
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10222  | https://doi.org/10.1038/s41598-024-60579-5

www.nature.com/scientificreports

Multi‑attention fusion transformer 
for single‑image super‑resolution
Guanxing Li , Zhaotong Cui , Meng Li , Yu Han  & Tianping Li *

Recently, Transformer‑based methods have gained prominence in image super‑resolution (SR) 
tasks, addressing the challenge of long‑range dependence through the incorporation of cross‑
layer connectivity and local attention mechanisms. However, the analysis of these networks using 
local attribution maps has revealed significant limitations in leveraging the spatial extent of input 
information. To unlock the inherent potential of Transformer in image SR, we propose the Multi‑
Attention Fusion Transformer (MAFT), a novel model designed to integrate multiple attention 
mechanisms with the objective of expanding the number and range of pixels activated during image 
reconstruction. This integration enhances the effective utilization of input information space. At the 
core of our model lies the Multi‑attention Adaptive Integration Groups, which facilitate the transition 
from dense local attention to sparse global attention through the introduction of Local Attention 
Aggregation and Global Attention Aggregation blocks with alternating connections, effectively 
broadening the network’s receptive field. The effectiveness of our proposed algorithm has been 
validated through comprehensive quantitative and qualitative evaluation experiments conducted 
on benchmark datasets. Compared to state‑of‑the‑art methods (e.g. HAT), the proposed MAFT 
achieves 0.09 dB gains on Urban100 dataset for × 4 SR task while containing 32.55% and 38.01% fewer 
parameters and FLOPs, respectively.
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The Single-Image Super-Resolution (SISR) aims to reconstruct a corresponding High-Resolution (HR) image 
using a Low-Resolution (LR) image. Early SR methods such as interpolation-based  methods1, patch-based 
 methods2, statistical-based  methods3,4, and edge-based  methods5 suffer from drawbacks like artifacts and miss-
ing texture details due to their lack of learning  ability6. Notably, CNN-based models like  SRCNN7,  FSRCNN8, 
 VDSR9,  EDSR10,  DRRN11,  SRResNet12, and  RCN13, can learn generalizable priors from the large dataset, and 
thus obtain reconstruction performance well above that of traditional methods. However, most CNN-based SR 
models resort to using small convolution kernels (e.g., 3 × 3), which limits the aggregation of input features and 
challenges the ability to provide extensive prior information for reconstruction tasks.

In recent years, the Transformer, which is based on attention mechanisms, has demonstrated effectiveness 
in capturing long-range dependencies and spatial correlations. As a result, it has gained widespread application 
in various computer vision tasks, including image classification, object detection, semantic segmentation, and 
super-resolution reconstruction. Nonetheless, the computational complexity of Transformer networks increases 
quadratically with the image size, resulting in a substantial computational burden when directly applied to image 
processing tasks. To address this issue, several models, including  Twins14,  SwinT15,  Maxvit16, and  CswinT17, have 
been developed to confine self-attention computations to the local windows. For example,  SwinIR18, a modified 
version of Swin  Transformer15, utilizes shifted windows to facilitate cross-regional interaction modeling, thereby 
mitigating the challenges associated with local distances and long-term spatial relationships.  ELAN19 simplifies 
the architecture of SwinIR by using different window sizes and computing self-attention in larger windows to 
enhance the long-range modeling capability of the Transformer.  NAT20 utilizes a simple sliding-window based 
Neighborhood Attention, localizes self-attention to the nearest neighbors around each token to enjoy a fixed 
attention span. CAT 21 modifies the shape of the local windows and introduces rectangular window attention to 
achieve better reconstruction performance.

The Transformer-based networks described above achieved better performance than CNNs by modifying the 
local window. However, these networks are still limited by the local windows when performing the reconstruction 
task. To analyze pixel utilization differences among various network types during the reconstruction, we examine 
CNN-based SR networks, including  EDSR10,  RCAN13, and  SAN22, as well as transformer-based networks such 
as  SwinIR18 and  ELAN19, using Local Attribution Maps  (LAM23). The results are presented in Fig. 1. LAM is an 
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attribution analysis method based on integrated gradients. It reflects which pixels in the input image contribute 
more to the reconstruction task. These pixels contain rich reconstruction information and are labelled as red dots 
on the image. By observing Fig. 1, it is evident that the number of highly contributing pixels labelled red in the 
LAM corresponding to SAN is significantly greater than that of EDSR and RCAN. And the quality of the image 
reconstructed with SAN is superior to that of the other two methods. This aligns with the general rule that higher 
pixel information results in better image reconstruction quality. However, when comparing the CNN-based SAN 
and Transformer-based SwinIR using the same strategy, we find that SwinIR utilizes significantly fewer pixels 
than SAN during the reconstruction, but the metrics (PSNR and SSIM) of the images reconstructed by SwinIR 
exceed those of SAN. This apparent contradiction to the general rule is actually due to the fact that Transformer-
based models have more powerful mapping capabilities. They can complete the reconstruction task using less 
information. However, the Transformer-based network heavily relies on its powerful feature-mapping capability 
and utilizes a limited range of informative pixels for the reconstruction task. As a result, this often leads to the 
network incorrectly recovering texture details. For instance, when reconstructing the region highlighted by the 
red box in Fig. 1 using SwinIR and SAN, the former produced textures with noticeable errors compared to the 
HR image. In contrast, SAN can utilize more informative pixels and create texture similar to the HR image. This 
indicates that Transformer requires not only strong mapping capabilities, but also extensive pixel information 
to accurately reconstruct the details. Furthermore, upon observing the LAM results of SwinIR and ELAN, it is 
evident that ELAN activates a greater number of pixels than SwinIR during the reconstruction task. As a result, 
the quality of the reconstructed images produced by ELAN is superior to that of SwinIR. This demonstrates that 
enhancing the Transformer network’s capability to activate pixels equally contributes to acquiring higher-quality 
reconstructed images.

