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An adaptive Bayesian approach 
for improved sensitivity in joint 
monitoring of mean and variance 
using Max‑EWMA control chart
Abdullah A. Zaagan 1, Muhammad Noor‑ul‑Amin 2, Imad Khan 3, Javed Iqbal 2 & 
Saddam Hussain 4*

This article introduces an adaptive approach within the Bayesian Max‑EWMA control chart framework. 
Various Bayesian loss functions were used to jointly monitor process deviations from the mean and 
variance of normally distributed processes. Our study proposes the mechanism of using a function‑
based adaptive method that picks self‑adjusting weights incorporated in Bayesian Max‑EWMA 
for the estimation of mean and variance. This adaptive mechanism significantly enhances the 
effectiveness and sensitivity of the Max‑EWMA chart in detecting process shifts in both the mean 
and dispersion. The Monte Carlo simulation technique was used to calculate the run‑length profiles 
of different combinations. A comparative performance analysis with an existing chart demonstrates 
its effectiveness. A practical example from the hard‑bake process in semiconductor manufacturing is 
presented for practical context and illustration of the chart settings and performance. The empirical 
results showcase the superior performance of the Adaptive Bayesian Max‑EWMA control chart in 
identifying out‑of‑control signals. The chart’s ability to jointly monitor the mean and variance of a 
process, its adaptive nature, and its Bayesian framework make it a useful and effective control chart.

Keywords Average run length, Adaptive Max-EWMA, Monte Carlo simulation, Joint monitoring, Control 
chart, Bayesian approach

Statistical process control (SPC) is a field dedicated to maintaining and enhancing the quality of products and 
processes. It provides a systematic structure that helps in monitoring and controlling the different process vari-
ations. Control charts, a basic but powerful tool in SPC, were introduced by  Shewhart1. Control charts are used 
to identify the common causes and special causes present in the process. Shewhart control charts are widely used 
to monitor the shifts in the process mean. However, the Shewhart chart has limitations in detecting minor or 
gradual process parameter shifts. To address this, the Exponentially Weighted Moving Average (EWMA) chart 
assigns greater weights to recent data, increasing sensitivity to subtle mean shifts. Conversely, the Cumulative 
Sum (CUSUM) chart excels at swiftly detecting abrupt changes, responding to both magnitude and direction. 
These charts were introduced by  Page2 and  Robert3. Early control charts focused on single characteristics, but 
real-world quality standards often demand monitoring of both mean and variance. In practice, processes often 
exhibit simultaneous variations in mean and variance. Researchers have devised joint monitoring approaches 
to meet this need.  Gan4 pioneered a joint monitoring scheme and later Chen and  Cheng5 introduced the widely 
adopted Max chart, selecting the maximum absolute value from normalized mean and variance statistics. Chen 
et al.6 incorporated the Max approach with EWMA for joint detection of mean and variance Haq et al.7, Sanusi 
et al.8, and Chatterjee et al.9 proposed various joint monitoring schemes based on EWMA, CUSUM, and mul-
tivariate control charts. Jalilibal et al.10 conducted a comprehensive literature review on joint control schemes, 
highlighting the importance of developing effective and easy-to-use schemes. Joint monitoring schemes for 
statistical process monitoring remain in the limelight due to their ability to detect changes in both the process 
mean and dispersion.

The necessity for an adaptive approach in joint monitoring control charts stems from the dynamic nature 
of contemporary industrial processes. They adjust control limits based on observed data, making them more 
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responsive to process changes. Capizzi and  Masarotto11 introduced an adaptive approach in EWMA control charts 
for monitoring processes that exhibit time-varying behavior. Various researchers have worked to make differ-
ent improvements in adaptive approach. Lee and  Lin12 offered adaptive Max charts for monitoring the process 
mean and variability. Huang et al.13 evaluate the performance of the adaptive chart with classical charts. Abbas 
et al.14 introduce novel EWMA and CUSUM control charts using sign test statistic and arcsine transformation, 
demonstrating their performance under in-control and out-of-control processes via Monte Carlo simulation, 
revealing robustness against non-normality, with sign test statistic effective for small shifts and arcsine trans-
formation for medium to large shifts, applied and assessed using artificial dataset. Abbas et al.15 introduce the 
PAEWMA chart, analyzing its performance under steady-state and zero-state conditions for detecting unknown 
shifts, comparing it with existing schemes using run-length profiles and quadratic loss measures, highlighting 
the superior performance of PAEWMA under steady-state conditions, and demonstrating its applicability across 
artificial, past study, and aircraft accident monitoring datasets. Ugaz et al.16 proposed adaptive EWMA charts 
with time-varying smoothing parameters. Nazir et al.17 proposed robust adaptive EWMA charts for manufac-
turing processes to detect outliers and non-normality. Haq and  Razzaq18 offered maximum weighted adaptive 
CUSUM charts for combined monitoring of multiple processes. Sarwar and Noor-ul-Amin19 proposed a new 
adaptive EWMA chart by incorporating a hybrid approach to monitor small and moderate shifts. These stud-
ies on adaptive control charts show its acceptance in a wide range of applications. In recent years, the usage of 
the Bayesian approach in the construction of control charts has drawn significant attention. This is due to the 
fact that Bayesian methods provide a flexible structure for integrating previous knowledge with the latest avail-
able data.  Apley20 proposed posterior distribution charts for graphically exploring shifts in the process mean. 
 Menzefricke21 used a combined EWMA approach based on the predictive distribution to detect shifts. Aunali 
and  Venkatesan22 presented a comparative analysis of Bayesian and classical control charts in detecting small 
shifts.  Ali23 formulated a predictive Bayesian approach with CUSUM and EWMA charts for monitoring the time 
between events. Aslam and  Anwar24 introduced an improved version of the Bayesian Modified-EWMA location 
chart. Noor-ul-Amin and  Noor25 developed an adaptive EWMA control chart for monitoring the process mean 
using different loss functions under the Bayesian approach. Bourazas et al.26 proposed predictive control charts 
(PCCs) using a Bayesian approach for online monitoring of short runs. Khan et al.27 implemented various ranked 
set sampling techniques in Bayesian control charts. These studies demonstrate the versatility of the Bayesian 
approach in developing control charts. As research on Bayesian control charts continues, it is likely that they 
will become increasingly common in a wide range of applications.

Bayesian control charts and joint monitoring Max-EWMA control charts are promising approaches for 
monitoring processes. However, adaptive control charts have not been widely used in conjunction with Max-
EWMA joint monitoring. The adaptive weight in adaptive control charts allows them to be more responsive to 
process shifts. The combination of adaptive control charts and Max-EWMA joint monitoring could lead to the 
development of more effective control charts for monitoring time-varying processes. In this study, we focus on 
the comprehensive investigations of these two methodologies with a Bayesian approach to improve the joint 
monitoring process mean and dispersion.

