilitate convergence. Matthews 
correlation coefficient loss was used as the loss function, as originally proposed for skin lesion segmentation39. 
This loss function incorporates a penalty for misclassification of the true negative pixels and is expected to show 
robust performance. During the training process, data augmentations such as horizontal flips, vertical flips, 
shifting, rotation, contrast transformation (changing the window width), and grid distortion were applied to all 
the slices, regardless of WMH presence, to foster the development of a noise-robust model. The second U-Net 
model used EfficientNet-B5 as the encoder, which was trained in the same manner as the first U-Net. The output 
of the main CNN model was a threshold of 0.5, and the predicted binary WMH mask was obtained. The number 
of ensembles was set to two to obtain a balance between processing time and improved accuracy. Ensembles 
comprising three or more models increased the processing time by approximately 1.5 times or more, although 
the enhancement in performance was marginal.

Pseudo-labeling was employed to effectively utilize the unlabeled data in the training of the actual model40. 
This technique uses the model’s predictions for unlabeled data to generate labels, which are then used to retrain 
the model, potentially increasing the diversity of the training dataset and improving generalization performance. 
First, a model for pseudo-labeling was trained using the PR for training only. The model was then used to predict 
the WMH regions in unannotated images of 885 participants. These predicted WMH masks can be regarded as 
pseudo-WMH annotations (pseudo-labeling dataset). The pseudo-labeling model showed a DSC of 0.817 for 
the PR. Although the pseudo-labeling dataset contains both correct and incorrect predictions, increasing the 
diversity of the training dataset can be expected to improve the generalization performance. Finally, a new model 
was trained using both the PR and pseudo-labeling dataset.

Evaluation metrics
To evaluate WMH segmentation performance, the voxel-wise DSC was used in this study. The DSC is a measure 
of the agreement between predicted and ground-truth regions and is defined as DSC = 2 × true positive (TP)/
(2 × TP + FP + FN), where TP, FP, and FN are the numbers of TP, FP, and FN voxels, respectively. Moreover, recall 
and precision were calculated using the following formulas: recall = TP/(TP + FN) and precision = TP/(TP + FP). 
Since there are significantly more voxels in images without versus with WMHs, resulting in a notably higher 
number of true negatives versus FPs, specificity tends to approach a value near 1. This characteristic makes it 
unsuitable for detailed comparisons, and thus, was not used as an evaluation metric in this study.

Processing time measurement
To evaluate the applicability of the model in clinical practice with limited resources, processing time was meas-
ured without using a graphics processing unit (GPU). The average of 10 measurements was computed for thick-
slice MR images. To facilitate comparison with a previous study32, the measured value was corrected for differ-
ences in the number of slices and central processing unit (CPU) clock frequencies as follows. In the prior study, 
time measurements were obtained using MRI with 192 slices on a computer with a 3.5-GHz CPU, whereas our 
study used 22 slices on a computer without a GPU, equipped with an Intel Core i5-10500 T processor (Intel 
Corp., Santa Clara, CA, USA) running at 2.30 GHz with 16 GB of memory. Assuming that processing time 
decreases proportionally with the CPU clock frequency, the corrected processing time, intended for compari-
son with the results of the previous study, was calculated as follows: corrected processing time = measured time 
(min) × (192/22) × (2.3/3.5).
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Data availability
Anonymized data from the present study may be shared by the corresponding author upon request from a quali-
fied researcher and upon permission from the institutional review board.
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