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Estimating neutrosophic finite 
median employing robust 
measures of the auxiliary variable
Saadia Masood 1, Bareera Ibrar 1, Javid Shabbir 2, Ali Shokri 3 & Zabihullah Movaheedi 4*

Our study explores neutrosophic statistics, an extension of classical and fuzzy statistics, to address 
the challenges of data uncertainty. By leveraging accurate measurements of an auxiliary variable, 
we can derive precise estimates for the unknown population median. The estimators introduced 
in this research are particularly useful for analysing unclear, vague data or within the neutrosophic 
realm. Unlike traditional methods that yield single-valued outcomes, our estimators produce ranges, 
suggesting where the population parameter is likely to be. We present the suggested generalised 
estimator’s bias and mean square error within a first-order approximation framework. The practicality 
and efficiency of these proposed neutrosophic estimators are demonstrated through real-world data 
applications and the simulated data set.
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Significant strides have been made in recent years in estimating the finite population mean, proportion, and 
variance using auxiliary information. However, the median, a more robust measure than the mean in the face of 
exceptionally low or high values, has received attention. Our research stands out by proposing a practical solu-
tion for estimating the median of a study variable for a finite population, even in the presence of neutrosophic 
forms of research and supporting variables with extreme values or outliers.

Several studies have made significant contributions to estimating a finite population’s median. Gross1 used 
the sample median estimator in various sampling methods. Kuk and Mak2 proposed using the known median 
of the auxiliary variable to estimate the median of the study variable. Francisco and Fuller3 approximated the 
distribution function of a finite population using the median. Smarandache4 advocated using Neutrosophic sta-
tistics in uncertain systems. Singh et al.5 suggested a generalized family of median estimators in double sampling. 
These studies have laid the foundation for our research, which aims to build upon these findings and propose a 
practical solution for estimating the median of a study variable for a finite population.

A few chain ratio-type estimators were introduced by6 using the additional knowledge of the range of the 
auxiliary variable, whereas7 discussed the transformed ratio-type estimator using ’s8 idea. Shokri9, 10, 58 presented 
new approaches to solving second-order initial value problems, providing effectiveness in addressing compu-
tational challenges. A generalized median estimator utilizing the transformed auxiliary variable was addressed 
by 11. Lamichhane et al.12 suggested a unique estimation for the finite population mean using the auxiliary vari-
able’s median.

Smarandache13 suggested that the sample size may not be accurately specified in neutrosophic statistics and 
hence presented the neutrosophic logic may fall within the interval [a, b] (unidentified exactly). Sahin14 and 
Şahin15 proposed a new similarity measure based on falsity value between single-valued neutrosophic sets based 
on the centroid points of transformed single-valued neutrosophic numbers in decision-making. Shokri16 and 
Uluçay17 proposed the similarity measures of bipolar neutrosophic sets and their application to multiple criteria 
decision-making. Jan18 proposed multi-criteria decision-making for cubic linguistic information. Aslam19,20 
explained the Neutrosophic analysis of variance on neutrosophic data. Using two supplementary variables,21 and22 
presented difference-type median estimators for obtaining the population median. Chakraborty23 developed and 
categorized a trapezoidal bipolar neutrosophic number in decision-making.

For instance,24’s development of complex neutrosophic fuzzy sets contributed to advancing the field of 
fuzzy sets. In addition, they offered an extensive flowchart of fuzzy sets with extensions, a description of their 
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properties, and an explanation of how interval-valued neutrosophic sets function. Haque25 proposed a multi-
criteria group decision-making strategy for the cylindrical neutrosophic domain.

Data visualization, analysis, and inference have long used classical statistics (CS). The CS investigates the 
assumption of data certainty. When the observations’ measurements are precise, new methods for handling 
uncertain data are needed. Fuzzy logic works with data where the variable being researched lacks accurate 
measurements. They are quickly evolving and often used in settings where decisions are made. Fuzzy statistics 
examine data with ambiguous, opaque, or uncertain observations but neglect indeterminacy measurement. 
In this situation, showing a range of specific observations might be possible. The data included inside the 
indeterminacy interval cannot thus be analyzed using the CS. Neutrosophic statistical techniques are used 
to analyze the ambiguous neutrosophic data. The neutrosophic logic is used to interpret vague or unclear 
observations and allows for the measurement of indeterminacy and the determinate part of the observations.

Aslam26,27 elaborated on Neutrosophic Interval Statistics (NIS), Neutrosophic Applied Statistics (NAS), and 
Neutrosophic Statistical Quality control (NSQC), respectively. Uluçay28 suggested the idea of interval-valued 
refined neutrosophic sets and their applications. A large number of neutrosophic sets are described in the 
literature.

Tahir29 addressed a sampling gap by conducting a study to estimate a population’s characteristics in a 
neutrosophic environment. They presented estimators of the neutrosophic ratio-type for estimating the finite 
population mean utilizing the additional information. Uluçay30,28 presented Q-neutrosophic soft graphs in 
operations management and communication networks. Vishwakarma and Singh31 proposed a neutrosophic 
ranked set sampling strategy for estimating the population mean under uncertainty using neutrosophic auxiliary 
information.

Table 1 illustrates the versatility and utility of neutrosophic logic in tackling problems across various 
disciplines, especially in situations where traditional binary logic falls short due to vagueness, uncertainty, or 
contradictory information.

Despite an extensive review of existing research, a study still needs to address the challenge of estimating the 
unknown population median in survey sampling when additional variables are introduced under neutrosophic 
information. The effectiveness of estimators remains to be determined in scenarios where the study variable 
and supporting variables take on neutrosophic forms, and the dataset includes extreme values or outliers. The 
lack of a practical solution for median estimation in such cases underscores the novelty and importance of our 
proposed neutrosophic median estimation method based on reliable measures of the auxiliary variable that are 
already known.

Neutrosophic statistics are applied in decision-making, risk assessment, uncertainty modelling, image 
processing, medical diagnosis, finance, and engineering for robust analysis as discussed in Table 1.

The paper is organized in a way that Section "The neutrosophic statistics" elaborates the details of Neutrosophic 
statistics along with symbols and notations. The adapted and proposed Neutrosophic median estimators along 
with the efficiency comparison are given in Section "The neutrosophic median estimators under simple random 
sampling". The numerical and graphical results related to real-life and simulated data sets are presented in Section 
"Real-life application". Finally, the proposed work is concluded in Section "Conclusion".

The neutrosophic statistics
Neutrosophic statistics, a unique approach, are designed to handle datasets with a degree of ambiguity or partial 
information. This method allows for conflicting beliefs and accommodates a range of uncertain numbers that 
may represent some observations, including an exact measurement. In contrast, traditional statistics falter when 
faced with uncertainty. This is where the intriguing potential of neutrosophic statistics comes into play, offering 
a fresh perspective on data analysis.