The remaining article is structured as follows: In section “Bayesian approach”, we cover the Bayesian frame-
work and its various loss functions. In section “Proposed methodology”, the proposed methodology is presented. 
In section “Major findings and results discussion”, “Real life data application”, and “Conclusion”, we present key 
findings, comparative study, and practical illustrations of real-life data applications. Finally, section “Conclusion” 
highlights the conclusion of the study.

Bayesian approach
There are two main approaches in statistical inference. In the traditional frequentist approach, parameters are 
considered fixed and unknown. In contrast, the Bayesian approach considers these parameters as probability 
distributions. In this way, Bayesian theory provides a unique and powerful structure for making inferences based 
on current and updated observed data. It continuously incorporates prior knowledge to update beliefs as new 
information emerges. These prior distributions can be broadly categorized into two groups: informative and 
non-informative. Informative priors depend on a family of distributions and are known as conjugate priors. On 
the other hand, non-informative priors depend on uniform priors and Jeffrey’s priors. In many fields, the process 
conditions do not remain fixed but keep changing during the process. Such situations can be better handled with 
the Bayesian approach. This flexible and intuitive approach is a powerful tool that can be used to develop more 
effective control charts for a wide range of applications. Let X be a variable of interest with mean θ and variance 
δ2 . The normal prior distribution with parameters θ0 and δ20 is mathematical expressed as,

To construct the posterior distribution, we combine the information from the prior distribution and the 
observed data. This is achieved by setting a proportional relationship through multiplication which combines 
the likelihood function of the sample distribution with the prior distribution. The resulting posterior distribution

(1)p(θ) = 1
√

2πδ20

exp

{

− 1

2δ20
(θ − θ0)

2

}

(2)p(θ |x) = p(x|θ) · p(θ)
∫

p(x|θ) · p(θ)dθ
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To get the updated data values for the posterior predictive (PP) distribution, the posterior distribution serves 
as the initial reference. Thus, as a fundamental aspect of Bayesian theory, the PP distribution allows for the refine-
ment of prior distributions using fresh data, say y. It can be expressed mathematically as,

Squared error loss functions
In Bayesian statistics, the SELF quantifies the difference between true parameter values and their estimates, aiding 
decision-making and parameter estimation. Minimizing this function involves finding estimators that provide 
close estimates to the true parameter on average. While analytically tractable, it can be sensitive to outliers due 
to squaring. Nonetheless, it remains a fundamental tool in Bayesian decision theory, guiding the selection of 
estimators and decision rules balancing bias and variance in estimation and decision-making One such method is 
the SELF, introduced by  Gauss28. In this method, we square each value of the estimation error, thereby assigning 
more weight to larger errors—effectively imposing a greater penalty for greater loss. The ultimate objective is to 
obtain a posterior mean with a smaller loss. SELF yields robust results, particularly when the posterior follows 
a normal distribution. Let X be the variable of interest, θ is its unknown population parameter and θ̂ is its such 
estimator that gives minimum loss. So, in this case, SLEF can be equated with the following expression,

The mathematical representation of this estimator that is using Bayes SELF is as follows:

Linex loss functions
One limitation of using SLEF is that it penalizes all error values, whether they are positive or negative. However, 
the Linex Loss Function (LLF) treats positive values and negative errors differently. It assigns varying weights to 
overestimations and underestimations, considering their relative costs. Each outcome may have a different cost, 
so incorporating its impact in the calculation makes the estimation more efficient. It provides a better way to 
manage the risk associated with Bayes estimation. This function was introduced by  Varian29 and is mathemati-
cally defined as

Under LLF, the Bayesian estimator θ̂ becomes as

Proposed methodology
In this section, we present the methodology for incorporating the adaptive approach and Max-EWMA control 
chart under the Bayesian framework. Here, we assume that the prior distribution is normal. Let X1, X2, … Xn be 
a sequence of normally distributed random variables that are random, independent, and identical. Their mean 
and variance are denoted by θ and δ2 . We also consider that the likelihood function is normally distributed. To 
obtain the posterior distribution, we multiply the prior distribution by the likelihood function. Under these con-
ditions, when both the prior distribution and the likelihood function follow a normal distribution, the resultant 
posterior distribution will also follow a normal distribution with a mean (θ) and variance ( δ2 ). The probability 
distribution function (pdf) of the posterior distribution in this case can be expressed as

where  θn = nxδ20+δ2θ0

δ2+nδ20
 and δ2n = δ2δ20

δ2+nδ20
 respectively.

Now we setup Max-EWMA under Bayesian environment. Let’s collect different samples of size n corre-
sponding to a variable of interest, say X, from our underlying process. We standardize these values by applying 
the following transformation regarding mean and variance. We can transform them using SELF as well as LLF.

Mean estimation under SELF and LLF
Under SELF, the new transformed expression for calculating the mean is given as
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where θ̂(SELF) = nxδ20+δ2θ0

δ2+nδ20
 is the Bayes estimator for population mean using SELF.

Under LLF, the new transformed expression for calculating mean is expressed as

where θ̂(LLF ) =
nx(RSSi )δ

2
0+δ2θ0

δ2+nδ20
− C′

2 δ
2
n is the Bayes estimator for population mean using LLF.

Variance estimation under SELF and LLF
Under SLEF, the transformed variance is expressed as,

where δ̂2(SELF) =
δ2δ20

δ2+nδ20
 is the Bayes estimators for population variance using SELF.

Under LLF, the transformed expression to estimate the variance becomes

where δ̂2(LLF) =
δ2δ20

δ2+nδ20
. is the Bayes estimators for population variance using LLF.

In both Eqs. (8) and (9), H(n, ν) follows a chi-square distribution with v degrees of freedom and φ−1 repre-
sents the inverse of the standard normal distribution function.

Computation of EWMA
We use these transformed values to compute the EWMA statistic for process mean and variance. The expression 
for EWMA for mean under any LF can be written as

and the expression for EWMA for a variance under any LF can be written as

where P0 and Q0 show the initial values for the EWMA sequences Pt and Qt respectively and � is chart’s smoothing 
constant that can be set within the range 0 and 1. When the process is in a stable and in control situation, then 
both Pt and Qt are independent and each follows a normal distribution with 0 mean and δ2Pt and δ2Qt

 variances 
respectively. The simplified expression for variance is

Integration of adaptive approach
Next, we incorporate the adaptive approach. Let Xt be a normally distributed random variable, taken at time t 
with a sample of size n , with mean as µX and variance as σ2X. i.e., Xt ∼ N

(

µX, σ
2
X

)

.
Jiang et al.30 proposed an estimator to estimate the shift size by the following expression

where ψ is the smoothing constant and its range is (0, 1] . In real-world scenarios, it’s uncommon to have prior 
knowledge of the exact magnitude of a shift. To handle this, we first estimate its value. To calculate this Haq 
et al.31 proposed an unbiased estimator, say δ̂∗∗t  , which can be expressed as

where E
(

δ̂∗∗t
)

= δ = 0 . The process remains stable for a certain period of time, say t ≤  t0. In practical situations, 

the true magnitude is often unknown. Instead, δ is estimated by considering δ̃t =
∣

∣

∣
δ̂∗∗t

∣

∣

∣
.

