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SLKIR: A framework for extracting 
key information from air traffic 
control instructions Using small 
sample learning
Peiyuan Jiang 1,3, Chen Zeng 2, Weijun Pan 1,3*, Boyuan Han 1 & Jian Zhang 1

In air traffic control (ATC), Key Information Recognition (KIR) of ATC instructions plays a pivotal role 
in automation. The field’s specialized nature has led to a scarcity of related research and a gap with 
the industry’s cutting-edge developments. Addressing this, an innovative end-to-end deep learning 
framework, Small Sample Learning for Key Information Recognition (SLKIR), is introduced for 
enhancing KIR in ATC instructions. SLKIR incorporates a novel Multi-Head Local Lexical Association 
Attention (MHLA) mechanism, specifically designed to enhance accuracy in identifying boundary 
words of key information by capturing their latent representations. Furthermore, the framework 
includes a task focused on prompt, aiming to bolster the semantic comprehension of ATC instructions 
within the core network. To overcome the challenges posed by category imbalance in boundary word 
and prompt discrimination tasks, tailored loss function optimization strategies are implemented, 
effectively expediting the learning process and boosting recognition accuracy. The framework’s 
efficacy and adaptability are demonstrated through experiments on two distinct ATC instruction 
datasets. Notably, SLKIR outperforms the leading baseline model, W2NER, achieving a 3.65% 
increase in F1 score on the commercial flight dataset and a 12.8% increase on the training flight 
dataset. This study is the first of its kind to apply small-sample learning in KIR for ATC and the source 
code of SLKIR will be available at: https:// github. com/ PANPA NKK/ ATC_ KIR.

Background
The swift advancements in deep learning have significantly accelerated the path to automation in a broad spec-
trum of application areas. For example, in the transportation domain, Emin Güney and his team at Sakarya Uni-
versity of Applied Sciences have made notable strides with the creation of a real-time Advanced Driver-Assistance 
System. This system, characterized by its low energy consumption and the integration of a high-speed mobile 
GPU platform, leverages deep learning to enable robust detection of traffic signs and  targets1. Moreover, this 
group has ventured into the realm of automated charging for maritime vessels, culminating in the development 
of an innovative autonomous dockside robotic charging system for  ships2,3, showcasing the immense potential 
of deep learning technologies in the advancement of automation. In the field of Air Traffic Control (ATC), auto-
mated pilot agent systems represent a significant area of research. Air Traffic Control Officers (ATCOs) must 
complete simulated equipment training before obtaining qualifications to work in real ATC  scenarios4,5. The 
training scenarios are depicted in Fig. 1. The control simulator training room includes both a pilot seat room and 
a controller seat room, as shown in Fig. 1. This means that a control trainee cannot complete a training session 
alone; they also need a companion to operate the pilot seat. Additionally, AI can be used to replace the pilot seat, 
thereby reducing training costs and enhancing the efficiency of controller  training6,7. The core technologies used 
to replace manual pilot seats include: Automatic Speech Recognition (ASR), Key Information Recognition (KIR), 
Controlling Instruction Understanding (CIU), Pilot Repetition Generation (PRG), Text to Speech (TTS), etc.8. 
The technical process flow is illustrated in Fig. 2.

KIR is used to transform unstructured text outputs from ASR into structured texts that are understandable 
by machines. In automated pilot agent systems, the importance of KIR technology is akin to the role of object 
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detection technology in autonomous driving  systems9. As of now, some experts and scholars in the field of ATC 
have conducted research on related technologies. For example, Zhang J, Pan W have extensively explored PRG 
technology within intelligent pilot systems, highlighting the crucial role of KIR  technology10,11. Lin Yi’s team 
constructed a multi-task shared encoder network based on Bidirectional Long Short-Term Memory (BiLSTM) 
and Multi-Layer Perceptron (MLP). This network effectively converts ATC voice instructions into machine-
understandable control intentions and instruction parameters 12. Zuluaga-Gomez J and others built an advanced 
entity parsing system in the intelligent pilot architecture by fine-tuning pre-trained language models (LM)13 and 
achieved commendable results on the ATCO2  dataset14.