In real-world problems, the population parameters are often unknown. In such cases, statistical inference 
methods may need to be more practical. Instead, acceptable estimates are used, resolving the issue of an unknown 
parameter value by estimating its values. This pragmatic approach reassures the statistician that the derived data 
are vague but still useful. Neutrosophic statistics, with their ability to calculate the best interval value with the 
minimum mean square error, offer a reliable solution to these problems.

Table 1.   Some real-life problems and domains under neutrosophic logic.

Domain Problem solved Description

Medical diagnosis Disease identification Improving the accuracy of diagnosing diseases by handling uncertain or incomplete medical data

Image processing Image segmentation and enhancement Enhancing image quality and segmentation in environments with vague and indistinct boundaries

Decision making Multi-criteria decision making (MCDM) Facilitating decision-making processes in scenarios with incomplete, inconsistent, or uncertain 
information

Engineering Fault diagnosis and system reliability analysis Assessing system reliability and diagnosing faults in complex engineering systems under uncertainty

Environmental science Environmental impact assessment Evaluating environmental impacts with imprecise data, aiding in more effective decision-making

Social sciences Opinion mining and sentiment analysis Analyzing sentiments and opinions in social media data, where opinions can be indeterminate or 
inconsistent

Robotics Robot localization and navigation Improving robot navigation in uncertain environments by dealing with imprecise sensor data

Economics Economic forecasting Enhancing economic forecasting models by incorporating uncertainty in economic data
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Previous study efforts provided a limited range of neutrosophic observations, including quantifiable neutro-
sophic data. Furthermore32–40 discussed numerous approaches, such as interval-based approaches, Triangular or 
trapezoidal fuzzy numbers, and single-valued fuzzy numbers, exist to express the range of neutrosophic numbers 
along with Optimal trajectories in reproduction models of economic dynamics. He41 proposed a fractal model for 
internal temperature response in porous concrete, advancing understanding in applied mathematics. Iskandarov 
and Komartsova42,57 investigated integral perturbations’ influence on boundedness in fourth-order linear dif-
ferential equations. Khankishiyev43 employed finite differences to solve loaded differential equations, while 44, 
56 explored dark energy solutions without a cosmological constant. Furthermore,45 established conditions for 
complete monotonicity in the differential functions involving trigamma functions.

Let the neutrosophic range is TN = TL + TUℓN with ℓN ∈ [ℓL, ℓU ] , the neutrosophic variable TN indicates 
the neutrosophic samples selected from a population having imprecise, ambiguous and unclear measurements. 
Thus, for the neutrosophic data in the interval form, we use notation TN ∈ [a, b], where a and b are the lower 
and upper values of the neutrosophic data, respectively.

Figure 1 depicts the approach to applying the proposed estimation methods in neutrosophic statistics. This 
workflow developed a few neutrosophic estimators to estimate the finite population median in the presence of 
supplementary data, which are well suited for overcoming the sample indeterminacy problem.

Symbols and notations
Suppose a neutrosophic random sample of size nN ∈ [nL, nU ], selected from a finite population 
U = {U1,U2, ...,UN } of N recognisable units. Assume yN (i) and xN (i),i = (1, 2, ..., n) represent the ith sampled 
unit’s values of the neutrosophic data of the study variable yN(i) ∈ [yL, yU ] and the supplementary variable 
xN(i) ∈ [xL, xU ] , respectively. Let MyN be the neutrosophic variable of interest and M̂yN and M̂xN represent the 
sample median that corresponds to the population median MyN and MxN respectively with the probability density 
functions fyN (MyN ) and fxN (MxN ), respectively, where M̂yN ∈ [M̂yL, M̂yU ] and M̂xN ∈ [M̂xL, M̂xU ]. Let 
ρyxN = ρ

(M̂yN ,M̂xN )
= 4ρ11(yN , xN )− 1 represent the neutrosophic population correlation coefficient between 

the neutrosophic sample medians ranging from −1 to +1 as ρ11 increases from 0 to 0.5, where ρyxN ∈ [ρyxL, ρyxU ] 

Figure 1.   Workflow of the parameter estimation.
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s u ch  t h at  P11(yN , xN ) = P(yN ≤ MyN ∩ xN ≤ MxN ). S i m i l ar ly,  Bias(M̂yN ) ∈ [BiasL, BiasU ] an d 
MSE(M̂yN ) ∈ [MSEL, MSEU ] belong to the neutrosophic sets.

To get the characteristics of estimators, the relative error terms are defined as follows: Suppose 
e0N = (M̂yN −MyN )/MyN e1N = (M̂xN −MxN )/MxN are the neutrosophic errors where e0N ∈ [e0L, e0U ] and 
e1N ∈ [e1L, e1U ] such that E(eiN ) = 0 (i = 0, 1), E(e20N ) = �NC

2
MyN

, E(e21N ) = �NC
2
MxN

, E(e0Ne1N ) = �NCMyxN , 

where CMyxN = ρyxNCMyN CMxN , CMyN =
{

MyNfyN (MyN )
}−1

, CMxN =
{

MxNfxN (MxN )
}−1 are the neutrosophic 

coefficients of variation, respectively. Let CMyxN ∈ [CMyxL , CMyxU ] , CMyN ∈ [CMyL , CMyU ],CMxN ∈ [CMxL , CMxU ] 

and �N = 1
4

(

1
nN

− 1
NN

)

, where �N ∈ [�L, �U ].

The neutrosophic median estimators under simple random sampling
First, we present a few adapted neutrosophic median estimators using auxiliary information under simple 
random sampling to address uncertainty and neutrosophic data.

Adapted median estimators with auxiliary variable

	 (i)	 Motivated by1, we propose a neutrosophic traditional median estimator and its variance, along with the 
expression of variance is given by

	 (ii)	 Motivated by2, we developed a novel neutrosophic traditional ratio estimator, along with the expressions 
of Bias and MSE are

and

The ratio estimator ( M̂RN ) performs better than M̂0N if ρyxN > 0.5
CMxN
CMyN

.

	 (iii)	 Motivated by46, the neutrosophic exponential ratio-type estimator, along with the expressions of Bias 
and MSE are given by

and

The exponential ratio estimator ( M̂EN  ) is more efficient than M̂0N  and M̂RN  if ρyxN > 0.25
CMxN
CMyN

 and 

ρyxN < 0.75
CMxN
CMyN

, respectively.