Based on the above analyses, this paper aims to enhance the Transformer’s ability to utilize input information, 
activate a wider range of pixels for image reconstruction, and improve network performance while ensuring 
accurate and reliable texture detail in the reconstructed image. Specifically, we propose a new Transformer net-
work, named Multi-Attention Fusion Transformer (MAFT), for image super-resolution reconstruction tasks. In 
MAFT, we design a new attention module, Global Pixel Hybrid Attention (GPHA) module, which is inspired by 
Pixel Shuffle. By employing the shuffle operation in the global space, GPHA facilitates the spatial reorganization 
of global pixels within the feature map and enhances the connectivity among individual local windows. This 
approach broadens the scope of pixels utilized by the network, thereby increasing its overall effectiveness. To 
reduce computational load, GPHA adopts a method similar  to24, shifting attention calculation from spatial to 
channel dimensions. Considering the limitations of GPHA in high-frequency feature extraction, we design the 
High-frequency Feature Enhanced (HFE) module. HFE extracts edge features with high-frequency information 
by introducing commonly used gradient operators in target detection tasks. The additional gradient operators 
are combined into a single deep convolution through the re-param  operation25. This improves the network’s 
performance without adding any computational cost. We replace the traditional Feed-Forward Network (FFN) 
with HFE, connected it separately to GPHA and Window-based Self-Attention (W-MSA), resulting in the Global 
Transformer Branch and Local Transformer Branch. To further enhance the ability of the Transformer network 
to utilize pixels, we have re-analyzed the LAM results presented in Fig. 1. Compared to RCNA and SAN, the 
EDSR network activates significantly fewer pixels in number and range. We consider that this is related to the 
channel attention that has been used in RCAN and SAN. Meanwhile, previous  works26–29, have demonstrated 
that combining Transformer with CNN networks can significantly enhance network performance. Therefore, in 
MAFT, we introduce two CNN-based attention branches connected in parallel with the Transformer branches, 
which are Global CNN Attention Branch (GCAB) and Local CNN Attention Branch (LCAB). GCAB expands 
the receptive field of the network and activates a wider range of pixels by assigning different weights to each 
channel of the input feature, similar to channel attention. LCAB is responsible for extracting high-frequency 
information from input features to compensate for the Transformer branch’s shortcomings in high-frequency 
feature extraction, resulting in improved visual performance.

Figure 1.  The results of the local attribution map (LAM) analysis for the CNN-based networks and 
transformer-based networks.
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This paper’s main contributions can be summarized as follows:

(1) We propose a new attention module, Global Pixel Hybrid Attention (GPHA), to spatially reorganize global 
pixel information in the feature map using the Shuffle operation, which effectively enhances the information 
interaction between different windows.

(2) A High-frequency Feature Enhanced (HFE) module is designed to address the limitations of GPHA in 
high-frequency feature extraction. HFE enhances the network’s high-frequency feature extraction capability 
without adding computational cost.

(3) We combine Transformers with CNN-based attention branches in parallel to design a new SR model called 
Multi-Attention Fusion Transformer (MAFT). Extensive experiments on multiple datasets demonstrate 
that the proposed method MAFT could achieve comparable performance to the current state-of-the-art 
SR methods while using fewer parameters.

Related work
In this section, we will briefly review related work, focusing on image super-resolution reconstruction technolo-
gies based on CNN, attention mechanisms, and the Transformer.

SISR based on CNN
The richness of detailed information that can be obtained from an image is determined by its clarity, which in 
turn depends on the resolution. HR images typically contain significantly more detailed information compared 
to LR images. However, in practice, it is challenging to acquire HR images with the required texture details 
directly from natural sources. This challenge is closely associated with factors such as the image acquisition 
resolution of the camera, the size and type of the sensor, and the presence of noise during image  processing30. LR 
images captured under the influence of various interference factors not only affect the visual sensory experience 
of individuals but also pose significant obstacles to tasks in computer vision, such as target classification and 
recognition. Consequently, enhancing image resolution has emerged as a critical objective within the discipline 
of image processing.

Due to the considerable cost investment required to improve the resolution of acquired images by enhanc-
ing the hardware performance of the image acquisition device. The production process significantly limits the 
feasibility of the hardware-based approach. Therefore, researchers have turned to software-based techniques as 
a more practical solution for increasing image resolution.

Single-image super-resolution reconstruction is a fundamental task in low-level vision, involving the recovery 
of a high-resolution image based on a given low-resolution image. CNN-based approaches have proven highly 
successful in single-image super-resolution reconstruction, thanks to their effective end-to-end feature repre-
sentation capabilities. The initial CNN-based method introduced in this domain was  SRCNN7, which utilized a 
three-layer convolutional network to achieve image reconstruction. Despite its shallow network depth, SRCNN’s 
reconstruction quality surpassed that of traditional super-resolution methods such as bilinear  interpolation31. 
Subsequent to SRCNN, an enhanced model known as  FSRCNN8 was developed, significantly enhancing recon-
struction speed and quality. This paved the way for widespread adoption of CNN-based techniques for image 
super-resolution reconstruction.  VDSR9 pioneered the use of a 20-layer CNN for feature extraction, followed by 
 EDSR10, which employed a deeper and broader CNN architecture with over 60 layers to extract richer and more 
detailed image features.  RDN32 and  RCAN13 further pushed the boundaries by utilizing CNN networks with 
over 100 and 400 layers, respectively, to perform super-resolution reconstruction tasks more effectively. Notably, 
increasing the number of CNN layers in the super-resolution task can substantially enhance model performance. 
However, as the network depth increases, so does the computational burden of the parameters, making model 
training more challenging. In response, Wang et al.33 proposed a lightweight and efficient super-resolution 
method, SMSR, to enhance real-time performance and enable integration into intelligent mobile devices. The 
success of CNNs in this context can be largely attributed to their inductive bias, allowing for more efficient and 
faster convergence through the exploitation of local attributes and weight sharing.