The detection is achieved by recursively calculating the following EWMA statistic, which is referred to as the 
proposed chart statistic, in the following manner:

(9)Ut =
θ̂(SELF) − θ

δ
/√

n

(10)Ut =
θ̂(LLF) − θ

δ
/√

n

(11)Vt = φ−1

[

H

{

(n− 1)δ̂2(SELF)

δ2

}

, (n− 1)

]

(12)Vt = φ−1

[

H
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(n− 1)δ̂2(LLF)

δ2

}

, (n− 1)

]

(13)Pt(LF) = �Ut(LF) + (1− �)Pt−1(LF)

(14)Qt(LF) = �Vt(LF) + (1− �)Vt−1(LF)

(15)δ2Pt = δ2Qt
= �

�− 1

[

1− (1− �)2t
]

, for t = 1, 2, . . .

(16)δ̂∗t = ψXt + (1− ψ)δ̂∗t−1

(17)δ̂∗∗t = δ̂∗t
1− (1− ψ)t
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where A0 = 0 set as the initializing value. Instead of considering fixed value for smoothing constant, here we 
use a function that can adapt different values according to the process changing conditions. The self-adjusting 
weighting factor η(ω̃∗

t  ) is given as

where η(ω̃∗
t  ) is a random variable determined by a continuous function, optimizing our chart’s performance for 

detecting shifts. When δ̃t ≤ 2.7, η() is tailored for ssitivity to small to moderate shifts. Our adaptive chart excels 
at detecting shifts of any size, outperforming other methods. If the shift exceeds δ̃t≥ 2.7, our chart acts like a 
Shewhart chart, detecting larger shifts with δ̃t = 2.7 as the pivot point. It offers flexibility for adjusting the model 
and incorporating additional factors.

Instead of using fixed � in Eqs. (10) and (11) and assuming that it stays constant throughout the process, we 
use the self-adapting function of Eq. (16) and recursively update Eqs. (10) and (11) to compute the individual 
EWMA under adaptive approach. So, the equation becomes, 

Finally, these values are plugged in Max-EWMA given by Chen and  Change5 for jointly monitoring the 
process mean and variance in a single chart. So, the plotting can be expressed as

where Max is the function to get the maximum value of the given inputs.
As the Adaptive Bayesian Max-EWMA statistic is a positive value, we are required to plot only the upper 

control limit for jointly monitoring the process mean and variance. The plotting statistic is compared with the 
UCL threshold. If its value is below UCL then the process is in control. If the value is above the UCL then the 
process is out of control either by mean, variance, or both.

Major findings and results discussion
The Tables 1, 2, 3, 4, 5, 6 provides a comprehensive overview of results obtained through the application of the 
Adaptive Bayesian Max-EWMA control chart method. These evaluations are conducted within the framework of 
informative priors and based on 50,000 replicates, allowing us to calculate both the ARL and SDRL. We utilized 
smoothing constants with λ values set at 0.15 and 0.20. Moreover, our study explores a wide range of combina-
tions involving mean shift values (α) ranging from 0.00 to 3.00 and variance shift values (β) ranging from 1.00 to 
3.00. These different combinations are used to measure the performance of the Adaptive Bayesian Max-EWMA 
control chart method in the monitoring of process mean and variance jointly.

Effect of mean shift on ARL and SDRL
As the mean is shifted from 0.00 to 3.00, there is a noticeable trend in both the ARL and SDRL. ARL values 
decrease considerably with the higher mean shifts. These results show that the method becomes more sensitive 
to shifts in data as the mean shift increases. On the other hand, SDRL is decreased with the increase in mean 
shifts. This behavior of SDRL is aligned with ARL observations. The performance of the chart becomes more 
consistent and less variable, which is a desirable characteristic in real-world applications where stable and reli-
able change detection is essential.

Effect of variance shift on ARL and SDRL
Similar to the mean shift, variance shift exhibits a consistent influence on ARL and SDRL as it increases from 
1.00 to 3.00. ARL decreases with higher v shift values, indicating that the algorithm becomes more efficient at 
detecting changes when variance shift is increased. This result aligns with the observed behavior of mean shift 
and suggests that a higher v shift can lead to faster change detection. Correspondingly, the decrease in SDRL as 
variance shift increases implies that the algorithm’s detection performance becomes more stable and predict-
able. This predictability is valuable in applications where consistent and reliable change detection is paramount.

Effect of sample size on ARL and SDRL
The sample size (n) in the table has a noticeable impact on the results. Larger sample sizes (e.g., n = 7) consistently 
lead to quicker and more stable change detection, as evidenced by lower ARL and SDRL values. This increased 
responsiveness and reliability in detecting changes make larger sample sizes a favorable choice in practical 
applications where timely and consistent detection is crucial. However, it’s essential to consider computational 
resources and time constraints when selecting the sample size, as larger samples may come with increased 
processing demands.
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Table 1.  The run length profiles for proposed Adaptive Bayesian Max-EWMA control chart under SELF, with 
� = 0.15.

α 0.00 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

β n ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00

3 370.84 360.47 117.67 87.43 35.35 23.65 11.20 7.14 5.73 3.09 3.73 1.69 2.23 0.82 1.60 0.57 1.23 0.43 1.06 0.23

5 370.68 368.63 86.75 60.61 23.96 15.56 7.50 4.18 4.03 1.86 2.71 1.17 1.54 0.65 1.11 0.32 1.01 0.10 1.00 0.02

7 370.56 356.11 70.23 47.82 18.14 11.55 5.83 2.98 3.21 1.47 2.11 0.99 1.20 0.44 1.01 0.11 1.00 0.01 1.00 0.00

1.10

3 91.07 74.17 66.00 51.00 29.27 21.26 10.66 7.18 5.63 3.24 3.75 1.85 2.24 0.89 1.61 0.60 1.26 0.45 1.07 0.26

5 59.81 44.85 44.99 32.52 19.98 13.85 7.24 4.33 4.04 2.03 2.70 1.26 1.56 0.68 1.13 0.35 1.02 0.13 1.00 0.03

7 46.02 33.07 35.10 24.60 15.43 10.36 5.66 3.15 3.19 1.57 2.12 1.04 1.23 0.48 1.02 0.15 1.00 0.03 1.00 0.00

1.25

3 26.59 21.16 24.78 19.83 17.79 13.88 9.12 6.56 5.40 3.39 3.69 1.99 2.25 0.98 1.63 0.65 1.29 0.47 1.10 0.30

5 15.87 11.72 14.95 11.00 11.45 8.16 6.29 3.94 3.83 2.12 2.68 1.36 1.59 0.73 1.17 0.40 1.03 0.17 1.00 0.05

7 11.60 8.06 11.08 7.69 8.67 5.78 4.95 2.91 3.07 1.66 2.11 1.11 1.27 0.52 1.04 0.19 1.00 0.05 1.00 0.00

1.50

3 9.18 7.38 9.03 7.20 8.15 6.34 6.14 4.48 4.51 2.98 3.41 2.00 2.23 1.10 1.66 0.73 1.33 0.52 1.14 0.36