	 (iv)	 The adapted neutrosophic difference estimator along with the expression of variance is given by

At the optimal value of d0N , which is d0N(opt) =
MyNρyxNCMyN

MxNCMxN
, the minimum MSE of M̂D0N , is given by

(1)M̂0N = M̂yN

(2)Var(M̂0N ) = �NM
2
yNC

2
MyN

(3)M̂RN = M̂yN

(

MxN

M̂xN

)

(4)Bias(M̂RN ) ∼= �NMyN

{

C2
MxN

− CMyxN

}

(5)MSE(M̂RN ) ∼= �NM
2
yN

{

C2
MyN

+ C2
MxN

− 2CMyxN

}

(6)M̂EN = M̂yN exp

(

MxN − M̂xN

MxN + M̂xN

)

(7)Bias(M̂EN ) ∼= MyN�N

(

3

8
C2
MxN

−
1

2
CMyxN

)

(8)MSE(M̂EN ) ∼= M2
yN�N

(

C2
MyN

+
1

4
C2
MxN

− CMyxN

)

(9)M̂D0N = M̂yN + d0N (MxN − M̂xN )

(10)Var(M̂D0N )min
∼= M2

yNC
2
MyN

�N

(

1− ρ2
yxN

)
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	 (V)	 Adapted from22, difference-type estimators, along with the expressions of Bias and minimum mean 
square errors, are given by

and

where diN (i = 1− 8) are constants determined below by optimality considerations as
d1N(opt) =

B0N
A0NB0N−C2

0N+B0N
, d2N(opt) =

MyN

MxN

C0N

A0NB0N−C2
0N+B0N

,

d3N(opt) =
B1N (C1N−D1N+1)

A1NB1N−D2
1N+B1N

, d4N(opt) =
MyN

MxN

(A1NB1N−C1ND1N+B1N−D1N )

(A1NB1N−D2
1N+B1N )

,

d5N(opt) =
(B2NC2N−D2NE2N+B2N )

(A2NB2N−E22N+B2N )
, d6N(opt) =

MyN

MxN

(A2ND2N−C2NE2N+D2N−E2N )

(A2NB2N−E22N+B2N )
,

d7N(opt) =
B3N (C3N−D3N+1)

A3NB3N−D2
3N+B3N

, d8N(opt) =
MyN

MxN

(A3NB3N−C3ND3N+B3N−D3N )

(A3NB3N−D2
3N+B3N )

,where  A0N = �NC
2
MyN

, B0N =
 

�NC
2
MxN

, C0N = �NCMyxN , A1N = �N (C
2
MyN

+ 3C2
MxN

− 4CMyxN ), B1N = �NC
2
MxN

, C1N = �N (C
2
MxN

− CMyxN ), 

D1N = �N (2C
2
MxN

− CMyxN ),  A2N = �N (C
2
MyN

+ C2
MxN

− 2CMyxN ),  B2N = �NC
2
MxN

,  C2N = �N

(

3

8
C2
MxN

 

− 1

2
CMyxN

)

,  D2N = �NC
2
MxN

/2,  E2N = �N (C
2
MxN

− CMyxN ),  A3N = �N (C
2
MyN

+ 4C2
MxN

− 4CMyxN ),B3N =
 

�NC
2
MxN

, C3N = �N

(

3
2C

2
MxN

− CMyxN

)

 and D3N = �N (2C
2
MxN

− CMyxN ).

and

The proposed generalized neutrosophic median estimator
Traditional estimators, often hindered by their reliance on historical data, struggle with accuracy, particularly 
with outliers. This section introduces advanced neutrosophic estimators for accurately predicting a finite 
population’s median. These estimators blend unique metrics like quartile deviation and interquartile range, 
enhancing data distribution analysis and outlier exclusion through robust scaling, employing decile means, 
the Hodges-Lehmann estimator, and tri-mean for reliable median estimation. The tri-mean proposed by47, the 
Hodges-Lehmann estimator proposed by48 and the decile means proposed by49 are the three robust metrics 
we used in this study. For further information about these robust measures, readers can see50 and51 for details.

(11)
M̂D1N = d1NM̂yN + d2N (MxN − M̂xN )

(12)
M̂D2N =

{

d3NM̂yN + d4N (MxN − M̂xN )

}

(

MxN

M̂xN

)

,

(13)M̂D3N =
{

d5NM̂yN + d6N (MxN − M̂xN )

}

exp

(

MxN − M̂xN

MxN + M̂xN

)

,

(14)M̂D4N =
{

d7NM̂yN + d8N (MxN − M̂xN )

}

exp

(

MxN

M̂xN

− 1

)

,

(15)Bias(M̂D1N )
∼= (d1N − 1)MyN ,

(16)Bias(M̂D2N )
∼= (d3N − 1)MyN + d3NMyNC1N + d4NMxNB1N ,

(17)Bias(M̂D3N )
∼= (d5N − 1)MyN + d5NMyNC2N + d6NMxND2N ,

(18)Bias(M̂D4N )
∼= (d7N − 1)MyN + d7NMyNC3N + d8NMxNB3N ,

(19)MSE(M̂D1N )min
∼= M2

yN

{

1−
B0N

A0NB0N − C2
0N + B0N

}

,

(20)

MSE(M̂D2N )min
∼= M2

yN

{

1−
A1NB

2
1N + B1NC

2
1N − 2B1NC1ND1N + B21N + 2B1NC1N − 2B1ND1N + B1N

A1NB1N − D2
1N + B1N

}

,

(21)

MSE(M̂D3N )min
∼= M2

yN

{

1−
A2ND

2
2N + B2NC

2
2N − 2C2ND2NE2N + 2B2NC2N + D2

2N − 2D2NE2N + B2N

A2NB2N − E22N + B2N

}

,

(22)

MSE(M̂D4N )min
∼= M2

yN

{

1−
A3NB

2
3N + B3NC

2
3N − 2B3NC3ND3N + B23N + 2B3NC3N − 2B3ND3N + B3N

A3NB3N − D2
3N + B3N

}

.
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Motivated by52, we develop a neutrosophic generalized ratio-type estimator of finite population median as

where Ti(d)N ∈ [Ti(d)L, Ti(d)U ], m1N ∈ [m1L, m1U ] and m2N ∈ [m2L, m2U ] are suitable neutrosophic constants, 
where α3 and α4 take the values 1, −1, 2, −2 for developing new estimators.