SISR based on attention mechanism
The introduction of the attention mechanism has been effective in addressing the limitations of limited and 
fixed receptive fields in CNNs, particularly in long-distance dependent scenarios. For instance, Bengio et al.34 
proposed an attention mechanism embedded in recurrent neural networks to explicitly establish a global depend-
ency model over long distances by learning permutation and translation relationships between input and output 
sequences. The attention mechanism in neural networks can be viewed as a form of weighted average, and it 
encompasses primary attention mechanisms such as channel attention and spatial attention. For example, Hu 
et al.35 developed the SE network as a form of channel attention, while the CBAM method by Woo et al.36 inte-
grates spatial attention and channel attention. Subsequently, various attention-based methods have emerged in 
image super-resolution reconstruction. For instance, Zhang et al.13 introduced the residual channel attention 
network (RCAN), which utilizes the attention module within the residual block to differentiate the features of 
different channels. Additionally, Dai et al.22 proposed the second-order channel attention module SOCAM and 
the second-order attention network (SAN) to address higher-order image features, building upon the first-order 
image feature approach of the SEnet by Hu. Moreover, Wei et al.37 identified varying reconstruction difficulties 
for different components (plane, edge, and diagonal) of the L1 loss function of EDSR, leading to the design of 
HGSR. Niu et al.38 modified the RCAN network to create the HAN network, which aggregates the output features 
of each residual block in the RCAN through layer attention blocks, in addition to adding an extra channel atten-
tion module at the end of each residual block. Furthermore, Qiao et al.39 proposed a Fourier domain attentional 
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convolutional neural network and a Fourier domain attentional generative adversarial network model to investi-
gate the characteristics of several image super-resolution reconstruction networks in the domain of microscopic 
image super-resolution, particularly with regard to video memory migration.

SISR based on transformer
The introduction of the attention mechanism in the Sequence to Sequence model has significantly enhanced the 
reconstruction performance of the model. However, this improvement has been accompanied by a substantial 
increase in the difficulty of cross-sample parallel training, primarily due to memory limitations, leading to a 
considerable extension in the training time. To address this issue, the Transformer model, which consists of 
pure attention, was proposed and implemented in the field of machine translation. The versatile nature of the 
Transformer facilitates parallel training, thereby expediting the training process. Consequently, the Transformer 
has garnered increasing interest in the realm of Natural Language Processing (NLP), owing to its robust feature 
expression capability and structural diversity.

Some researchers, inspired by the field of NLP, have extended the Transformer model to the realm of computer 
vision. The pioneering work of  DETR40 involved using a CNN backbone to extract features and implementing the 
Transformer structure to address target detection challenges. Subsequently, Dosovitskiy et al.41 applied the entire 
Transformer model to image classification, which resulted in an exceptional performance. This landmark devel-
opment led to the emergence of various Transformer-based models that have dominated computer vision tasks 
like image super-resolution, classification, object detection, and semantic segmentation. Among these models, 
TTSR, developed by Fuzhi Yang et al.42, stands out as one of the earliest networks to leverage the Transformer 
architecture for image generation. Notably, TTSR facilitates the precise transfer of texture details from reference 
images to HR images through the integration of a texture converter with four closely linked modules. Moreover, 
subsequent to mastering the Swin Transformer, Liang et al.18 introduced SwinIR, a model specifically designed 
for image super-resolution reconstruction. SwinIR’s shifted-window approach allows for the processing of large 
images without the need for patch division, thus enabling the network to restore high-frequency details, reduce 
blurring artifacts, and achieve significant reductions in computational costs.

Methods
In this section, we will detail the Multi-Attention Fusion Transformer, referred to as the MAFT. We will first 
introduce the overall architecture of the MAFT, followed by the key modules Global Attention Aggregation 
(GAA) and Local Attention Aggregation (LAA) modules, respectively. We then give a detailed description of 
the different parts in the two modules.

Multi‑attention fusion transformer
The overall architecture of the proposed MAFT is illustrated in Fig. 2. The network comprises three main com-
ponents: shallow feature extraction, deep feature extraction, and image reconstruction. Given a low-resolution 
image ILR ∈ R

H×W×Cin , where H , W and Cin represent the height, width and channels of the input image, respec-
tively. ILR first goes through a shallow feature extraction section, which initially extracts low-level image features 
in LR images and maps them into higher dimensions to obtain coarse features F0 ∈ R

H×W×C . This process can 
be represented by the following equation:

Figure 2.  The overall structure diagram of the designed Multi-Attention Fusion Transformer (MAFT) and the 
Multi-attention Adaptive Integration Group (MAIG). MAFT uses single-layer convolution for shallow feature 
extraction, uses multiple cascaded MAIGs to explore in-depth features, and uses the strategy of pixel shuffle to 
upsample the fused features to obtain high-resolution images.
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where C denotes the channels of the intermediate features and C ≫ Cin . HSF(·) represents shallow feature extrac-
tion module and we use a 3× 3 convolution layer to achieve this function. By employing a simple convolution, 
low-level features such as edges, textures and fine-grained details can be effectively preserved, and ensures the 
high-dimensional embedding of each pixel label.