5 5.58 3.77 5.51 3.72 5.15 3.41 4.15 2.60 3.18 1.88 2.46 1.37 1.60 0.78 1.21 0.45 1.06 0.24 1.01 0.10

7 4.22 2.64 4.19 2.61 3.97 2.46 3.24 1.95 2.51 1.46 1.95 1.09 1.29 0.57 1.06 0.25 1.01 0.09 1.00 0.02

2.00

3 3.56 2.47 3.53 2.45 3.45 2.38 3.21 2.16 2.89 1.86 2.56 1.56 2.01 1.10 1.62 0.79 1.36 0.58 1.20 0.43

5 2.32 1.41 2.30 1.41 2.28 1.39 2.15 1.30 1.98 1.16 1.79 1.01 1.45 0.72 1.21 0.48 1.09 0.30 1.03 0.17

7 1.80 1.04 1.79 1.04 1.77 1.02 1.68 0.95 1.57 0.85 1.44 0.74 1.21 0.48 1.08 0.29 1.02 0.15 1.00 0.06

2.50

3 2.26 1.41 2.26 1.41 2.25 1.41 2.18 1.35 2.09 1.26 1.97 1.17 1.73 0.95 1.51 0.75 1.34 0.59 1.22 0.46

5 1.55 0.84 1.55 0.84 1.54 0.83 1.50 0.80 1.46 0.75 1.40 0.70 1.27 0.56 1.16 0.42 1.09 0.30 1.04 0.20

7 1.26 0.56 1.26 0.56 1.26 0.56 1.24 0.53 1.21 0.50 1.18 0.45 1.11 0.34 1.05 0.24 1.02 0.15 1.01 0.09

3.00

3 1.75 1.01 1.74 0.99 1.74 0.99 1.72 0.97 1.68 0.93 1.63 0.88 1.52 0.78 1.40 0.67 1.30 0.57 1.20 0.45

5 1.26 0.56 1.26 0.56 1.26 0.55 1.25 0.54 1.23 0.52 1.21 0.49 1.16 0.42 1.11 0.34 1.06 0.26 1.04 0.20

7 1.10 0.33 1.10 0.33 1.10 0.33 1.10 0.32 1.08 0.30 1.08 0.29 1.05 0.23 1.03 0.18 1.02 0.13 1.01 0.09

Table 2.  The run length profiles for proposed Adaptive Bayesian Max-EWMA control chart under SELF, with 
� = 0.20.

α 0.00 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

β n ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00

3 371.76 345.21 122.24 86.52 38.45 23.01 12.98 7.41 6.66 3.31 4.32 1.87 2.23 0.82 1.60 0.57 1.23 0.43 1.06 0.23

5 370.30 344.98 90.61 60.55 26.54 15.25 8.74 4.48 4.67 2.07 3.05 1.35 1.61 0.76 1.11 0.33 1.01 0.10 1.00 0.01

7 370.75 366.85 73.71 47.38 20.51 11.58 6.75 3.27 3.66 1.66 2.33 1.15 1.22 0.49 1.01 0.12 1.00 0.01 1.00 0.00

1.10

3 94.39 71.68 69.25 48.96 31.96 20.49 12.24 7.37 6.58 3.51 4.29 2.02 2.24 0.89 1.61 0.60 1.26 0.45 1.07 0.26

5 63.10 43.36 48.01 31.19 22.30 13.59 8.43 4.63 4.62 2.25 3.04 1.44 1.64 0.80 1.14 0.37 1.02 0.12 1.00 0.03

7 48.94 32.35 37.81 23.74 17.53 10.39 6.58 3.43 3.62 1.79 2.34 1.21 1.26 0.53 1.02 0.15 1.00 0.03 1.00 0.00

1.25

3 29.35 20.69 27.42 19.20 20.04 13.65 10.57 6.75 6.25 3.59 4.22 2.20 2.25 0.98 1.63 0.65 1.29 0.47 1.10 0.30

5 17.88 11.73 16.96 10.98 13.18 8.32 7.28 4.25 4.42 2.37 3.00 1.58 1.67 0.85 1.18 0.43 1.03 0.18 1.00 0.05

7 13.35 8.36 12.73 7.87 10.12 6.06 5.73 3.20 3.48 1.90 2.32 1.28 1.30 0.59 1.04 0.20 1.00 0.05 1.00 0.00

1.50

3 10.62 7.57 10.47 7.42 9.46 6.67 7.20 4.81 5.22 3.25 3.90 2.24 2.23 1.10 1.66 0.73 1.33 0.52 1.14 0.36

5 6.46 4.12 6.40 4.03 5.95 3.72 4.80 2.92 3.63 2.13 2.73 1.58 1.69 0.91 1.22 0.50 1.06 0.24 1.01 0.10

7 4.85 2.94 4.79 2.91 4.54 2.76 3.71 2.24 2.82 1.69 2.12 1.26 1.33 0.64 1.07 0.27 1.01 0.09 1.00 0.02

2.00

3 4.04 2.74 4.06 2.79 3.93 2.66 3.65 2.43 3.24 2.10 2.85 1.80 2.01 1.10 1.62 0.79 1.36 0.58 1.20 0.43

5 2.54 1.63 2.54 1.62 2.50 1.59 2.35 1.49 2.16 1.35 1.92 1.17 1.51 0.83 1.23 0.53 1.09 0.32 1.03 0.17

7 1.93 1.20 1.91 1.19 1.89 1.17 1.79 1.10 1.65 0.99 1.50 0.85 1.23 0.55 1.08 0.30 1.02 0.15 1.00 0.06

2.50

3 2.47 1.62 2.48 1.63 2.46 1.61 2.38 1.55 2.27 1.45 2.13 1.33 1.73 0.95 1.51 0.75 1.34 0.59 1.22 0.46

5 1.62 0.95 1.63 0.95 1.61 0.94 1.58 0.91 1.51 0.85 1.45 0.78 1.30 0.63 1.17 0.45 1.09 0.31 1.04 0.21

7 1.28 0.62 1.29 0.62 1.28 0.61 1.26 0.59 1.23 0.55 1.20 0.50 1.12 0.37 1.05 0.25 1.02 0.15 1.01 0.08

3.00

3 1.85 1.13 1.85 1.14 1.83 1.12 1.81 1.11 1.76 1.06 1.71 1.02 1.52 0.78 1.40 0.67 1.30 0.57 1.20 0.45

5 1.28 0.61 1.28 0.61 1.28 0.61 1.27 0.59 1.25 0.57 1.23 0.54 1.17 0.46 1.12 0.37 1.07 0.28 1.04 0.21

7 1.10 0.35 1.11 0.36 1.10 0.35 1.10 0.35 1.09 0.33 1.08 0.30 1.05 0.25 1.03 0.18 1.02 0.13 1.01 0.08
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Table 3.  Comparative of existing Bayesian Max-EWMA control chart and proposed Adaptive Bayesian Max-
EWMA control chart under SELF, with � = 0.15.