Note ψN ∈ [ψL, ψU ] and δN ∈ [δL, δU ] are neutrosophic functions of the known robust and non-conventional 
measures related to the variable XN . Robust measures associated with XN are:

	 (i)	 Tri-mean:TMN = (Q1N + 2Q2N + Q3N )/4 , TMN ∈ [TML, TMU ]
	 (ii)	 Hodges–Lehman: HLN = Median((xjN + xkN )/2), 1 ≤ j ≤ k ≤ N , HLN ∈ [HLL, HLU ]

	 (iii)	 Decile mean: DMN =
9
∑

i=1

DiN/9, DMN ∈ [DML, DMU ]

The non-conventional measures (i.e., interquartile range, midrange, quartile average and quartile deviation) 
of the supplementary variable are as follows:

	 (iv)	 Interquartile range: QRN = Q3N − Q1N , QRN ∈ [QRL, QRU ]
	 (v)	 Midrange:MRN = ((x(1)N + x(N)N )/2) , MRN ∈ [MRL,MRU ]
	 (vi)	 Quartile average:QAN = (Q3N + Q1N )/2 , QAN ∈ [QAL, QAU ]
	 (vii)	 Quartile deviation QDN = (Q3N − Q1N )/2,QDN ∈ [QDL, QDU ]

where Q1N ∈ [Q1L, Q1U ] ,  Q2N ∈ [Q2L, Q2U ] and Q3N ∈ [Q3L, Q3U ] are the neutrosophic first, second and 
third quartiles, respectively and DiN ∈ [DiL, DiU ] is the neutrosophic decile.

By putting different values of αi (for i = 3, 4) into (23), we get the following families of estimators as.

i. At α3 = 1 and α4 = 2 , the proposed family of estimators reduces to

ii. At α3 = −1 and α4 = −1; the proposed family of estimators reduces to

iii. At α3 = −1 and α4 = −2 , the proposed family of estimators becomes

iv. At α3 = 2 and α4 = 2 , the proposed family of estimators reduces to

v. At α3 = −2 and α4 = −1 , the proposed family of estimators reduces to

When we use robust measures with linear combinations of the median, quartile deviation, midrange, inter-
quartile range, and quartile average of the supplementary variable in (23), we get different series of estima-

tors such as T
⊖
i(d)N , T

⊕
i(d)N , T

⊗
i(d)N , T

⊛

i(d)N and T
⊚

i(d)N . Few members of the family of estimators T
⊚

i(d)N are given 

in Table 2. Putting the same values of ψN and δN in T
⊖
i(d)N , T

⊕
i(d)N , T

⊗
i(d)N , T

⊛

i(d)N and T
⊚

i(d)N , we obtain several 
estimators.

We can obtain several optimal estimators by placing suitable constants or known conventional parameters of 
the supplementary variable in place of ψN and δN into (23). Conventional parameters related to the supplemen-
tary variable XN are variance, standard deviation, coefficient of variation, coefficient of skewness, coefficient of 
kurtosis, coefficient of correlation, and so forth.

(23)

Ti(d)N = M̂yN

[{

m1N

(

ψNM̂xN + δN

ψNMxN + δN

)α3

exp

(

MxN − M̂xN

MxN + M̂xN

)}

+

{

m2N

(

ψNMxN + δN

ψNM̂xN + δN

)α4
}

]

,

(24)T⊖
i(d)N = M̂yN

[{

m1N

(

ψNM̂xN + δN

ψNMxN + δN

)

exp

(

MxN − M̂xN

MxN + M̂xN

)}

+

{

m2N

(

ψNMxN + δN

ψNM̂xN + δN

)2
}]

.

(25)T⊕
i(d)N = M̂yN

[{

m1N

(

ψNMxN + δN

ψNM̂xN + δN

)

exp

(

MxN − M̂xN

MxN + M̂xN

)}

+

{

m2N

(

ψNM̂xN + δN

ψNMxN + δN

)}]

.

(26)T⊗
i(d)N = M̂yN





�

m1N

�

ψNMxN + δN

ψNM̂xN + δN

�

exp

�

MxN − M̂xN

MxN + M̂xN

��

+







m2N

�

ψNM̂xN + δN

ψNMxN + δN

�2








.

(27)T⊛

i(d)N = M̂yN











m1N

�

ψNM̂xN + δN

ψNMxN + δN

�2

exp

�

MxN − M̂xN

MxN + M̂xN

�







+

�

m2N

�

ψNMxN + δN

ψNM̂xN + δN

�2
�



.

(28)T⊚

i(d)N = M̂yN

[{

m1N

(

ψNMxN + δN

ψNM̂xN + δN

)2

exp

(

MxN − M̂xN

MxN + M̂xN

)}

+

{

m2N

(

ψNM̂xN + δN

ψNMxN + δN

)}]

.
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Bias, MSE, and minimum MSE of the proposed neutrosophic generalized family of estimators Ti(d)N in terms 
of eoN and e1N are expressed as,

where θN = ψNMxN/(ψNMxN + δN ).
The MSE of suggested estimator up to the first order of approximation as

where A1N =
[

1+ �N

{

C2
MyN

+ C2
MxN

(1+ 2α2
3θ

2
N − α3θ

2
N − 2α3θN )− 2ρNCMyN CMxN (1− 2α3θN )

}]

A4N =

[

1+ �NρNCMyN CMxN

(

α3θN − 1
2

)

+ �N
C2
MxN
2

(

3
4 − α3θN + α3(α3 − 1)θ2N

)

]

 and A5N =

[

1+
1

2
α4

(α4 + 1)θ2N�NC
2
MxN

− α4θN�NρNCMyN CMxN

]

.

The minimum MSE at the optimum values m1N(opt) =
(A2NA4N−A3NA5N )

(A1NA2N−A2
3N )

 and m2N(opt) =
(A1NA5N−A3NA4N )

(A1NA2N−A2
3N )

, is 
given by

(29)

Bias(Ti(d)N ) = MyN

[

m1N

(

1+
�NC

2
MxN

2

(

3

4
− α3θN + α3(α3 − 1)θ2N

)

+ �NρNCMyN CMxN

(

α3θN −
1

2

)

)

+m2N

(

1+
α4(α4 + 1)θ2N�NC

2
MxN

2
− α4θN�NρNCMyN CMxN

)

− 1

]

(30)MSE(Ti(d)N ) ∼= M2
yN [1+m2

1NA1N +m2
2NA2N + 2m1Nm2NA3N − 2m1NA4N − 2m2NA5N ],

A2N = [1+ �N {C
2
MyN

+ θ2NC
2
MxN

(2α2
4 + α4)− 4α4θNρNCMyN CMxN }],

A3N =

[

1+ �N

{

C2
MyN

− ρNCMyN CMxN (2θN (α4 − α3)+ 1)− C2
MxN

(

α3α4θ
2
N −

3

8
+

α3θN

2

−
α4θN

2
−

α4(α4 + 1)θ2N
2

−
1

2
α3(α3 − 1)θ2N

)}]

Table 2.   Some members of T
⊚

i(d)N.