Motivation
Despite these studies advancing KIR technology, two key issues regarding KIR in the ATC field still need further 
breakthroughs. The first breakthrough needed is addressing the issue of insufficient model performance on 
small sample data. Obtaining data in the ATC field is extremely difficult due to data confidentiality. Moreover, 
the obtained raw ATC data must be labeled by professionals before it can be used, and the cost of annotation is 
 high15. The performance of data-driven models critically depends on the quantity and quality of data. Therefore, 
it is crucial to research how to achieve efficient KIR of ATC on small sample data. The second breakthrough 
needed is addressing the issue of poor generalizability of models to unseen samples. Generalizability is a core 
assessment metric for data-driven  models16. ATC commands vary significantly in vocabulary across different 
types and locations. For instance, in commercial flights, terms like ’pushback’, ’taxi’, and ’takeoff ’ are only appli-
cable within the scope of airport terminal areas; similarly, the waypoint "EKOKA" is used only in specific areas, 
namely the Chengdu region of  China17. In training flights, the call signs of training aircraft differ significantly 
from those of commercial aircraft.

Contributions
This paper employs transfer learning and efficient model construction techniques to develop a robust KIR model 
for ATC driven by small sample data. Specifically, our contributions include:

• We conducted an in-depth study on constructing a robust KIR model driven by small sample data. Specifi-
cally, we built an end-to-end KIR deep learning framework based on the MHLA mechanism.
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Figure 1.  Controller Training Scenario Diagram.
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Figure 2.  Intelligent Pilot Technology Process Diagram.
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• We cleverly designed a discriminative task based on prompt information. By discriminating whether the 
control instructions contain externally inputted prompt information, we enhance the semantic understand-
ing of the input control instructions by the backbone network.

• We proposed a loss function optimization strategy for addressing the issue of boundary word information 
sparsity in the KIR process. This optimization strategy can enhance the model’s learning capability.

• Building on previous  research10,11, and considering the characteristics of air traffic control as well as the key 
information required by intelligent agents to execute instructions, this paper provides a detailed classification 
of key information categories in control instructions, including Callsign, Action, Action Value, and Condi-
tion.

Related Work
KIR of ATC can be classified as a Named Entity Recognition (NER) task in natural language processing (NLP). 
Currently, research in NER has evolved from the initial flat  NER18 to overlapping  NER19, and further developed 
into discontinuous  NER20. Flat NER refers to entities in the data that do not overlap with each other and have a 
simple structure, such as names of people or places, with each entity being tagged as a continuous, non-nested 
category. Overlapping NER refers to the presence of overlapping entities in the data, where a segment of an entity 
can belong to multiple entity categories simultaneously, or one entity may contain another entity within it. Dis-
continuous NER refers to entities in the data that are composed of non-continuous text segments but together 
represent a semantically complete entity. The specific type of NER researched depends on the characteristics of 
the dataset. ATC instructions are characterized by being concise and unambiguous. Therefore, KIR of ATC can 
be further categorized into the flat NER category. In Fig. 3, the key information categories of ATC instructions 
are illustrated. Figure 3a shows ATC instructions for commercial flights, while Fig. 3b shows ATC instructions 
for training flights.

In flat NER problems, sequence labeling and span-based methods are the two main solutions. Sequence 
labeling achieves NER by assigning a label category to each character. Selim F. Yilmaz and his team employed 
sequence labeling, building a Bidirectional Long Short-Term Memory (BiLSTM)- Conditional Random Field 
(CRF) model for NER tasks. This model can effectively handle noisy texts across multiple  domains21. Souza F pro-
posed a BERT-CRF  model22, and the experimental results showed that pre-trained language models can signifi-
cantly enhance model performance on small sample datasets. Diao S used a pre-trained model as an encoder and 
incorporated N-gram combinations of different characters as additional information into the model to enhance 
entity boundary discrimination, achieving state-of-the-art (SOTA) performance on multiple Chinese  datasets23. 
Zhu W enhanced the performance of the model by incorporating input character type information as supplemen-
tary data into  BERT24. Similarly, Liu W and his team introduced external lexical information into the underlying 
encoding process of BERT, achieving state-of-the-art (SOTA) results on multiple Chinese NER  datasets25. J Chu 
and colleagues proposed a multi-feature fusion Transformer architecture that significantly enhances the model’s 
performance by augmenting sentence semantic information through the fusion of features such as Chinese 
characters and  radicals26. However, sequence-based labeling tasks present several challenges. These include: 1. 
Labeling category tags for each character is a time-consuming and labor-intensive process. 2. The introduction 
of external dictionaries leads to additional consumption of computational resources. Span-based methods are a 
more direct and effective novel approach where entity recognition is viewed as a span classification  task27. Shen 
Y and his team viewed NER as a joint task of boundary regression and span classification, proposing a two-stage 
method—first localization then marking—to achieve efficient  NER19. Li J and others pointed out that simulating 
the adjacency relationships between entity words is key to achieving unified NER. Based on this, they proposed 
a model called W2NER, which unifies the handling of flat, overlapping, and discontinuous entities. This model 
achieved state-of-the-art (SOTA) results on multiple Chinese  datasets28. Lu Y and his team proposed a universal 
information extraction model suitable for small sample data. This model has achieved leading results in Chinese 
entity extraction, relation extraction, and other information extraction  tasks29. We have summarized the related 
work in this section and presented it in Table 1, to facilitate the reader’s further understanding of the details of 
the aforementioned literature. The columns of the table represent the reference number, the dataset used, the 
language types involved in the dataset, the entity recognition method employed, the model techniques it is based 
on, and the availability of the data. Note that if no information is available in the reference paper, we set it as ‘No’. 
In general fields, although research methods for flat NER continue to advance and develop, when these advanced 
methods are applied to the ATC domain, their performance generally significantly decreases. This is mainly due 
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Figure 3.  Key Information Categories of ATC Instructions.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9791  | https://doi.org/10.1038/s41598-024-60675-6