α 0.00 0.10 0.25 0.50 1.00 2.00 3.00

β n Type ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00

3
Existing 370.0950 365.2474 209.9108 201.1163 54.0980 46.5065 14.1483 8.4748 4.9633 1.7631 2.3219 0.5266 1.7192 0.2783

Proposed 370.8369 360.4711 117.6749 87.4265 35.3488 23.6503 11.2035 7.1431 3.7337 1.6922 1.5963 0.5744 1.0552 0.2283

5
Existing 370.2356 364.1423 159.6950 152.5825 32.5425 25.4189 9.2319 4.5814 3.6589 1.0929 1.9308 0.3448 1.1773 0.3819

Proposed 370.6832 368.6289 86.7464 60.6099 23.9619 15.5557 7.5019 4.1790 2.7061 1.1737 1.1096 0.3161 1.0002 0.0155

7
Existing 370.2879 363.4935 126.6313 119.0586 23.2994 16.7468 7.1665 3.1000 3.0334 0.8171 1.6825 0.4681 1.0150 0.1215

Proposed 370.5644 356.1078 70.2331 47.8194 18.1380 11.5507 5.8326 2.9831 2.1104 0.9869 1.0132 0.1144 1.0000 0.0000

1.50

3
Existing 11.9084 7.8667 11.6904 7.6825 10.5982 6.6942 8.2143 4.6934 4.7135 2.1296 2.3871 0.7419 1.6709 0.5207

Proposed 9.1807 7.3751 9.0332 7.2040 8.1454 6.3377 6.1360 4.4775 3.4105 2.0014 1.6575 0.7279 1.1429 0.3575

5
Existing 7.3073 3.9265 7.2076 3.8278 6.8140 3.4989 5.6582 2.6500 3.5234 1.3296 1.9076 0.5443 1.2691 0.4441

Proposed 5.5847 3.7696 5.5130 3.7158 5.1509 3.4086 4.1497 2.5970 2.4595 1.3684 1.2074 0.4499 1.0100 0.0995

7
Existing 5.5734 2.6158 5.5318 2.5680 5.2939 2.3824 4.5478 1.8702 2.9553 1.0103 1.6433 0.5167 1.0735 0.2609

Proposed 4.2187 2.6401 4.1949 2.6142 3.9712 2.4645 3.2431 1.9485 1.9479 1.0877 1.0633 0.2530 1.0004 0.0205

2.00

3
Existing 5.0767 2.6626 5.0556 2.6606 4.9461 2.5796 4.6197 2.3474 3.7112 1.7207 2.3528 0.8943 1.6745 0.5974

Proposed 3.5588 2.4692 3.5263 2.4468 3.4498 2.3755 3.2142 2.1626 2.5628 1.5582 1.6160 0.7879 1.1988 0.4291

5
Existing 3.3971 1.4363 3.3972 1.4320 3.3553 1.4030 3.2148 1.3167 2.7468 1.0419 1.8542 0.6364 1.3135 0.4716

Proposed 2.3204 1.4087 2.3011 1.4066 2.2769 1.3934 2.1546 1.2987 1.7892 1.0081 1.2139 0.4774 1.0295 0.1720

7
Existing 2.7436 1.0182 2.7401 1.0246 2.7204 1.0088 2.6335 0.9469 2.3144 0.7915 1.5984 0.5548 1.1361 0.3435

Proposed 1.8000 1.0449 1.7945 1.0396 1.7687 1.0230 1.6804 0.9546 1.4413 0.7382 1.0789 0.2870 1.0038 0.0617

3.00

3
Existing 2.5667 1.2163 2.5594 1.2097 2.5406 1.2033 2.5079 1.1894 2.3680 1.0969 1.9643 0.8628 1.5976 0.6626

Proposed 1.7506 1.0054 1.7405 0.9905 1.7399 0.9877 1.7154 0.9717 1.6284 0.8836 1.4004 0.6686 1.2007 0.4519

5
Existing 1.8523 0.7359 1.8546 0.7384 1.8492 0.7393 1.8380 0.7327 1.7579 0.6991 1.5210 0.5905 1.2842 0.4692

Proposed 1.2649 0.5563 1.2634 0.5562 1.2603 0.5484 1.2510 0.5390 1.2102 0.4885 1.1103 0.3437 1.0390 0.1995

7
Existing 1.5460 0.5870 1.5515 0.5906 1.5423 0.5871 1.5313 0.5831 1.4792 0.5610 1.3027 0.4759 1.1268 0.3343

Proposed 1.1015 0.3336 1.0989 0.3285 1.0961 0.3256 1.0954 0.3244 1.0766 0.2882 1.0299 0.1765 1.0071 0.0856

Table 4.  The run length profiles for proposed Adaptive Bayesian Max-EWMA control chart under LLF, with 
� = 0.15.

Α 0.00 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

β N ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00

3 370.59 360.78 118.26 88.40 35.88 23.96 11.29 7.15 5.75 3.10 3.74 1.69 2.23 0.82 1.60 0.57 1.24 0.43 1.06 0.23

5 370.01 358.53 87.63 61.56 24.09 15.66 7.51 4.17 4.04 1.87 2.71 1.17 1.54 0.65 1.11 0.32 1.01 0.09 1.00 0.02

7 370.42 359.58 70.60 47.96 18.29 11.62 5.83 2.98 3.22 1.46 2.12 0.99 1.20 0.43 1.01 0.11 1.00 0.01 1.00 0.00

1.10

3 91.32 74.70 66.54 50.95 29.70 21.78 10.70 7.23 5.69 3.28 3.74 1.82 2.23 0.89 1.61 0.60 1.26 0.45 1.07 0.26

5 60.36 45.13 45.31 32.83 19.90 13.80 7.27 4.35 4.00 2.01 2.71 1.26 1.56 0.68 1.14 0.35 1.02 0.12 1.00 0.03

7 46.21 33.10 35.31 24.88 15.53 10.42 5.70 3.14 3.20 1.59 2.12 1.04 1.23 0.47 1.02 0.15 1.00 0.03 1.00 0.00

1.25

3 27.00 21.59 25.12 20.02 17.89 14.00 9.16 6.58 5.38 3.33 3.68 1.97 2.25 0.99 1.63 0.65 1.29 0.47 1.10 0.30

5 15.88 11.74 15.05 11.09 11.56 8.21 6.26 3.96 3.86 2.12 2.68 1.37 1.60 0.74 1.17 0.39 1.03 0.17 1.00 0.05

7 11.67 8.17 11.08 7.72 8.70 5.76 4.94 2.92 3.07 1.67 2.12 1.11 1.27 0.52 1.04 0.20 1.00 0.04 1.00 0.01

1.50

3 9.23 7.36 9.05 7.17 8.14 6.37 6.17 4.50 4.51 2.96 3.41 1.99 2.23 1.11 1.65 0.72 1.33 0.52 1.14 0.36