ψN δN i T
⊚

i(d)N = M̂yN

[

m1N

(

ψNMxN+δN

ψN M̂xN+δN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

ψN M̂xN+δN
ψNMxN+δN

)

]

QAN TMN 1 T
⊚

1(d)N = M̂yN

[

m1N

(

QANMxN+TMN

QAN M̂xN+TMN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

QAN M̂xN+TMN
QANMxN+TMN

)

]

MRN TMN 2 T
⊚

2(d)N = M̂yN

[

m1N

(

MRNMxN+TMN

MRN M̂xN+TMN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

MRN M̂xN+TMN
MRNMxN+TMN

)

]

HLN TMN 3 T
⊚

3(d)N = M̂yN

[

m1N

(

HLNMxN+TMN

HLN M̂xN+TMN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

HLN M̂xN+TMN
HLNMxN+TMN

)

]

TMN HLN 4 T
⊚

4(d)N = M̂yN

[

m1N

(

TMNMxN+HLN

TMN M̂xN+HLN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

TMN M̂xN+HLN
TMNMxN+HLN

)

]

QAN HLN 5 T
⊚

5(d)N = M̂yN

[

m1N

(

QANMxN+HLN

QAN M̂xN+HLN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

QAN M̂xN+HLN
QANMxN+HLN

)

]

HLN QRN 6 T
⊚

6(d)N = M̂yN

[

m1N

(

HLNMxN+QRN

HLN M̂xN+QRN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

HLN M̂xN+QRN
HLNMxN+QRN

)

]

MRN HLN 7 T
⊚

7(d)N = M̂yN

[

m1N

(

MRNMxN+HLN

MRN M̂xN+HLN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

MRN M̂xN+HLN
MRNMxN+HLN

)

]

HLN DMN 8 T
⊚

8(d)N = M̂yN

[

m1N

(

HLNMxN+DMN

HLN M̂xN+DMN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

HLN M̂xN+DMN
HLNMxN+DMN

)

]

DMN TMN 9 T
⊚

9(d)N = M̂yN

[

m1N

(

DMNMxN+TMN

DMN M̂xN+TMN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

DMN M̂xN+TMN
DMNMxN+TMN

)

]

MRN DMN 10 T
⊚

10(d)N = M̂yN

[

m1N

(

MRNMxN+DMN

MRN M̂xN+DMN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

MRN M̂xN+DMN
MRNMxN+DMN

)

]

QAN DMN 11 T
⊚

11(d)N = M̂yN

[

m1N

(

QANMxN+DMN

QAN M̂xN+DMN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

QAN M̂xN+DMN
QANMxN+DMN

)

]

DMN QAN 12 T
⊚

12(d)N = M̂yN

[

m1N

(

DMNMxN+QAN

DMN M̂xN+QAN

)2
exp

(

MxN−M̂xN

MxN+M̂xN

)

+m2N

(

DMN M̂xN+QAN
DMNMxN+QAN

)

]
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Efficiency comparison
(i). By comparing (2) and (23), Var(M̂0N ) > MSE(Ti(d)N )min if  

[

�2N

(

�NM
2
yNC

2
MyN

− 1
)

+�1N

]

> 0 , where 

�1N = A2NA
2
4N + A1NA

2
5N − 2A3NA4NA5N  and �2N = A1NA2N − A2

3N.
(ii) By comparing (5) and (23), MSE(M̂RN ) > MSE(Ti(d)N )min if

(iii) By comparing (8) and (23), MSE(M̂EN ) > MSE(Ti(d)N )min if

(iv) By comparing (10) and (23), Var(M̂D0N )min > MSE(Ti(d)N )min if

(v) By comparing (19) and (23), MSE(M̂D1N )min > MSE(Ti(d)N )min if

(vi) By comparing (20) and (23), MSE(M̂D2N )min > MSE(Ti(d)N )min if

(vii) By comparing (21) and (23), MSE(M̂D3N )min > MSE(Ti(d)N )min if

(vii) By comparing (22) and (23), MSE(M̂D4N )min > MSE(Ti(d)N )min if

Hence, robustness is evaluated in this case to compare the proposed neutrosophic generalized estimators 
with other neutrosophic estimators in (1), (3), (6), (9), (11), (12), (13), and (14) to find the more effective 
neutrosophic median estimator. Additionally, we use real-world datasets to determine the relative effectiveness 
of different estimators.

Real‑life application
In terms of relative efficiency, we compare the suggested family of estimators’ performance to that of other 
competitive estimators. We chose two real-world indeterminacy interval datasets for this purpose.

Regarding relative efficiency, we compare the suggested family of estimators’ performance to that of other 
competitive estimators. For this purpose, we chose two real-world indeterminacy interval datasets.

The first one is the Daily stock price, which is used as a neutrosophic variable because, on each day, a stock’s 
price fluctuates between an opening price (the price during which trade begins) and a closing price (the price at 
which trade stops for the day). The price constantly fluctuates between a high (the highest price of the day) and 
a low (the lowest price), which may or may not be similar to the opening or closing price. We estimate the high 
and low price intervals within which the stock price falls by utilizing the daily starting price as a supplementary 
variable that is not a neutrosophic variable since its value is set and known for each day.

Population I Source: 53 (1st June 2022 to 29th July 2022) from the link: https://​finan​ce.​yahoo.​com/​quote/​SMSN.​
IL/​histo​ry?p=​SMSN.​IL. YN = Low & High prices; XN = Opening price.

Population II Source: 54 (1st Feb 2022 to 29th July 2022) from the link: https://​finan​ce.​yahoo.​com/​quote/​
SZKMY/​histo​ry?p=​SZKMY. YN = Low & High prices; XN = Opening price, where YN ∈ (YL,YU ) corresponds 
to the independent determinate variable XN ∈ (XL,XU ).

Figures 2 and 3 show the trend of real-world data sets using box plots, which aids in displaying the skew-
ness of the data. The minimum score (Lower Fence), the lower quartile, the median, the upper quartile, and the 
maximum score summarise data using boxplots (Upper Fence). As shown in Fig. 2, our positively skewed data 
suggests that the median is closer to the lower quartile. The boxplot with points outside the whiskers shows a 
few outliers in the data.