Next, the extracted shallow feature F0 will be fed into the deep feature extraction block to further obtain depth 
features FDF ∈ R

H×W×C . This process can be described by the following equation:

where HDFMAIG (·) represents the deep feature extraction module composed of N Multi-attention Adaptive Inte-
gration Groups (MAIGs) and a 3× 3 convolution layer. As shown in Fig. 2, each MAIG consists of M sets of 
Alternating Fused Global Pixel Activation (AFGPA) modules and a 3× 3 convolution. A residual structure is 
employed to stabilize the training process. The intermediate processing can be expressed as follows:

where Hconv3×3(·) represents a single-layer 3× 3 convolution which could better aggregate the in-depth feature 
information. Fi represents the output features of i′th MAIG module, and HAFGPAM (·) represents the M stacked 
AFGPA modules. After successfully obtaining the depth feature FDF , a global residual connection is used to 
combine the shallow and deep features. Subsequently, the reconstruction module reconstructs the SR image as 
the following formula:

where ISR represents the SR image obtained after reconstruction, and HRe(·) represents the lightweight upsam-
pling layer consisting of 3× 3 convolution and sub-pixel convolution layer.

Alternating Fused Global Pixel Activation
The tremendous success of the Transformer in NLP can be attributed to its strategy of capturing contextual 
information by focusing on both distant and nearby tokens. However, the resulting vast quadratic computa-
tional complexity presents a major obstacle to its application in high-resolution image processing. SwinIR has 
sought to address this challenge by attempting to balance the dependence between short-term and long-term 
spatial information through the introduction of shifted windows, enabling the modeling of interactions across 
different regions. Nevertheless, the limited receptive field of local windows still greatly constrains the ability to 
capture distant information. The analysis of the local attribution map in introduction reveals that the shifted 
windows like those in SwinIR can cover only a small neighborhood around each window, the distribution of 
activated pixels remains dense. In contrast, the analysis of RCAN and SAN, which achieved a higher diffusion 
index in LAM, both demonstrates their ability to activate a more wider range of pixel values due to the intro-
duction of channel attention in the network structure, involving the incorporation of global information in the 
computation process. Furthermore, the incorporation of convolution has been demonstrated to provides strong 
visual performance in many Transformer-based super-resolution models, adding significant value to network 
optimization (e.g.26–29, etc.).

After evaluating the network’s performance and computational cost, we present the GAA and LAA modules 
to improve the balance between local features and global information, increase the number and distribution 
range of activated pixels, and ultimately improve the reconstruction performance of the network. The AFGPA 
module is formed by interconnecting these two modules alternately and employing a residual structure to 
enhance training stability. These two modules are shown in Fig. 3. Next, we will describe the GAA and LAA 
modules separately in detail.

Global attention aggregation module
The architecture of the GAA module comprises two parallel branches, as illustrated in Fig. 3b. Taking the input 
feature FGI ∈ R

H×W×C as an example, when the GAA receives this feature, it is first compressed by two 1× 1 
convolutions. This process can be expressed as follows:

where FGTI ∈ R
H×W× C

2 and FGCI ∈ R
H×W× C

2 denote the input features of the Transformer branch and the CNN 
branch, respectively. Hconv1×1(·) represents a 1× 1 convolution layer. By utilizing these two separate convolutions, 
the network can reduce the number of channels for intermediate feature mapping and consequently decrease the 
overall number of parameters. This reduction enhances both the training and inference efficiency of the network. 
FGTI and FGCI are then fed into the Global Transformer Branch and Global CNN Attention Branch respectively. 
The Global Transformer Branch leverages designed GPHA and HFE modules to extend attention computation 
to a global scale, enabling global dependency modeling. This enhances the network’s ability to utilize more spa-
tial distance information from LR images. The Global CNN Attention Branch improves the network’s receptive 

(1)F0 = HSF(ILR)

(2)FDF = HDFMAIG (F0)

(3)Fi = Hconv3×3

(
HAFGPAM (Fi−1)

)
+ Fi−1i = 1, 2, . . . ,N

(4)FDF = Hconv3×3(FN )

(5)ISR = HRe(F0 + FDF)

(6)FGTI = Hconv1×1(FGI)

(7)FGCI = Hconv1×1(FGI)
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field by generating channel-spatial attention maps, providing individual attention coefficients for each pixel. 
This ensures a wider range of pixel utilization by the network. Additionally, we introduce a Transformer-CNN 
Feature Fusion (T-CFF) module to merge the output features of two parallel branches. This approach prevents 
conflicts in visual optimization between the Transformer and CNN, while also utilizing the complementary 
strengths of both branches.

Global transformer branch
In the Global Transformer branch, FGTI first passes through the Layer Normalization layer to make feature dis-
tribution stable for attention training. Subsequently, we input the normalized features into the attention module 
GPHA. Besides, the query vector QG generated by the Global Query Generator (GQG)  module43, which contains 
the global contextual information, is also inputted into GPHA at the same time and participates in the computa-
tion of the global attention. To overcome the limitations of GPHA in extracting high frequency information, we 
develop the HFE module as a replacement for the conventional feed-forward network. In addition, we introduce 
the residual structure to avoid the effect of gradient explosion or gradient vanishing on network training. The 
introduction of residuals also allows deep features to retain more low-frequency information from shallow layers. 
The calculation process of the Global Transformer Branch is as follows:

where FGPHA and FGTO denote the depth global features output by the GPHA module and the final output features 
of the Global Transformer branch, respectively, HGPHA(·) and HHFE(·) represent the GPHA and HFE modules 
we designed, respectively. Detailed explanations will be provided in subsequent chapters.