5 5.60 3.79 5.54 3.74 5.16 3.42 4.13 2.59 3.18 1.87 2.45 1.37 1.60 0.79 1.21 0.45 1.06 0.23 1.01 0.10

7 4.22 2.63 4.18 2.62 3.94 2.43 3.27 1.95 2.53 1.46 1.94 1.09 1.29 0.56 1.06 0.25 1.01 0.09 1.00 0.02

2.00

3 3.55 2.46 3.56 2.46 3.43 2.36 3.22 2.16 2.91 1.88 2.58 1.58 2.01 1.09 1.62 0.79 1.37 0.59 1.20 0.44

5 2.32 1.42 2.30 1.41 2.28 1.40 2.16 1.29 1.99 1.17 1.78 1.01 1.45 0.72 1.22 0.48 1.09 0.30 1.03 0.17

7 1.81 1.05 1.78 1.03 1.77 1.03 1.69 0.96 1.57 0.86 1.44 0.73 1.21 0.49 1.08 0.28 1.02 0.14 1.00 0.06

2.50

3 2.27 1.42 2.28 1.44 2.25 1.42 2.18 1.34 2.09 1.27 1.97 1.16 1.73 0.94 1.51 0.75 1.35 0.59 1.22 0.46

5 1.55 0.84 1.54 0.84 1.54 0.83 1.51 0.80 1.45 0.75 1.40 0.70 1.27 0.56 1.16 0.42 1.08 0.29 1.04 0.20

7 1.27 0.57 1.26 0.56 1.26 0.55 1.24 0.53 1.21 0.49 1.18 0.45 1.11 0.35 1.05 0.24 1.02 0.15 1.01 0.09

3.00

3 1.75 1.01 1.75 1.00 1.74 0.99 1.73 0.97 1.68 0.94 1.63 0.89 1.52 0.79 1.40 0.67 1.29 0.55 1.20 0.45

5 1.27 0.56 1.26 0.56 1.26 0.55 1.24 0.53 1.23 0.51 1.21 0.48 1.16 0.42 1.11 0.34 1.07 0.26 1.04 0.20

7 1.10 0.33 1.10 0.33 1.10 0.33 1.09 0.32 1.08 0.30 1.07 0.28 1.05 0.23 1.03 0.18 1.02 0.12 1.01 0.08
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Table 5.  The run length profiles for proposed Adaptive Bayesian Max-EWMA control chart under LLF, with 
� = 0.20.

α 0.00 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

β n ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00

3 370.73 344.19 123.23 87.77 38.77 22.91 13.05 7.39 6.69 3.34 4.30 1.87 2.47 0.97 1.66 0.66 1.24 0.44 1.06 0.23

5 370.41 343.43 91.40 61.13 26.49 15.18 8.70 4.47 4.66 2.09 3.06 1.35 1.62 0.76 1.11 0.33 1.01 0.09 1.00 0.02

7 370.27 344.98 74.67 47.76 20.46 11.52 6.75 3.26 3.65 1.66 2.34 1.15 1.22 0.49 1.01 0.12 1.00 0.01 1.00 0.00

1.10

3 95.70 73.16 69.38 48.80 32.31 20.76 12.30 7.41 6.59 3.52 4.29 2.01 2.47 1.04 1.67 0.70 1.27 0.47 1.07 0.26

5 63.58 44.04 48.42 31.54 22.36 13.78 8.41 4.61 4.63 2.24 3.04 1.44 1.65 0.80 1.14 0.37 1.02 0.13 1.00 0.03

7 48.74 31.82 37.95 23.91 17.49 10.47 6.59 3.44 3.61 1.80 2.34 1.21 1.26 0.53 1.02 0.15 1.00 0.03 1.00 0.00

1.25

3 29.52 20.66 27.57 19.30 20.22 13.73 10.61 6.80 6.24 3.62 4.25 2.20 2.48 1.15 1.71 0.75 1.30 0.50 1.10 0.31

5 18.11 11.87 17.07 11.10 13.23 8.38 7.28 4.22 4.44 2.39 2.99 1.56 1.67 0.85 1.18 0.43 1.03 0.17 1.00 0.05

7 13.31 8.35 12.73 7.95 10.20 6.17 5.79 3.22 3.50 1.90 2.32 1.29 1.30 0.59 1.04 0.20 1.00 0.05 1.00 0.01

1.50

3 10.63 7.57 10.41 7.40 9.55 6.72 7.20 4.81 5.26 3.25 3.89 2.24 2.43 1.27 1.74 0.84 1.35 0.56 1.15 0.37

5 6.47 4.10 6.40 4.06 6.01 3.75 4.81 2.94 3.63 2.13 2.72 1.58 1.69 0.91 1.23 0.50 1.06 0.24 1.01 0.10

7 4.84 2.96 4.78 2.90 4.53 2.74 3.71 2.24 2.81 1.70 2.10 1.26 1.33 0.64 1.07 0.27 1.01 0.10 1.00 0.02

2.00

3 4.04 2.76 4.01 2.74 3.93 2.66 3.66 2.43 3.26 2.12 2.86 1.79 2.17 1.27 1.69 0.90 1.39 0.64 1.21 0.46

5 2.56 1.64 2.55 1.62 2.51 1.60 2.35 1.49 2.16 1.35 1.93 1.17 1.51 0.83 1.24 0.53 1.09 0.32 1.03 0.17

7 1.92 1.20 1.92 1.20 1.88 1.17 1.79 1.10 1.65 0.98 1.50 0.85 1.23 0.56 1.08 0.30 1.02 0.15 1.00 0.06

2.50

3 2.47 1.63 2.48 1.62 2.44 1.61 2.37 1.55 2.26 1.46 2.13 1.33 1.83 1.09 1.57 0.84 1.37 0.65 1.23 0.50

5 1.62 0.95 1.63 0.97 1.62 0.94 1.57 0.91 1.51 0.85 1.45 0.78 1.30 0.62 1.17 0.46 1.09 0.31 1.04 0.21

7 1.29 0.62 1.29 0.62 1.28 0.62 1.26 0.59 1.23 0.55 1.19 0.50 1.11 0.37 1.06 0.25 1.02 0.16 1.01 0.09

3.00

3 1.85 1.15 1.84 1.13 1.85 1.14 1.80 1.10 1.77 1.07 1.71 1.01 1.58 0.89 1.44 0.75 1.32 0.62 1.22 0.49

5 1.29 0.61 1.28 0.60 1.28 0.60 1.27 0.59 1.25 0.56 1.23 0.54 1.17 0.46 1.12 0.37 1.07 0.27 1.04 0.20

7 1.11 0.36 1.10 0.35 1.10 0.35 1.10 0.34 1.09 0.33 1.08 0.31 1.05 0.25 1.03 0.19 1.02 0.13 1.01 0.09

Table 6.  Comparative of existing Bayesian Max-EWMA control chart and proposed Adaptive Bayesian Max-
EWMA control chart under LLF, with � = 0.15.