(31)MSE(Ti(d)N )min
∼= M2

yN

[

1−
(A2NA

2
4N + A1NA

2
5N − 2A3NA4NA5N )

(A1NA2N − A2
3N )

]

[

�2N

(

�hNC
2
MyN

+ �NC
2
MxN

− 2�NCMyxN − 1
)

+�1N

]

> 0

[

�2N

(

�NC
2
MyN

+
1

4
�NC

2
MxN

− �NCMyxN − 1

)

+�1N

]

> 0

[

C2
MyN

�N

(

1− ρ2
yxN

)

− 1+
�1N

�2N

]

> 0

[

�1N

�2N
−

B0N

A0NB0N − C2
0N + B0N

]

> 0

[

�1N

�2N
−

(

A1NB
2
1N + B1NC

2
1N − 2B1NC1ND1N + B21N + 2B1NC1N − 2B1ND1N + B1N

)

A1NB1N − D2
1N + B1N

]

> 0

[

�1N

�2N
−

A2ND
2
2N + B2NC

2
2N − 2C2ND2NE2N + 2B2NC2N + D2

2N − 2D2NE2N + B2N

A2NB2N − E22N + B2N

]

> 0

[

�1N

�2N
−

A3NB
2
3N + B3NC

2
3N − 2B3NC3ND3N + B23N + 2B3NC3N − 2B3ND3N + B3N

A3NB3N − D2
3N + B3N

]

> 0

https://finance.yahoo.com/quote/SMSN.IL/history?p=SMSN.IL
https://finance.yahoo.com/quote/SMSN.IL/history?p=SMSN.IL
https://finance.yahoo.com/quote/SZKMY/history?p=SZKMY
https://finance.yahoo.com/quote/SZKMY/history?p=SZKMY
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Figure 3 elaborates on the pivotal role of Q-Q (quantile–quantile) plots in statistics. These plots facilitate the 
graphical comparison of two probability distributions through their quantiles. They are instrumental in determin-
ing the distribution type of a random variable, spotting outliers, and assessing skewness. By plotting theoretical 
quantiles against sample quantiles, Q-Q plots reveal distribution traits, including skewness. Notably, deviations 
in the plot’s upper end and a pronounced right tail indicate a right-skewed distribution, as demonstrated in 
standard Q-Q plot interpretations.

In addition, the following formulae are used to get the percentage relative efficiency (PRE) 
PRE(M̂0N , M̂iN ) =

Var(M̂0N )

MSE(M̂iN )
× 100,  (for i = 0, R, E, D0, D1, D2, D3 and D4) and PRE( ˆM0N ,Ti(d)N ) =

Var(M̂0N )
MSE(Ti(d)N )

× 100,  (for i = 1, ..., 12).
Table 3 presents the complete descriptions of each population mentioned below. Table 4 presents the complete 

descriptions of each population mentioned below. Tables 5, 6, 7, 8, 9 and 10 elaborate the PREs of all neutrosophic 
estimators relative to M̂0N . It is observed that the PREs of Ti(d)N estimators change with the choices of α3 and α4 . 
It is further noted that the performance of Ti(d)N is the best among all the estimators proposed here.

As indicated by the indeterminacy interval findings from (23) for the whole data set, the neutrosophic gen-
eralized estimator Ti(d)N , is more efficient than the other suggested estimators studied. Also, the indeterminacy 
interval findings show that the estimator M̂D4N is superior to all other estimators except Ti(d)N for the neutro-
sophic population, with a moderate or low correlation between the research variable and the supplementary 
variable (regardless of correlation is positive or negative).

Simulation study
We evaluate the suggested estimators’ efficiency using simulated neutrosophic data, such as YN and XN are 
neutrosophic random variates (NRV). We generate two sets of neutrosophic random numbers of N = 1000 , 
which are x′N and y′N from neutrosophic bivariate gamma distribution using the R programming language. 
Additionally, motivated by the simulated population generation strategies used by 55, we generate the 

Figure 2.   Boxplot of Populations I and II for each variable.
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population’s U  transformed variables using ρyxN = [0.7573323, 0.772941] , σ 2
yN = [61.55041, 174.2082] , 

σ 2
xN = [36.45664, 100.2741],

µyN = [21.39525, 43.65861], µxN = [12.30978, 24.24975] as YN = µyN + σyN

[

ρyxNx
′
N +

(√

1− ρ2
yxN

)

y′N

]

  
and XN = µxN + σyNx

′
N.

where ρyxN ∈ [ρyxL, ρyxU ] ,  y′N ∈ [y′L, y
′
U ] ,  YN ∈ [YL,YU ] ,  µyN ∈ [µyL,µyU ] ,  σ 2

yN ∈ [σ 2
yL, σ

2
yU ] ,  and 

x′N ∈ [x′L, x
′
U ] , XN ∈ [XL,XU ],µxN ∈ [µxL,µxU ] and σ 2

xN ∈ [σ 2
xL, σ

2
xU ].

Table 11 summarises the findings of the simulated data set utilized to evaluate the suggested estimators’ 
efficiency to that of traditional estimators under neutrosophic statistics. Tables 12, 13, 14, 15 and 16 contain the 
percent relative efficiency of neutrosophic estimators. The analysis by simulated data also verifies that Ti(d)N , is 
the most efficient estimator. The simulation results suggest that the neutrosophic generalized estimator Ti(d)N , 
produces more accurate and precise findings than other estimators. All estimators are unbiased (up to the first 
order of approximation), efficient, and reliable.

In Figs. 4 and 5, we have displayed the performance of simulated data by using boxplot and Q-Q plot, respec-
tively. The boxplots show that data is positively skewed, which implies that the median is closer to the lower or 
bottom quartile. The boxplot with points beyond the whiskers indicates that the data has a few outliers. Normal 
Q-Q plot displays that the top end of the Q-Q plot deviates from the straight line, while the lower end follows the 
straight line, and that the curves have a more prominent tail to the right, indicating that they are right-skewed 
(or positively skewed).

Figure 3.   Normal Q-Q plot of Populations I and II for variable XN and YN.
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Table 3.   Descriptive statistics of populations for single auxiliary variable.

Values Population I Population II

N 41 124

nN [8, 8] [45, 45]

MyN [1133, 1156.5] [122.2155, 128.775]

MxN [1149.5, 1149.5] [125.103, 125.103]

fyN (MyN ) [0.005798982, 0.005795176] [0.02228004, 0.0214323]

fxN (MxN ) [0.005660414, 0.005660414] [0.02137693, 0.02137693]

ρyxN [0.9512195, 0.9512195] [0.6774194, 0.6774194]

CMyN [0.1522013, 0.1492065] [0.3672466, 0.3623261]

CMxN [0.153689, 0.153689] [0.3739271, 0.3739271]

MRN [1208.75, 1208.75] [144.6945, 144.6945]

QDN [34.5, 34.5] [6.769003, 6.769003]

QAN [1143.5, 1143.5] [127.7385, 127.7385]

QRN [69, 69] [13.53801, 13.53801]

TMN [1146.5, 1146.5] [126.4208, 126.4208]

HLN [1142.625, 1142.625] [124.565, 124.565]

DMN [1156.778, 1156.778] [130.1744, 130.1744]

Table 4.   PRE’s of proposed neutrosophic estimators to M̂0N.