Global pixel hybrid attention
Before formally introducing the GPHA module designed by us, we first analyze the standard self-attention 
computation process. Take input feature FI ∈ R

H×W×C as an example, where H , W and C denote the height, 
width and channels of the input feature respectively. FI is first expanded by the one-dimensional into X ∈ R

N×C , 
where N = H ×W . Next, matrices WQ , WK , and WV respectively map X to three matrices: query Q ∈ R

N×D , 
key K ∈ R

N×D , and value V ∈ R
N×D , where D represent the number of channels. In general, D ≫ C . The 

increase in channel dimension allows the network to capture richer feature information, but also increases the 
computational cost during training and inference. Next, the network performs a processing transformation on 
the query Q and the key K to obtain an attention graph containing all the input relevance information, which 
is used in a weighted sum of value V  to finally obtain the attention output. The complete attention computation 
process can be formulated as follows:

where φ(Q,K) represents the attention map that includes relevant information, which is typically obtained by 
applying the dot-product attention calculation to Q and K , and processing the similarity matrix using the softmax 
function. The attention calculation formula at this point is as follow:

(8)FGPHA = HGPHA(LN(FGTI ),QG)

(9)FGTO = HHFE(LN(FGPHA + FGTI ))+ FGPHA

(10)Q = XWQ,K = XWK ,V = XWV

(11)Attention(Q,K ,V) = φ(Q,K)V

Figure 3.  (a) The structure of the Local Attention Aggregation (LAA) module. (b) The structure of the Global 
Attention Aggregation (GAA) module.
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Currently, standard self-attention has a computational complexity of O(N2D + ND2) . Since N ≫ D , it can be 
approximated that the computational cost grows quadratically with the input resolution. Obviously, the computa-
tional cost of computing attention directly on the input image is enormous, so strategies such as W-MSA attempts 
to confine the computation of attention to a localized window. Specifically, the input features are divided into 
HW
M2  non-overlapping local windows of size M ×M , and the computation of attention is performed individually 
within each local window. This processing greatly reduces the computational cost, but also limits the ability of 
the network to model long-range pixel dependencies. Although SwinIR tries to improve the connection between 
different local windows by introducing shifted windows, it can be seen from the previous LAM analysis that this 
shifted window strategy still makes it difficult to use the pixel information in a wider range, and the reconstructed 
image is still prone to errors in texture details.

To enhance the network’s capability in utilizing spatial range information from input images, broaden the 
range of activated pixels during the reconstruction task, and minimize computation costs, we propose the GPHA, 
which is illustrated in Fig. 4. For clarity, Fig. 4 displays the processing of input features on a single channel.

When the GPHA module receives the input feature FGTI ∈ R
H×W× C

2  , the network first uses the Global 
Query Generator  module43 to extract the query vector which contains the global context information in the 
global perspective. The structure of this module is shown in Fig. 5. The GQG consists of K ( K = log2

H
M ) Fused 

MBConv and K Average Pooling alternately connected. Each Fused MBConv contains a 3× 3 convolution, GELU 
activation function, squeeze excitation module, 1× 1 convolution, and residual structure. Fused MBConv can 
extract desirable properties such as inductive bias and modeling of inter-channel dependencies. Average Pooling 
makes sure that the global features extracted end up being the same size as the local window. After reshaping the 
extracted global features, a 1× 1 convolution is required to expand their channel number from C2  to D to match 
the dimensions of the subsequent extracted global keys and values. The complete process of extracting the global 
query QG can be represented by the following formulas:

where xi represents the output after processing by the ith Fused MBConv and Average Pooling, GELU(·) rep-
resents the Gaussian Error Linear Units, SE(·) represents the squeeze excitation module, RS(·) represents the 
Reshape processing. Note that in the MAFT network we designed, the GTG module only needs to participate in 
the computation in the first AFGPA module in each MAIG, and the generated global query tokens can be directly 
applied to the other AFGPA modules in the current MAIG, which is advantageous for saving computational 
costs. This is one of the important reasons why we use GQG to generate the global query.

(12)Attention(Q,K ,V) = softmax(
QKT

√
D

)V

(13)xi = AvgPool
(
Hconv1×1

(
SE

(
GELU

(
Hconv3×3(xi−1)

)))
+xi−1

)
i = 1, 2, 3 . . .K

(14)QG = Hconv1×1(RS(xK ))

Figure 4.  The schematic diagram of the global pixel hybrid attention (GPHA).

Figure 5.  The structure of the global query generator (GQG) module.
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To further expand the pixel activation range, inspired by the Pixel Shuffle operation, we consider HW
M2

 non-over-
lapping local windows with size M ×M as the input features, which have the dimension with M ×M × HW

M2
C
2  . 

By applying spatial shuffle to these windows, we spatially reorganize the global pixel information of feature maps, 
enhancing the connections between the individual local windows. Next, we re-divide the shuffled feature map 
into non-overlapping local windows of size M ×M . Each local window now contains abundant global pixel 
information. Following the standard self-attention approach, we calculate global key matrix KG ∈ R

N×D and 
value matrix VG ∈ R

N×D within each local window.
When computing the attention graph, GPHA does not use the approach in Eq. (12). On the one hand, per-

forming the dot product computation directly on the query and key matrices in the spatial dimension would 
add O(N2D) computational complexity and increase the training burden for the network. On the other hand, 
the softmax function assigns non-zero attention weights to all given context elements based on the relevance 
information obtained from the dot product, even if some of these elements are irrelevant to the query or contain 
noise. This dense attention mechanism drags down the network reconstruction performance while increasing 
the amount of redundant computation. And in our proposed GPHA, due to the global pixel mixing strategy, 
this detrimental effect will be more significant. Inspired  by24, we shift the computation of the attention map to 
the channel dimensions to obtain global dependencies. Specifically, we perform the transpose operation on the 
extracted global query QG to obtain QT