www.nature.com/scientificreports/

to the significant linguistic style differences between ATC instructions and standard Mandarin. For example, in 
ATC instructions, numbers frequently appear in various information such as aircraft call signs, flight altitudes, 
atmospheric pressure, speed, headings, runway numbers, etc., as shown in Fig. 3, which greatly interferes with 
the determination of key information categories.

In this study, a robust deep learning framework for KIR of ATC driven by small sample data is proposed. The 
framework can effectively improve recognition accuracy without the need for external ATC dictionaries, and 
demonstrates strong generalizability on small sample datasets. The structure of the remainder of this paper is as 
follows: "SLKIR Framework" provides an overview of the proposed framework, detailing its main components. 
"Experiments" delves into the experimental datasets, the environment, and the results, offering a comprehensive 
discussion. Finally, "Conclusion" concludes the paper and proposes directions for future research.

SLKIR framework
The SLKIR primarily consists of three components: the backbone network, a prompt classification layer, and 
a key information boundary word discrimination layer, with its framework illustrated in Fig. 4. The backbone 
network employs 12 Transformer-XL encoding blocks, whose pre-trained parameters are derived from the 
Chinese pre-trained language model Ernie3.030. For pre-trained language models,  prompts31–33 are crucial in 
guiding the generative direction of the model. Furthermore, existing studies have shown that multi-task learning 
strategies are helpful in enhancing the generalization of  models34. Thus, a prompt classification layer was added 
to enhance the semantic expressive capacity of the backbone network. The key information boundary word 
discrimination layer comprises two linear layers, each dedicated to identifying the start and end boundaries 
of key information. Compared to using a single linear layer, using two linear layers allows the model to learn 
faster and achieve higher performance. Given that the key information boundary words in ATC instructions are 
closely linked to characters within a narrow surrounding context, a MHLA mechanism is utilized to capture the 
latent representations associated with these boundary words. These latent representations are integrated into the 
outputs of the backbone network through an adaptive fusion module to improve the accuracy of boundary word 
discrimination. Due to the fact that the actual number of boundary words, which are crucial in input sentences, 
is significantly smaller than the number of non-boundary words, and considering the class imbalance in positive 
and negative samples in the prompt classification task, Exponentially Weighted BCE Loss (hereinafter referred 
to as EBCE) and Weighted BCE Loss (WBCE) were employed to further optimize the model training process 
and enhance the model’s learning capability.

Backbone block
The Transformer-XL block in the backbone network is a variant of the  Transformer35 that introduces a segment-
level recurrence mechanism. This modification enables it to effectively learn and process longer text content. 
Furthermore, the pre-trained parameters of the Transformer-XL block come from Ernie3.0. Ernie3.0 integrates a 
substantial amount of knowledge graph data during its training process. This endows the Transformer-XL block 
with robust zero-shot and few-shot learning capabilities, making it suitable for handling various natural language 

Table 1.  Literature Summary Table of Related Work.