Estimators Population I Population II

M̂0N [100,100] [100, 100]

M̂RN [1014.094, 986.2470] [152.1541, 149.9603]

M̂EN [339.6810, 350.3235] [175.6124, 176.3182]

M̂D0N
[1050.625, 1050.625] [184.8077, 184.8077]

M̂D1N
[1050.683, 1050.681] [184.8554, 184.8542]

M̂D2N
[1050.683, 1050.681] [184.8555, 184.8542]

M̂D3N
[1050.944, 1050.946] [184.8810, 184.8798]

M̂D4N
[1052.984, 1053.050] [184.9908, 184.9908]

Table 5.   PRE’s of proposed neutrosophic estimators T
⊖
i(d)N to M̂0N.

Estimators Population I Population II

T
⊖
1(d)N

[1055.841, 1056.150] [185.1490, 185.1518]

T
⊖
2(d)N

[1055.842, 1056.152] [185.1499, 185.1527]

T
⊖
3(d)N

[1055.841, 1056.150] [185.1488, 185.1516]

T
⊖
4(d)N

[1055.841, 1056.151] [185.1491, 185.1518]

T
⊖
5(d)N

[1055.841, 1056.151] [185.1491, 185.1519]

T
⊖
6(d)N

[1055.864, 1056.174] [185.1560, 185.1588]

T
⊖
7(d)N

[1055.842, 1056.152] [185.1500, 185.1528]

T
⊖
8(d)N

[1055.841, 1056.150] [185.1486, 185.1513]

T
⊖
9(d)N

[1055.841, 1056.151] [185.1492, 185.1519]

T
⊖
10(d)N

[1055.842, 1056.152] [185.1497, 185.1525]

T
⊖
11(d)N

[1055.841, 1056.150] [185.1488, 185.1515]

T
⊖
12(d)N

[1055.841, 1056.151] [185.1491, 185.1518]
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Table 6.   PRE’s of proposed neutrosophic estimators T⊕
i(d)N to M̂0N.

Estimators Population I Population II

T⊕
1(d)N

[1053.554, 1053.833] [185.1119, 185.1161]

T⊕
2(d)N

[1053.554, 1053.833] [185.1125, 185.1167]

T⊕
3(d)N

[1053.554, 1053.833] [185.1118, 185.1159]

T⊕
4(d)N

[1053.554, 1053.833] [185.1119, 185.1161]

T⊕
5(d)N

[1053.554, 1053.833] [185.1120, 185.1162]

T⊕
6(d)N

[1053.565, 1053.844] [185.1165, 185.1207]

T⊕
7(d)N

[1053.555, 1053.833] [185.1126, 185.1168]

T⊕
8(d)N

[1053.554, 1053.832] [185.1116, 185.1158]

T⊕
9(d)N

[1053.554, 1053.833] [185.1120, 185.1162]

T⊕
10(d)N

[1053.554, 1053.833] [185.1124, 185.1165]

T⊕
11(d)N

[1053.554, 1053.832] [185.1118, 185.1159]

T⊕
12(d)N

[1053.554, 1053.833] [185.1119, 185.1161]

Table 7.   PRE’s of proposed neutrosophic estimators T⊗
i(d)N to M̂0N.

Estimators Population I Population II

T⊗
1(d)N

[1056.555, 1057.150] [185.3314, 185.3431]

T⊗
2(d)N

[1056.557, 1057.151] [185.3327, 185.3444]

T⊗
3(d)N

[1056.555, 1057.150] [185.3311, 185.3428]

T⊗
4(d)N

[1056.556, 1057.150] [185.3315, 185.3431]

T⊗
5(d)N

[1056.555, 1057.150] [185.3316, 185.3432]

T⊗
6(d)N

[1056.579, 1057.175] [185.3412, 185.3531]

T⊗
7(d)N

[1056.557, 1057.151] [185.3328, 185.3445]

T⊗
8(d)N

[1056.555, 1057.149] [185.3308, 185.3424]

T⊗
9(d)N

[1056.556, 1057.150] [185.3316, 185.3433]

T⊗
10(d)N

[1056.557, 1057.151] [185.3324, 185.3441]

T⊗
11(d)N

[1056.555, 1057.149] [185.3311, 185.3427]

T⊗
12(d)N

[1056.556, 1057.150] [185.3315, 185.3432]

Table 8.   PRE’s of proposed neutrosophic estimators T
⊛

i(d)N to M̂0N.

Estimators Population I Population II

T
⊛

1(d)N
[1064.050, 1064.946] [185.5451, 185.5588]

T
⊛

2(d)N
[1064.053, 1064.949] [185.5475, 185.5613]

T
⊛

3(d)N
[1064.050, 1064.946] [185.5445, 185.5583]

T
⊛

4(d)N
[1064.050, 1064.946] [185.5451, 185.5589]

T
⊛

5(d)N
[1064.050, 1064.946] [185.5454, 185.5591]

T
⊛

6(d)N
[1064.111, 1065.010] [185.5639, 185.5781]

T
⊛

7(d)N
[1064.053, 1064.950] [185.5478, 185.5616]

T
⊛

8(d)N
[1064.049, 1064.945] [185.5439, 185.5576]

T
⊛

9(d)N
[1064.050, 1064.946] [185.5454, 185.5592]

T
⊛

10(d)N
[1064.053, 1064.949] [185.5470, 185.5608]

T
⊛

11(d)N
[1064.049, 1064.945] [185.5444, 185.5582]

T
⊛

12(d)N
[1064.051, 1064.947] [185.5452, 185.5590]
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Table 9.   PRE’s of proposed neutrosophic estimators T
⊚

i(d)N to M̂0N.

Estimators Population I Population II

T
⊚

1(d)N
[1068.681, 1069.610] [185.6116, 185.6235]

T
⊚

2(d)N
[1068.685, 1069.613] [185.6135, 185.6254]

T
⊚

3(d)N
[1068.681, 1069.610] [185.6112, 185.6231]

T
⊚

4(d)N
[1068.682, 1069.610] [185.6117, 185.6236]

T
⊚

5(d)N
[1068.681, 1069.610] [185.6118, 185.6237]

T
⊚

6(d)N
[1068.738, 1069.668] [185.6263, 185.6385]

T
⊚

7(d)N
[1068.685, 1069.613] [185.6137, 185.6256]

T
⊚

8(d)N
[1068.681, 1069.609] [185.6107, 185.6226]

T
⊚

9(d)N
[1068.682, 1069.610] [185.6119, 185.6238]

T
⊚

10(d)N
[1068.684, 1069.612] [185.6131, 185.6250]

T
⊚

11(d)N
[1068.681, 1069.609] [185.6111, 185.6230]

T
⊚

12(d)N
[1068.682, 1069.610] [185.6117, 185.6236]

Table 10.   Descriptive statistics for simulation study.