G ∈ R
D×N . We then perform normalization operations on each channel 

of the transposed global query and global key, respectively, which can be expressed as follows:

where QTi
G  and Ki

G represent the ith row of QT and ith column of K  , respectively. Q̂Ti
G  represents the results of 

QTi
G  normalzation, while K̂ i

G represents the results of Ki
G normalization. � · �1 stands for �1 normalization. This 

normalization strategy, which is an effective alternative to the softmax function, ensures the normalization of 
attention. After obtaining the normalized transposed query matrix Q̂T

G and the normalized key matrix K̂G , we 
calculate the dot product between the them to obtain the attention graph with similarity information, and the 
formula is as follow:

The computational complexity of the attention mechanism has changed from O(N2D) to O(ND2) . Consider-
ing D ≪ N , this significantly reduces the computational cost and improves the reconstruction efficiency of the 
network. However the attention map generated using the normalized dot product operation still assigns non-zero 
weights to all contextual elements, and in some cases the weights of certain elements may become negative due 
to significant differences between the query and key vectors. To eliminate the influence of irrelevant elements 
on the attention map, inspired by sparse attention, we introduce a ReLU  activation after the dot product. ReLU 
retains only the positive correlations and sets the weights of irrelevant or noisy elements to zero. In this way, 
we obtain a sparse attention map to ensure that the model focuses on processing highly correlated elements. In 
addition, to ensure stability during network training, we multiply a learnable scaling parameter 1

ρ
 before the ReLU 

function to adaptively adjust the value of the attention graph. The full GPHA attention formula is shown below:

High‑frequency feature enhanced module
Our proposed GPHA is a sparse attention mechanism that primarily focuses on low-frequency information 
at a global scale, while neglecting high-frequency information such as sharp edges required for image texture 
reconstruction. To address this issue, we introduce the parallel CNN branches in the network, which will be 
better at capturing local high-frequency information. Additionally, we integrate the edge detection operator into 
the vanilla FFN to enhance the ability of the Transformer branch in extracting high-frequency information. We 
named the modified FFN as High-frequency Feature Enhanced module. Inspired  by25, we simplified the parallel 
high-frequency feature extraction branches during the inference stage by re-parameterizing them into a single 
depth-wise convolution (DwConv) layer. This ensures that HFE does not introduce extra computational com-
plexity. The specific structure of HFE is shown in Fig. 6.

The input features of HFE are processed through a 1× 1 convolution and GELU activation function for dimen-
sion reduction. Subsequently, the reduced features are fed in parallel to three branches for high-frequency infor-
mation extraction, denoted as Fi for each branch. The top branch consists of a 3× 3 DwConv. We use KDwConv 
and BDwConv denote the learnable kernel weights and bias of this DwConv, respectively, use * to represent the 
convolution operation. The feature extraction process can be represented by the following formula:

In the intermediate branch, we incorporate the Scharr filter commonly used for image edge detection. This 
operator, serving as a 1st-order gradient convolution kernel, exhibits strong edge responses, effectively capturing 

(15)Q̂Ti
G =

QTi
G

�QTi
G �1

(16)K̂ i
G =

Ki
G

�Ki
G�1

(17)φ(Q,K) = Q̂T
GK̂G

(18)AttentionGPHA(Q,K, V) =
VG · ReLU(Q̂T

GK̂G)

ρ

(19)FDwConv = KDwConv ∗ Fi + BDwConv
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the high-frequency information required by the network. It contains two 3× 3 convolution kernels, used to 
compute the image gradients in the horizontal and vertical directions, labeled as KSchX and KSchY , respectively. 
After expanding and repeating the two convolutional kernels, we use them to extract gradient information for 
feature extraction. This process can be represented as follows:

where BSchX and BSchY denote the bias of the Scharr filter in the horizontal and vertical directions, respectively. A 
commonly used second-order gradient operator, Laplace filter, is introduced in the bottom branch. Specifically, 
we employed 3× 3 Laplace filters with 4-neighborhood and 8-neighborhood, denoted as KL4 and KL8 , respectively. 
The corresponding biases are labeled as BL4 and BL8 . The process of extracting second-order gradient information 
using Laplace filters can be represented by the following formula:

Finally, we individually weight the features output by these three branches, resulting in high-frequency 
features represented as follows:

where α1 , α2 and α3 are the learnable parameters. Following the method proposed  in25, we re-parameterize the 
three branches, and denote the combined kernel weights and bias as K and B , respectively. These parameters can 
be obtained by the following equation:

The above operation allows the three parallel branches of high-frequency feature extraction to be merged into 
a single DwConv layer, improving the network’s ability to extract high-frequency information without introduc-
ing additional computational complexity. The extracted high frequency features can be represented as follows:

Finally, like traditional FFNs, by passing FHF through the ReLU function and a 1x1 convolution, we will obtain 
the final output of HFE module.

Global CNN attention branch
Previous  research26–29 has shown that combining CNN and Transformer can significantly enhance network per-
formance due to their respective strengths. In GAA, we also introduce a CNN-based Global Attention Branch 
which is parallel to the Global Transformer Branch. This branch helps to expand the receptive field of the network 
by distinguishing between different image patches in each channel and assigning weights to different channels. 
This allows a wider range of pixel information to be activated. The structure of this CNN branch is illustrated 
in Fig. 3b. Given an input feature FGCI ∈ R

H×W× C
2  , the feature is first processed through a global covariance 

(20)FScharr = KSchX ∗ Fi + BSchX + KSchY ∗ Fi + BSchY

(21)FLaplace = KL4 ∗ Fi + BL4 + KL8 ∗ Fi + BL8

(22)FHF = α1FDwConv + α2FScharr + α3FLaplace

(23)K = α1KDwConv + α2(KSchX + KSchY )+ α3(KL4 + KL8)