Reference Dataset Language Method Technology Availability

18 CoNLL02
CoNLL03

Spanish
Dutch
English
German

Sequence labeling LSTM-based Publicly available

19 ACE04 ACE05
KBP17 GENIA English Span-based BiLSTM-based Publicly available

20
CLEF-Dis
CADEC
GENIA ACE05

English Span-based BiLSTM-based Publicly available

21 Turkish NER Turkish Sequence labeling BiLSTM-based No
22 HAREM I Portuguese Sequence labeling BERT-based Publicly available
23 MSRA Chinese Sequence labeling BERT-based Publicly available
24 No Chinese Sequence labeling BERT-based No

25 Weibo Ontonotes
MSRA Resume Chinese Sequence labeling BERT-based Publicly available

26 Aerospace dataset Chinese Sequence labeling Transformer-
based No

27 ACE04 ACE05
SciERC WLPC English Span-based BiLSTM-based Publicly available

28

CoNLL03
OntoNotes
MSRA Weibo
Resume ACE04
ACE05 GENIA
CADEC ShARel

English
Chinese Span-based BERT-based Publicly available

29 ACE04
CoNLL03

English
German Span-based ERNIE-based Publicly available
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understanding and generation tasks. For an input sequence of length n, X = {x1, x2, …, xn}, the backbone network 
transforms it into high-dimensional word vectors containing contextual information, denoted as H = {h1, h2, …, 
hn}, where H ∈ Rn×dh and  dh represents the dimension of the word vectors. Our input format is CLS/prompt/SEP/
Content/SEP, due to the incorporation of external prompt information. The relationship between prompt and 
Content is illustrated in the following examples: CLS/Callsign/SEP/Shunfeng 5137, maintain 7500/SEP; CLS/
Condition/SEP/Shunfeng 5137, maintain 7500/SEP. In the two cases above, the prompt in the former exists within 
the Content, while the prompt in the latter does not exist within the Content. This is the basis for construct-
ing a prompt classification task to deepen the model’s semantic understanding of the Content. Furthermore, 
the CLS token indicates the beginning of the input sequence, and its high-dimensional word vector is used as 
a comprehensive semantic representation of the entire input sequence. The SEP token is used to separate the 
prompt and the content, and to mark the end of the input sequence. The use of the SEP token is effective for the 
model to understand different parts of the input data, thereby facilitating more efficient learning and prediction.

Multi-head local lexical association attention and adaptive fusion module
We analyzed 10,000 collected, unlabelled transportation flight text data using statistical methods. Specifically, 
we calculated the co-occurrence frequency of each boundary word with characters at distances of 1, 2, and 
3 (measured in characters) to analyze the association of key information boundary words with characters at 
these varying distances. It was found that the boundary of key information has a strong correlation with nearby 
characters and a weaker correlation with characters farther away. Figure 5 presents a visualization of the data 
analysis. Based on this discovery, a MHLA mechanism has been proposed to increase the mutual information 
of boundary words, thereby enhancing the discrimination accuracy of these boundary words. Specifically, for 
the input sequence X = {x1, x2, …, xn}, the computation process of the MHLA is as follows.

Start 1 0 0 0 0 1 0 0 1 0 0 1 0 1

Unifor
m

Callsign

End 0 0 0 1 0 0 0 1 0 1 0 0 1 1

Unifor
m
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Figure 4.  SLKIR Framework Diagram.
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Initialization transformation
For the given query vector Q, key vector K, and value vector V, where Q ∈ Rdq, K ∈ Rdk, V ∈ Rdv, and dq = dk = dv, 
three sets of linear transformations are used to map these vectors into a new feature space. In this space, the 
latent representations related to key information boundary words can be more effectively captured by the model.

In Eqs. (1–3), WQ, WK and WV are three learnable weight matrices, while bQ, bK, and bV are the correspond-
ing bias terms.

Local attention calculation
(1) For the i-th character in the sequence, its local attention span is [max(0, i-window_size), min(window_size, 
i + window_size + 1)], where window_size is the distance from the character i to the furthest element that needs 
attention, centered around character i.

(2) Attention Score and Probability Calculation

In Eqs. (4–5), hidden_size is the dimension of vector K, attn_scoresi represents the attention score of query 
vector Q with respect to the i-th key vector K; attn_probsi is the attention probability of query vector Q with 
respect to the i-th key vector K.

(3) Attention Output

Multi-head initialization
Before computing MHLA, the number of attention heads and the attention span for each head should be 
predetermined.

Multi-head attention calculation
(1) Assuming  headjis the j-th attention head, its computation process is as follows.

(1)Q = WQ · X + bQ

(2)K = WK · X + bK

(3)V = WV · X + bV

(4)attn_scoresi =
QKT

i√
hidden_size

(5)attn_probsi =
eattn_scoresi∑n
j=1 e

attn_scoresj

(6)attn_output =
n∑

i=1

attn_probsi · Vi

Figure 5.  Example Diagram of Correlation between Key Information Boundary Words and Characters at 
Different Distances.
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In Eq. (7), the process of LocalAttention() function is as shown in step (2), and outputj is the output of the 
j-th attention head.

(2) Head output combination
The final attention result is calculated as the average sum of the outputs from all attention heads, as follows.