α 0.00 0.10 0.25 0.50 1.00 2.00 3.00

β n Type ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00

3
Existing 370.4812 361.5483 213.5145 207.2202 53.9520 46.5927 14.1522 8.5403 5.0008 1.7912 2.3231 0.5262 1.7197 0.4528

Proposed 370.5927 360.7761 118.2624 88.3971 35.8776 23.9603 11.2896 7.1516 3.7371 1.6875 1.5999 0.5729 1.0564 0.2306

5
Existing 370.9033 363.5844 162.2798 155.7887 32.6641 25.5111 9.2280 4.6530 3.6607 1.0896 1.9327 0.3550 1.1746 0.3796

Proposed 370.0055 358.5289 87.6300 61.5614 24.0901 15.6633 7.5067 4.1691 2.7087 1.1714 1.1083 0.3154 1.0003 0.0173

7
Existing 371.0654 363.2578 128.0419 121.3617 23.2918 16.7425 7.1525 3.1274 3.0423 0.8174 1.6842 0.4678 1.0153 0.1228

Proposed 370.4160 359.5801 70.6050 47.9559 18.2950 11.6167 5.8302 2.9805 2.1209 0.9878 1.0122 0.1103 1.0000 0.0000

1.50

3
Existing 11.9084 7.8667 11.6976 7.6790 10.7185 6.7715 8.2049 4.6471 4.7185 2.1228 2.3869 0.7457 1.6742 0.5214

Proposed 9.2276 7.3577 9.0460 7.1729 8.1424 6.3706 6.1683 4.5017 3.4070 1.9924 1.6534 0.7212 1.1435 0.3574

5
Existing 7.3047 3.9346 7.2358 3.8663 6.8104 3.4807 5.6520 2.6654 3.5255 1.3368 1.9086 0.5484 1.2662 0.4432

Proposed 5.5979 3.7899 5.5431 3.7432 5.1626 3.4193 4.1315 2.5869 2.4478 1.3655 1.2089 0.4518 1.0095 0.0969

7
Existing 5.5863 2.6044 5.5510 2.5868 5.3417 2.4228 4.5315 1.8537 2.9523 1.0035 1.6423 0.5186 1.0756 0.2644

Proposed 4.2188 2.6252 4.1830 2.6208 3.9406 2.4323 3.2672 1.9489 1.9445 1.0916 1.0637 0.2538 1.0005 0.0224

2.00

3
Existing 5.0767 2.6626 5.0710 2.6698 4.9540 2.5825 4.6364 2.3392 3.7137 1.7244 2.3450 0.8923 1.6761 0.5999

Proposed 3.5525 2.4581 3.5591 2.4581 3.4290 2.3552 3.2244 2.1574 2.5798 1.5764 1.6157 0.7864 1.2028 0.4353

5
Existing 3.4137 1.4501 3.4130 1.4340 3.3401 1.3977 3.2172 1.3205 2.7518 1.0511 1.8557 0.6377 1.3159 0.4740

Proposed 2.3223 1.4208 2.3013 1.4083 2.2798 1.3978 2.1561 1.2853 1.7841 1.0120 1.2172 0.4815 1.0287 0.1692

7
Existing 2.7425 1.0242 2.7284 1.0176 2.7263 1.0107 2.6271 0.9479 2.3193 0.7919 1.5943 0.5572 1.1317 0.3387

Proposed 1.8051 1.0479 1.7784 1.0329 1.7678 1.0250 1.6861 0.9570 1.4368 0.7336 1.0773 0.2839 1.0041 0.0641

3.00

3
Existing 2.5667 1.2163 2.5583 1.2064 2.5478 1.2066 2.5123 1.1816 2.3849 1.1054 1.9733 0.8731 1.5931 0.6591

Proposed 1.7538 1.0069 1.7511 1.0050 1.7417 0.9920 1.7289 0.9720 1.6283 0.8858 1.4004 0.6694 1.2019 0.4539

5
Existing 1.8574 0.7435 1.8528 0.7384 1.8520 0.7445 1.8295 0.7303 1.7597 0.6923 1.5212 0.5947 1.2759 0.4650

Proposed 1.2655 0.5554 1.2646 0.5559 1.2611 0.5543 1.2422 0.5272 1.2076 0.4829 1.1088 0.3418 1.0386 0.1980

7
Existing 1.5477 0.5877 1.5484 0.5897 1.5420 0.5880 1.5288 0.5785 1.4786 0.5604 1.3011 0.4733 1.1245 0.3320

Proposed 1.1023 0.3330 1.1013 0.3331 1.0984 0.3292 1.0927 0.3183 1.0727 0.2820 1.0325 0.1836 1.0063
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Effect of smoothing constant on ARL and SDRL
The different values of the smoothing constant were also compared, specifically λ = 0.15 and λ = 0.20. We can see 
notable differences in the ARL and SDRL values. For λ = 0.15, the adaptive Bayesian Max-EWMA control chart 
method generally exhibits higher ARL values across varying mean shift and variance shift scenarios. In contrast, 
with λ = 0.20, the Adaptive method consistently achieves lower ARL values, indicating faster change detection. 
This observation suggests that a higher λ value enhances the chart’s sensitivity which leads to quicker detection.

The results from Tables 4, 5, 6 are computed under the LLF. The analysis of the ARL and SDRL under LLF 
also shows the similar observation as found in Table 1, 2, 3 under SELF. We can say that our proposed control 
chart performs equally well under both loss functions namely SELF and LLF.

Comparative study
In this study, we conduct a comparative analysis of the two control charts: the Bayesian Max-EWMA chart and 
our proposed Adaptive Bayesian Max-EWMA chart. Control charts are vital tools for quality control and process 
monitoring. The Bayesian Max-EWMA chart is a well-established method, while our Adaptive Bayesian Max-
EWMA chart is integrated with an adaptive approach to changing process conditions. The examination of ARL 
and SDRL values under various scenarios provides insights into the performance of these charts. Following are 
the findings from the results.

 i. As the mean shift increases the ARL and SDRL values of both charts get decrease. However, the decrease in 
ARL and SDRL values is more prominent in the proposed Adaptive chart. This shows its higher sensitivity 
to detect changes in the process.

 ii. As the variance shift increases, it generally leads to higher ARL values for both charts. The proposed 
Adaptive chart consistently shows better performance than the counterpart chart. It shows lower ARL 
values across different shift levels of variance.

 iii. Overall, the proposed Adaptive Bayesian Max-EWMA chart consistently has lower ARL values compared 
to the Bayesian Max-EWMA chart. In most cases, the SDRL values for the Adaptive chart are also lower 
than those for the counterpart chart. This show stability in the repeated results. The Adaptive chart con-
sistently performs better in terms of faster detection and lower variability in run length.