(24)B = α1BDwConv + α2(BSchX + BSchY )+ α3(BL4 + BL8)

(25)FHF = K ∗ Fi + B

Figure 6.  The structure of the High-frequency Feature Enhanced (HFE) module.
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pooling layer to obtain a 3D tensor FGCP ∈ R
1×1× C

2 , which is rich in inter-channel correlation information. To 
balance network performance and computational complexity while exploring nonlinear interactions between 
channels, we adopt the strategy  in44, input FGCP into a one-dimensional convolution of size k to facilitate informa-
tion exchange between channels. The size of the one-dimensional convolutional kernel is adaptively calculated 
by the following formula:

where γ and b are used to control the degree of cross-channel interaction, typically set as γ = 2 and b = 1 . 
Next, we apply the sigmoid function to the one-dimensional convolution output to obtain a channel attention 
mask that captures inter-channel relationships. By multiplying it with the input feature FGCI and aggregating 
the features through a 3x3 convolution, we obtain an attention map of dimension RH×W× C

2 , where each pixel 
has its own attention coefficient. Finally, we stabilize the training process by connecting the attention map with 
the input feature map FGCI using a residual structure. The attention computation process described above can 
be represented by the following formula:

where GCP(·) denotes the global covariance pooling layer, HConvk (·) and HConv3×3(·) denote the 1D convolution 
with kernel size k and the 2D convolution with kernel size 3× 3 , respectively, σ denotes the sigmoid function, 
⊗ denotes the element-by-element multiplication, and FGCO denotes the output features of the Global CNN 
Attention branch in GAA.

Transformer‑CNN feature fusion module
After extracting output features FGTO from the Transformer branch and output features FGCO from the CNN 
branch, we need to merge these features and the advantages of the two branches will be complementary. In this 
paper, the structure of the T-CFF module we design is shown in Fig. 7.

We first perform concatenation operations between FGTO and FGCO in the channel dimension to get the 
merged feature FTC ∈ R

H×W×C . Subsequently, a 1× 1 convolutional layer is used to fuse features along the 
channel dimension. Finally, two 3× 3 convolutions and a GELU activation function are used to improve the 
network’s ability to extract local neighborhood information. The complete feature fusion process can be repre-
sented by the following formulas:

where HC(·) denote the concatenation operation, FFusion and FGO denote the fusion features and the final output 
features of the GAA module, respectively.

Local attention aggregation module
In LAA, we also adopt the dual parallel branch structure, as shown in Fig. 3a. Similar to the GAA, the input fea-
tures are first compressed by two 1 × 1 convolution before extracting deep features in both the Local Transformer 
branch and the Local CNN Attention branch. In the Local Transformer Branch, we apply the classical W-MSA 
directly to calculate attention in the local windows. We also replace the traditional FFN with the designed HFE 
module which does not introduce additional computational complexity.

In the CNN branch, we integrated the Local CNN Attention Branch to further extract high-frequency infor-
mation from the features. As shown in Fig. 3a, given the input feature FLCI ∈ R

H×W× C
2 , we calculate the average 

(26)k =

∣∣∣∣∣
log2(

C
2 )

γ
+

b

γ

∣∣∣∣∣

(27)FGCO = HConv3×3

[
FGCI ⊗ σ(HConvk (GCP(FGCI )))

]
+ FGCI

(28)FFusion = HConv1×1 [HC(FGTO , FGCO)]

(29)FGO = HConv3×3(GELU(HConv3×3(FFusion)))

Figure 7.  The structure of the transformer-CNN feature fusion (T-CFF) module.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10222  | https://doi.org/10.1038/s41598-024-60579-5

www.nature.com/scientificreports/

within each patch through the average pooling, resulting in a pooled feature map which characterizes the aver-
age strength of each patch. Subsequently, we perform unpooling on the pooled feature map to obtain the low-
frequency feature map which has the same dimension as the input features. To highlight pixels with high values, 
we subtract the low-frequency feature map from the input feature and apply the ReLU activation function. We 
then element-wise multiply the result with the input feature to preserve and enhance high-frequency informa-
tion above the mean, while discarding low-frequency information below the mean. Additionally, we introduce a 
residual structure to stabilize the training process. These operations can be represented by the following formulas:

where HAvg (·) and HUnpool(·) denote the average pooling operation and the unpooling operation, respectively, 
FH and FLCO denote the residual feature maps enriched with high-frequency information and the outputs of the 
Local CNN Attention Branche, respectively. After obtaining the outputs from the Local Transformer branch and 
Local CNN Attention branch separately, they are inputted into T-CFFM for feature fusion following the same 
computational process as Eqs. (28) and (29).

Experiments
In this section, we first introduce the details of datasets, evaluation metrics and implementation details. We 
verified the effectiveness of the modules in the MAFT network through ablation experiments, and finally quan-
titatively and qualitatively compared the reconstruction results of our designed MAFT with the state-of-the-art 
networks on five benchmark datasets.

Datasets and evaluation metrics
We use DF2K, a high-quality dataset formed by  DIV2K45 and  Flickr2K46 datasets, as our training dataset. DF2K 
is widely used in image super-resolution reconstruction, and the LR images are obtained by bicubic degradation 
of the corresponding HR images. We carry out experiments under upscaling factors: × 2, × 3 and × 4 and use five 
commonly available benchmark datasets, including  Set547,  Set1448,  BSD10049,  Urban10050, and  Mangan10951 
as test datasets to compare model performance and generalization ability. All of the above datasets are generic 
and can be accessed at the address given in the cited literature.  PSNR52 and  SSIM53 are used to judge the quality 
of the reconstructed images. We visualize the distribution of activated pixels in the reconstruction task by local 
attribution  map23.