In Eq. (8), Combined_output represents the output result of the MHLA, and num_heads is the total number 
of heads in the MHLA mechanism. In this study, num_heads was set to 2, and window_size was set to 1 and 2 
respectively.

Adaptive fusion module
The adaptive fusion module is implemented based on linear transformations. It is used to fuse the features out-
putted by the MHLA with the features outputted by the backbone network, updating the parameters required 
for fusion through backpropagation during the training process, in order to learn the importance of different 
features for the final task. For the output sequence H = {h1, h2, …, hn} of the backbone network and the output 
sequence F = {f1, f2, …, fn} of MHLA, the fusion formula is as follows.

In Eqs. (9–10), C is the result of concatenating the corresponding elements of the output sequences H and F 
along the last feature dimension. The Concat function is used to implement the concatenation of vectors. O is the 
output of the adaptive module, W is the weight matrix of the linear layer, and b is the bias vector.

Loss function
EBCE loss
The EBCE loss function is proposed for binary classification problems where positive and negative samples are 
severely imbalanced and the ratio is uncertain. It applies exponential weights to sparse sample categories on 
the basis of BCE loss, enabling the model to pay more attention to these categories during training. Its specific 
calculation formula is as follows.

(1) When calculating the loss of the model on a single sample, an exponential weight is assigned to the BCE 
loss value of each element in the sample. The formula for calculating the weights is as follows.

In Eq. 11, wi is the weight corresponding to the BCE loss value of the i-th element, yi is the label value (0 or 
1) corresponding to the i-th element, and α is a scaling factor used to regulate the weight of the loss value for a 
certain category, which is set to 2 in this paper.

(2) The formula for calculating the weighted loss value of i-th element is as follows.

(3) The final calculation formula for the EBCE loss of a sample is as follows.

In Eq. (13), m represents the number of elements in the sample.

WBCE loss
(1) The WBCE loss is designed for situations where the data category imbalance ratio is known. It allocates a 
proportionate weight to the loss value of samples in different categories based on the BCE loss. The difference 
between WBCE and EBCE lies in the calculation of weights. The formula for calculating the weights for WBCE 
is as follows.

In Formula (14), when yi equals 1 (positive class), wi is equal to weight_one; when yi equals 0 (negative 
class), wi is equal to weight_zero. In this paper, based on the ratio of positive to negative classes, weight_zero and 
weight_one are set to 1.68 and 0.71, respectively.

(2) The final WBCE loss calculation formula is as follows, where the calculation process of weightBCEi is 
shown in Eq. (12).

(7)outputj = LocalAttention(X,window_size)

(8)Combined_output =
1

num_heads

∑num_heads

j=1
Outputj

(9)C = concat(H , F, dim = −1)

(10)O = W · C + b

(11)wi = e(a.yi)

(12)WeightBCEi = BCEi · wi

(13)EBCELoss =
1

m

∑m

i=1
WeightBCEi

(14)wi = (1− yi)weight_zero+ yiweight_one

(15)WBCELoss =
1

m

∑m

i=1
WeightBCEi
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Final Loss Function

In Eq. (16), start_EBCELoss refers to the loss generated in identifying the start boundary words of key infor-
mation, end_EBCELoss refers to the loss generated in identifying the end boundary words of key information, 
and WBCELoss refers to the loss generated in identifying the relationship between prompt and content.