Real life data application
In this section, we apply the proposed Adaptive Bayesian Max-EWMA chart to real-life data and compare its 
performance with the existing Bayesian Max-EWMA chart. In semiconductor manufacturing, integrated cir-
cuits (ICs) are placed on a thin slice-like material called a wafer. The flow width of the photoresist is a critical 
dimension that must be controlled to ensure the proper functioning of the ICs. By monitoring the flow width of 
the photoresist, engineers can ensure that the process is producing high-quality results.  Montgomery32 provides 
an example of a hard baking process in semiconductor manufacturing. The dataset consists of 45 samples, each 
with 5 values, and each sample is collected every hour. The first 30 values serve as in-control values, while the last 
15 values are contaminated with impurities. Both charts are used to monitor the process variations in the mean 
and variance, and the computed results are presented in Table 7. In this demonstration, we have used SELF only.

Table 7 shows the values of phases I and II and the application of existing and proposed charts. It shows the 
process remains in control for the first 30 values. In phase II, for testing purposes, impurities in the process are 
introduced by a shift magnitude of 1.00 ( �X = 1.00). The Bayesian MaxEWMA under the SELF method detects 
this shift at the 40th sampling unit which is also evident from Fig. 1. On the other hand, our proposed Adaptive 
Bayesian Max-EWMA control chart which incorporates the adaptive values for smoothing constant detects 
this change in process at an earlier stage. It gives out of control signal at the 37th sample unit. These results are 
presented in Table 7. The visual illustration of both charts is presented in Figs. 1 and 2. It clearly shows that the 
proposed chart has a better capability of monitoring the process changes, this early detection shows that the 
process monitoring has improved and the proposed control chart is quicker at capturing the shifted behavior of 
the process. It highlights that our integration of the adaptive approach has enhanced the speed and sensitivity 
of the control chart in detecting shifts in the process mean and variance.

Conclusion
In this study, we focus on a comprehensive investigation of the adaptive approach and Bayesian methodology 
to enhance joint process monitoring. We introduce a novel Adaptive Bayesian Max-EWMA control chart that 
seamlessly integrates an adaptive approach within the Bayesian framework. It utilizes prior and posterior dis-
tributions under the SLEF and LLF loss functions. This method is further enhanced with an adaptive approach. 
The effectiveness of the proposed chart was evaluated through rigorous simulations. Our meticulous analysis, 
encompassing various parameters, unequivocally demonstrates that the Adaptive Bayesian Max-EWMA chart 
consistently outperforms its conventional counterpart. To reinforce our conclusions, we conducted a real-life 
case study. This practical application not only supports the chart’s exceptional performance but also provides 
tangible evidence of its effectiveness in real-world scenarios. The proposed chart’s key contributions are as follows: 
it seamlessly integrates an adaptive approach within the Bayesian framework, allowing it to learn from incoming 
data and adjust its charting parameters accordingly. It enhances sensitivity to both mean and variance shifts, 
making it a valuable tool for detecting a wide range of process disturbances. It exhibits superior adaptability to 
changing process conditions, ensuring its effectiveness even in non-stationary environments. The proposed chart 
can be applied across a wide range of industries. By providing early warnings of potential process problems, the 
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chart can help reduce scrap, rework, and warranty costs, ultimately improving product quality and customer 
satisfaction. Future research directions could include investigating the chart’s performance under more complex 
process dynamics, such as non-linear shifts and autocorrelated data. Researchers may also explore the develop-
ment of adaptive Bayesian control charts for monitoring other process parameters or integrating the chart with 
multivariate or high-dimensional data.

Table 7.  The values and out of control status Bayesian Max-EWMA control chart and proposed Adaptive 
Bayesian Max-EWMA under SELF, with � = 0.20. Significant values are in bold.

Sample # Phase I and II Bayesian Max-EWMA UCL Out of Control (ooc) Status
Proposed Adaptive Bayesian Max-
EWMA UCL Out of Control (ooc) Status

1 Phase I 0.6972 4.3309 0 3.8979 5.3681 0

2 Phase I 1.4723 4.3309 0 3.5484 5.3681 0

3 Phase I 2.0851 4.3309 0 3.5131 5.3681 0

4 Phase I 2.3224 4.3309 0 4.8416 5.3681 0

5 Phase I 2.6040 4.3309 0 4.8638 5.3681 0

6 Phase I 2.7582 4.3309 0 4.2898 5.3681 0

7 Phase I 2.8424 4.3309 0 4.1213 5.3681 0

8 Phase I 3.0395 4.3309 0 3.5611 5.3681 0

9 Phase I 3.1608 4.3309 0 3.6640 5.3681 0

10 Phase I 3.2400 4.3309 0 4.4031 5.3681 0

11 Phase I 3.2875 4.3309 0 3.4912 5.3681 0

12 Phase I 3.3622 4.3309 0 4.3393 5.3681 0

13 Phase I 3.3487 4.3309 0 3.1377 5.3681 0

14 Phase I 3.4667 4.3309 0 3.8406 5.3681 0

15 Phase I 3.5468 4.3309 0 4.0582 5.3681 0

16 Phase I 3.5445 4.3309 0 3.9459 5.3681 0

17 Phase I 3.7963 4.3309 0 3.2276 5.3681 0

18 Phase I 3.7679 4.3309 0 5.0247 5.3681 0

19 Phase I 3.7366 4.3309 0 4.3252 5.3681 0

20 Phase I 3.8253 4.3309 0 4.6634 5.3681 0

21 Phase I 3.9060 4.3309 0 3.3422 5.3681 0

22 Phase I 3.8549 4.3309 0 3.5624 5.3681 0

23 Phase I 3.7873 4.3309 0 3.6537 5.3681 0

24 Phase I 3.7462 4.3309 0 3.3803 5.3681 0

25 Phase I 3.6215 4.3309 0 3.6562 5.3681 0

26 Phase I 3.5263 4.3309 0 3.8468 5.3681 0

27 Phase I 3.7080 4.3309 0 3.8858 5.3681 0

28 Phase I 3.7837 4.3309 0 3.9581 5.3681 0

29 Phase I 3.7975 4.3309 0 3.4737 5.3681 0

30 Phase I 3.9149 4.3309 0 3.4326 5.3681 0

31 Phase II 3.8868 4.3309 0 3.5970 5.3681 0

32 Phase II 3.8659 4.3309 0 3.3344 5.3681 0

33 Phase II 3.7842 4.3309 0 3.3788 5.3681 0

34 Phase II 3.7226 4.3309 0 3.5064 5.3681 0

35 Phase II 3.6624 4.3309 0 3.0590 5.3681 0

36 Phase II 3.6668 4.3309 0 3.6089 5.3681 0

37 Phase II 3.7162 4.3309 0 5.6047 5.3681 1

38 Phase II 3.7841 4.3309 0 6.3014 5.3681 1

39 Phase II 4.3023 4.3309 0 6.8634 5.3681 1

40 Phase II 4.8939 4.3309 7.4433 5.3681 1

41 Phase II 5.4813 4.3309 1 7.9585 5.3681 1

42 Phase II 6.0585 4.3309 1 8.4963 5.3681 1

43 Phase II 6.6211 4.3309 1 9.0114 5.3681 1

44 Phase II 7.1640 4.3309 1 9.4912 5.3681 1

45 Phase II 7.6870 4.3309 1 9.9170 5.3681 1
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