Parameters Neutrosophic values

N 1000

nN [20, 20]

MyN [196.0874, 633.9646]

MxN [100.8547, 325.1492]

fyN (MyN ) [0.005558005, 0.00197924]

fxN (MxN ) [0.008301677, 0.002986856]

ρyxN [0.756, 0.764]

CMyN [0.9175533, 0.7969601]

CMxN [1.194368, 1.029682]

MRN [180.3312, 547.1558]

QDN [31.52584, 86.08162]

QAN [105.1535, 335.2541]

QRN [63.05167, 172.1632]

TMN [103.0041, 330.2016]

HLN [104.1502, 336.6766]

DMN [106.1327, 336.1194]

Table 11.   PRE’s of proposed neutrosophic estimators to M̂0N.

Estimators PRE

M̂0N [100, 100]

M̂RN [137.6957, 143.8641]

M̂EN [227.52, 232.4357]

M̂D0N
[233.3918, 240.2091]

M̂D1N
[234.4232, 240.9871]

M̂D2N
[234.4415, 240.9974]

M̂D3N
[235.7074, 241.9697]

M̂D4N
[242.8629, 247.422]
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Table 12.   PREs of proposed neutrosophic estimators T⊕
i(d)N to M̂0N.

Estimators PRE

T
⊖
1(d)N

[255.0274, 257.0464]

T
⊖
2(d)N

[255.348, 257.1181]

T
⊖
3(d)N

[255.0201, 257.0472]

T
⊖
4(d)N

[255.0029, 257.0399]

T
⊖
5(d)N

[255.0189, 257.0428]

T
⊖
6(d)N

[255.3209, 257.1355]

T
⊖
7(d)N

[255.343, 257.1159]

T
⊖
8(d)N

[254.9967, 257.0439]

T
⊖
9(d)N

[255.0344, 257.0469]

T
⊖
10(d)N

[255.3343, 257.1161]

T
⊖
11(d)N

[255.0043, 257.0431]

T
⊖
12(d)N

[255.0187, 257.0441]

Table 13.   PRE’s of proposed neutrosophic estimators T⊕
i(d)N to M̂0N.

Estimators PRE

T⊕
1(d)N

[253.457, 255.6164]

T⊕
2(d)N

[253.6734, 255.6645]

T⊕
3(d)N

[253.452, 255.617]

T⊕
4(d)N

[253.4404, 255.6121]

T⊕
5(d)N

[253.4513, 255.614]

T⊕
6(d)N

[253.6551, 255.6761]

T⊕
7(d)N

[253.67, 255.663]

T⊕
8(d)N

[253.4363, 255.6148]

T⊕
9(d)N

[253.4617, 255.6168]

T⊕
10(d)N

[253.6641, 255.6631]

T⊕
11(d)N

[253.4414, 255.6142]

T⊕
12(d)N

[253.4511, 255.6149]

Table 14.   PRE’s of proposed neutrosophic estimators T⊕
i(d)N to M̂0N.

Estimators PRE

T⊗
1(d)N

[276.5886, 272.7765]

T⊗
2(d)N

[277.1863, 272.9037]

T⊗
3(d)N

[276.5749, 272.7779]

T⊗
4(d)N

[276.5429, 272.765]

T⊗
5(d)N

[276.5728, 272.7701]

T⊗
6(d)N

[277.1358, 272.9345]

T⊗
7(d)N

[277.1769, 272.8997]

T⊗
8(d)N

[276.5314, 272.772]

T⊗
9(d)N

[276.6017, 272.7773]

T⊗
10(d)N

[277.1607, 272.9]

T⊗
11(d)N

[276.5455, 272.7706]

T⊗
12(d)N

[276.5723, 272.7723]
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Conclusion
Our study introduced neutrosophic estimators for accurately estimating the population median in datasets with 
uncertain, unclear values. Through precise additional variable measurements under simple random sampling, 
we developed improved neutrosophic estimators, evaluated them for bias and MSE, and demonstrated their 
superiority. Our proposed estimators offer the advantage of modelling uncertainty and vagueness inherent in 
many real-world scenarios, allowing for more flexible and nuanced decision-making processes. However, their 
disadvantage lies in the complexity of mathematical models and computational processes required, which can 
lead to increased computational costs and challenges in interpretation and precise quantification. We recom-
mend these advanced estimators for future applications and highlight the ongoing need for research to enhance 
estimator effectiveness for various neutrosophic data types and sampling methods. Furthermore, future work 
will extend to multiple sampling designs, such as systematic, successive, and double sampling.

Table 15.   PRE’s of proposed neutrosophic estimators T⊕
i(d)N to M̂0N.

Estimators PRE

T
⊛

1(d)N
[297.4101, 288.5158]

T
⊛

2(d)N
[298.6929, 288.7828]

T
⊛

3(d)N
[297.3808, 288.5187]

T
⊛

4(d)N
[297.3124, 288.4917]

T
⊛

5(d)N
[297.3763, 288.5024]

T
⊛

6(d)N
[298.5841, 288.8476]

T
⊛

7(d)N
[298.6726, 288.7745]

T
⊛

8(d)N
[297.288, 288.5065]

T
⊛

9(d)N
[297.4381, 288.5176]

T
⊛

10(d)N
[298.6376, 288.7752]

T
⊛

11(d)N
[297.318, 288.5035]

T
⊛

12(d)N
[297.3753, 288.5071]

Table 16.   PRE’s of proposed neutrosophic estimators T⊕
i(d)N to M̂0N.

Estimators PRE

T
⊚

1(d)N
[302.4588, 291.9083]

T
⊚

2(d)N
[303.4742, 292.1171]

T
⊚

3(d)N
[302.4356, 291.9106]

T
⊚

4(d)N
[302.3813, 291.8894]

T
⊚

5(d)N
[302.432, 291.8977]

T
⊚

6(d)N
[303.3882, 292.1677]

T
⊚

7(d)N
[303.4582, 292.1106]

T
⊚

8(d)N
[302.3619, 291.901]

T
⊚

9(d)N
[302.481, 291.9097]

T
⊚

10(d)N
[303.4305, 292.1112]

T
⊚

11(d)N
[302.3857, 291.8987]

T
⊚

12(d)N
[302.4313, 291.9015]



16

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10255  | https://doi.org/10.1038/s41598-024-60714-2

www.nature.com/scientificreports/

Data availability
Processed data are available from the corresponding author upon reasonable request.
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