Experiments
Dataset
The ATC instruction data used consists of commercial flight ATC instruction datasets and training flight ATC 
instruction datasets. The commercial flight ATC instruction data is sourced from the voice transcription texts 
of the terminal area of an airport in East China, totaling 1204 records, with 1004 for model training and 200 
for testing model performance. Training flight ATC instruction data was collected during the flight training 
sessions at the Civil Aviation Flight University of China. Within the gathered training flight ATC instruction 
dataset, 200 records have been annotated, specifically for testing the model’s generalization capabilities. UMAP 
(Uniform Manifold Approximation and Projection), a nonlinear dimensionality reduction  algorithm36, is used 
to extract features from the dataset, thereby enabling the visualization of the dataset distribution. Specifically, we 
first segmented the ATC instruction texts in the two datasets using the Jieba segmentation technology integrated 
with an ATC lexicon. Then, we applied the TF-IDF vectorization method to convert each line of text from the 
two datasets into a high-dimensional vector, where the dimensionality equals the number of unique segmented 
terms in the datasets. Finally, the TF-IDF vectors from these two datasets were used as input features for the 
UMAP algorithm, to visualize the distribution of the two datasets in a three-dimensional space. The results are 
shown in Fig. 6. Data annotation was carried out using the open-source tool doccano, with the annotator being 
licensed ATCO. The ’Aeronautical Radio Telephony Phraseology Standards (MH/T4014-2003)’ published by the 
Civil Aviation Administration of China is used as a reference for data annotation. In this study, we categorize the 
key information in ATC instructions into four types from the perspective of the information required by agents 
to execute instructions: Callsign, Action, Action Value, and Condition. Previous  works10,11 have highlighted the 
importance of Callsign, Intention, Action, and Parameters in control instructions. However, intention does not 
belong to the key information in the text, and the category of parameters is not specific enough. Based on this, 
we further divide parameters into two categories: Action Value and Condition. Furthermore, to enhance the 
model’s ability to semantically understand control instruction information, we introduced a task to judge whether 
Content contains a prompt to promote the backbone network’s semantic understanding of Content. As illustrated 
by the following two examples, CLS/Callsign/SEP/Shunfeng 5137, maintain 7500/SEP; CLS/Condition/SEP/
Shunfeng 5137, maintain 7500/SEP. In these two examples, the prompts are respectively Callsign and Condition, 
with Content being Shunfeng 5137, maintain 7500. In these examples, the former is a positive example, meaning 
the Content contains Callsign information, while the latter is a negative example, indicating the Content does 
not contain Condition information. The negative samples for this task were constructed by identifying the key 
information categories not contained in each ATC instruction. Due to the limited number of ATC instructions 
lacking information categories, the number of negative samples was fewer than positive samples. Specifically, 
1004 positive samples and 426 negative samples were constructed.

(16)Loss =
1

3
(start_EBCELoss + end_EBCELoss +WBCELoss)

Figure 6.  Three-Dimensional Visualization of Dataset Distribution Differences.
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From Fig. 6, it can be observed that the commercial flight dataset is more tightly distributed in feature space, 
while the training flight dataset is more loosely distributed and exhibits significant differences from the com-
mercial flight dataset, which can be used for generalizability validation.

Experimental parameter configuration
SLKIR is implemented using the Pytorch framework. The configuration of our training server is detailed as fol-
lows: it operates on Windows 10, utilizes an E5-2680 V4 @ 2.40GHZ CPU, and is equipped with an RTX 2080Ti 
GPU. The hyperparameter settings for SLKIR are outlined in Table 2.

In Table 1, hidden_size refers to the feature dimension of each character output by the Transformer-XL block; 
num_heads denotes the number of local vocabulary-associated attention heads; window_size is the radius of 
attention; scale_factor is the scaling factor in EBCEloss; cls_weight represents the weight of each category in 
WBCEloss, inversely proportional to the frequency of that category; max sequence length is the maximum length 
of the input information. The optimizer used is Adam, with a learning rate of 0.0001. The model is trained in 
batches of 64, for a total of 200 training epochs. Additionally, an early stopping strategy based on validation loss 
is implemented during training. A ’patience’ value of 10 indicates that training will stop if the validation loss 
does not decrease below the previous best loss for 10 consecutive training epochs. The experimental evalua-
tion metrics use the micro-averaging approach for precision, recall, and F1  score37, with the formulas for these 
metrics provided as follows.

In Eqs. (17–19), P represents precision, R represents recall, F1 represents the F1 score; TP represents true 
positives predicted by the model, TN represents true negatives predicted by the model, FP represents false posi-
tives predicted by the model, and FN represents false negatives predicted by the model.

Ablation study
Validation of strategy effectiveness
In this section, ablation studies were conducted to verify the effectiveness of MHLA and the multi-task strat-
egy, with the experimental results shown in Table 3. In Table 3, Ernie3.0-Softmax is used for Baseline, while 
for Baseline-MHLA, the Ernie3.0-Softmax model is enhanced with MHLA, where num_heads is set to 2 and 

(17)P =
TP

TP + FP

(18)R =
TP

TP + FN

(19)F1 =
2PR

P + R

Table 2.  SLKIR Hyperparameters.

Hyperparameter Value

Hidden_size 768

Num_heads 2

Window_size 1&2

Scale_factor 2

Cls_weight 1.68&0.71

Max sequence length 60

Optimizer Adam

Learning rate 0.0001

Batch size 64

Number of epoch 200

Patience 10

Table 3.  Results of Model Performance Impact by Different Strategies. Significant values are in bold.

Experiment number Model name Commercial flight data Training flight data

1 Baseline 0.838 0.729

2 Baseline-MHLA 0.850 0.749

3 Baseline-CLS_task 0.841 0.758

4 Baseline-MHLA-CLS_task 0.851 0.790



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9791  | https://doi.org/10.1038/s41598-024-60675-6

www.nature.com/scientificreports/

window_size is set to 1 & 2. The Ernie3.0-Softmax model, which incorporates the prompt-based discriminative 
task, is represented by Baseline-CLS_task. Meanwhile, Baseline-MHLA-CLS_task signifies the integration of both 
the MHLA mechanism and the prompt-based discriminative task into the Ernie3.0-Softmax model. The datasets 
selected for testing include the test sets of the commercial flight ATC instruction dataset and the training flight 
ATC instruction dataset, with the evaluation metric being the F1 score.

Experiment 1 presents the test results of the baseline model, while Experiment 2 shows the results of the base-
line model after adding the MHLA module. Comparing Experiment 2 with Experiment 1, it can be seen that the 
addition of the MHLA module resulted in a relative improvement of 1.43% in performance on the commercial 
flight dataset and a 2.74% improvement on the training flight dataset compared to the baseline model. Experi-
ment 3 displays the test results of the baseline model with the introduction of the CLS_task, and Experiment 4 
shows the results of the model with both the MHLA module and CLS_task added. Comparing Experiment 3 with 
Experiment 1, it is evident that adding CLS_task led to a slight relative improvement on the commercial flight 
dataset and a 3.97% improvement on the training flight dataset compared to the baseline model. Comparing 
Experiment 4 with Experiment 1, it is clear that adding both the MHLA module and CLS_task resulted in more 
significant improvements, with a 1.55% relative increase on the commercial flight dataset and a 6.1% increase 
on the training flight dataset compared to the baseline model. Overall, both the MHLA module and CLS_task 
are beneficial for enhancing the baseline’s performance.

Verification of Optimization Strategies
The primary objective of this section is to explore the impact on the model’s learning ability when employing 
EBCE, WBCE, BCE, and their combinations, based on the Baseline-MHLA-CLS_task framework. The model’s 
training process was conducted on the transportation flight and training flight control instruction datasets, with 
tests carried out at the 10th and 20th epochs during the training process. The testing metric was the F1 score, and 
the experimental results are presented in Table 4. In Experiment 1, the loss function implemented is BCE, while 
Experiment 2 utilizes WBCE. Experiment 3 adopts EBCE, and Experiment 4 combines both WBCE and EBCE.

From Experiment 1, it is apparent that when only BCE is used, the model learns at a slower pace. The test 
results at the 10th training epoch indicate that the model had not yet learned useful information at this point. 
The results from the 20th epoch suggest that the model had begun to learn a small amount of useful information. 
Experiment 2 indicates that when using only WBCE, the model fails to learn useful information. The primary 
reason for this is that WBCE is only suitable when the class imbalance ratio of the data is known. Experiment 
3 demonstrates that EBCE is effective in accelerating the model’s learning speed. It is applicable regardless of 
whether the ratio of class imbalance is known or unknown. Experiment 4 indicates that the model’s learning 
capabilities can be further improved by utilizing WBCE for tasks with a known class imbalance ratio and EBCE 
for tasks with an unknown class imbalance ratio.

Sensitivity Analysis
The primary objective of this section is to explore the sensitivity of SLKIR to the number of heads in the MHLA 
mechanism and their corresponding window_size. Experiments were conducted on transportation flight and 
training flight datasets, with the F1 score as the evaluation metric. The results are presented in Table 5. Notably, 
Experiment 1 demonstrates the results under a single-head global attention mechanism for comparison.

The experimental results from Table 5 indicate that as the num_heads increases, the overall trend in model 
performance initially improves and then declines. The model achieves optimal performance when num_heads 
is set to 2 and window_size to 1 & 2. Overall, SLKIR is quite sensitive to changes in num_heads and their 

Table 4.  Impact of Different Loss Functions on Model Learning Speed. Significant values are in bold.

Experiment number Loss function

Commercial flight 
data Training flight data

10 epoch 20 epoch 10 epoch 20 epoch

1 BCE 0.001 0.562 0.001 0.347

2 WBCE 0.001 0.001 0.001 0.001

3 EBCE 0.404 0.610 0.376 0.492

4 EBCE&
WBCE 0.544 0.685 0.507 0.612

Table 5.  Sensitivity Analysis Results Table. Significant values are in bold.

Experiment number Num_heads&window_size Commercial flight data Training flight data

1 1&none 0.820 0.730

2 2&1,2 0.851 0.790

3 3&1,2,3 0.831 0.723

4 4&1,2,3,4 0.837 0.757
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corresponding window_size. Having too many or too few num_heads and window_size can introduce noise, 
thereby impacting the model’s performance.

Comparative Experiment
In this section, the models Bert-Softmax, Bert-CRF, Lebert-Softmax, Lebert-CRF (sequence labeling methods), 
and W2NER (a span-based method) were chosen as benchmarks to compare with SLKIR, aiming to explore the 
accuracy and generalizability of each model. Notably, Lebert-Softmax and Lebert-CRF each have two versions: 
one based on a non-ATC dictionary and the other on an ATC dictionary. The experimental results are presented 
in Tables 6 and 7, with Precision (P), Recall (R), and F1 score as the evaluation metrics.

From Experiments 1 to 4 in Tables 6 and 7, it is evident that models with a CRF layer are less effective than 
those with a Softmax layer. This is because the boundary words of key information in ATC instructions are locally 
dependent, and using a CRF layer introduces information from distant words, effectively adding a degree of noise. 
In contrast, the Softmax layer, by ignoring inter-word dependencies, reduces the introduction of noise and hence 
performs relatively better. Experiments 3 to 6 in Tables 6 and 7 show that incorporating external ATC instruction 
dictionary information leads to a slight improvement in model performance, but the cost-effectiveness is low. 
From Experiments 7 to 8 in Tables 6 and 7, it is clear that SLKIR significantly outperforms the best span-based 
model, W2NER. In the transportation flight dataset, SLKIR achieves a 3.65% relative increase in the F1 score 
compared to W2NER, and in the training flight dataset, it achieves a 12.8% relative increase in F1 score.

Conclusion
To achieve accurate and robust extraction of key information from air traffic control, we propose a small-sample-
driven end-to-end deep learning framework. Based on the aforementioned experimental results and analysis, 
the following conclusions can be drawn.

(1) Based on the characteristics of ATC instructions, a MHLA mechanism has been developed to capture 
latent representations related to boundary words of key information. This mechanism allows the model to 
effectively improve the discrimination accuracy of key information boundary words without the need for 
external regulatory instruction dictionaries.
(2) Considering the significant impact of users’ external interaction information on the model’s understanding 
of instruction content, we proposed a classification task based on external prompt information to enhance the 
model’s semantic understanding of input instructions. Results indicate that this design significantly improves 
the model’s generalization ability on unseen samples.
(3) To address two types of class imbalance problems, different loss function optimization strategies have been 
proposed in this paper. The experimental results show that adopting the appropriate loss function for different 
imbalance problems can accelerate the learning speed of the model and improve the accuracy of recognition.

Table 6.  Test Results of Various Models on the Commercial Flight Dataset. Significant values are in bold.

Experiment number Model name P R F1

1 Bert-Softmax 0.826 0.801 0.813

2 Bert-CRF 0.822 0.798 0.810

3 Lebert-Sotmax (None ATC dictionary) 0.825 0.796 0.811

4 Lebert-CRF (None ATC dictionary) 0.821 0.801 0.811

5 Lebert-Sotmax (ATC dictionary) 0.823 0.806 0.814

6 Lebert-CRF (ATC dictionary) 0.821 0.803 0.812

7 W2NER 0.834 0.809 0.821

8 SLKIR 0.854 0.849 0.851

Table 7.  Test Results of Various Models on the Training Flight Dataset. Significant values are in bold.

Experiment number Model name P R F1

1 Bert-Softmax 0.709 0.549 0.619

2 Bert-CRF 0.705 0.508 0.591

3 Lebert-Sotmax (None ATC dictionary) 0.767 0.522 0.621

4 Lebert-CRF
(None ATC dictionary) 0.696 0.527 0.600

5 Lebert-Sotmax (ATC dictionary) 0.739 0.535 0.621

6 Lebert-CRF (ATC dictionary) 0.719 0.594 0.650

7 W2NER 0.785 0.631 0.700

8 SLKIR 0.846 0.741 0.790
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(4) The proposed deep learning framework has achieved superior accuracy and generalizability on two small-
sample datasets compared to the best baseline models.
Although leading results have been achieved, that are still not sufficient for application in real-world scenarios. 
In the future, we hope to further optimize the model architecture to handle more complex air traffic instruc-
tion scenarios, including various non-standard usages and ambiguous instructions.

Data availability
Training flight ATC instruction dataset used in this study is available on GitHub, while commercial flight ATC 
instruction dataset can be obtained upon reasonable request. For requests to access the remaining dataset, please 
contact the corresponding author at panatc@163.com.

Code availability
The source code of this paper is available at:https:// github. com/ PANPA NKK/ ATC_ KIR.
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