Implementation details
The specific module parameters in the MAFT network are set as follows: The number of MAIG is set to 6 and 
the number of AFGPA modules in each MAIG module is set to 2. Since there are two modules LAA and GAA 
in each AFGPA, the total number of Transformer blocks in MAFT is 24. The number of attention heads in both 
W-MSA and GPHA is set to 6, and the window size is set to 16. The channel number of the whole network is 
set to 180. During the training, a mini-batch consists of eight images of size 64× 64 , randomly cropped from 
the training dataset, and data augmentation is performed by random rotations and horizontal flips of 90◦ , 180◦ 
and 270◦ . The network parameters are optimized by the L1 function. We use ADAM optimizer to optimize the 
network with parameter set as: β1=0.9, β2 = 0.999 , ǫ = 10−8 . The initial learning rate is set to 10−4 and will be 
half at milestones: [250 K,400 K,450 K,475 K]. We implement the model using Pytorch, and all experiments 
were carried out in GTX 3090 GPUs.

Ablation experiment
This section presents several ablation experiments to validate the effects of the various components designed in 
the MAFT on the reconstruction results. For comparison, we design a baseline model A. This baseline model 
replaces all GPHAs in our designed MAFT with W-MSAs and replaces our designed HFEs with the standard 
FFNs, while removing all CNN branches. The baseline network and all subsequent networks in this section share 
the same implementation details (e.g. the same channels and attention heads). They are trained on the DF2K 
dataset and evaluated on the  Urban10050 dataset. Considering the training cost, the number of iterations is set 
to 300 K during the ablation experiments.

Effectiveness of GPHA and HFEM
Table 1 shows the effectiveness of GPHA and HFE. Three additional networks are designed alongside the base-
line model. Keeping the total number of Transformer blocks unchanged, we replaced half of the W-MSAs in the 
baseline model with GPHAs to obtain the model B, which consists of alternately connected W-MSAs and GPHAs. 
Comparing the reconstruction results of model B with the baseline model A on the Urban100 dataset ×4 scale 
factor, it can be observed that the introduction of GPHA improves the PSNR and SSIM of the reconstructed 
images by 0.11 dB and 0.002, respectively. However, the resulting increase in the number of parameters is only 
0.29 M. Since GPHA was originally designed to expand the number and range of pixels activated by the network 
during reconstruction, we analyze the pixel utilization in reconstruction for the baseline model A and model B 
separately using the local attribution map method which can represent the range of the attributed pixels, and 
the results are shown in Fig. 8. It is clear that model B with GPHA has a larger range of utilized pixels compared 
to the baseline model, which is attributed to the global attention strategy used in GPHA.

(30)FH = ReLU[FLCI −HUnpool(HAvg (FLCI ))]

(31)FLCO = FLCI ⊗ FH + FLCI
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By replacing the FFN network in the baseline model with the designed HFE, model C is obtained. Compared 
to the baseline model, the introduction of the HFE results in an improvement of 0.05 dB and 0.0014 in the PSNR 
and SSIM of the reconstructed image, respectively. This demonstrates the effectiveness of HFE in compensating 
for the Transformer’s ability to extract high-frequency information. Additionally, the use of re-parameterization 
ensures that HFE does not impose additional computational complexity during the inference phase. It is worth 
mentioning that the performance improvement achieved by combining HFE with GPHA (model D) is more 
pronounced than that achieved by combining HFE with W-MSA (model C). Using PSNR as an example, when 
comparing models A and C, the introduction of HFE resulted in a performance improvement of 0.05 dB. How-
ever, when comparing models B and D, the introduction of HFE resulted in an improvement of 0.09 dB. This 
suggests that GPHA is more concerned with extracting low-frequency information than W-MSA. Therefore, 
high-frequency feature extraction module is crucial to GPHA.

Effectiveness of CNN branch
To highlight the importance of incorporating CNN branches in the Transformer network, we chose model B in 
Table 1 as a new baseline model to perform ablation experiments on LCAB and GCAB branches, respectively. 
Since both HFE and LCAB aim to address the Transformer branch’s limitations in extracting high-frequency 
features, in order to better demonstrate the effect of LCAB on the Transformer branch separately, we did not 
select model C or D in Table 1 as the new baseline model. The results are presented in Table 2. Models E and F 
obtain better performance than the baseline model by introducing LCAB and GCAB alone, respectively. This 
highlights the enhancement in model performance resulting from the incorporation of CNN branches within the 
Transformer network, underscoring the synergy between the two components. Notably when both LCAB and 
GCAB are integrated into the network akin to the configuration in model MAFT, the resultant model G exhibits 
further improved performance, surpassing the baseline model B by achieving enhancements of 0.18 dB and 0.002, 

Table 1.  Ablation studies on GPHA and HFE, the metrics PSNR and SSIM are calculated on the Urban100 
dataset with a scaling factor of 4. The best and second best results are marked in italics and bold, respectively.

Model Model A Model B Model C Model D

GPHA ×
√

×
√

HFE × ×
√ √

PSNR/SSIM 27.69/0.8331 27.80/0.8351 27.74/0.8345 27.89/0.8359

Parameters(M) 9.58 9.87 9.87 9.87

Figure 8.  The outcomes of LAM analysis for various models.

Table 2.  Ablation studies on LCAB and GCAB, the metrics PSNR and SSIM are calculated on the Urban100 
dataset with a scaling factor of 4. The best and second best results are marked in italics and bold, respectively.

Model Model B Model E Model F Model G Model H

LCAB ×
√

×
√ √

GCAB × ×
√ √ √

HFE × × × ×
√

PSNR/SSIM 27.80/0.8351 27.91/0.8362 27.95/0.8366 27.98/0.8371 28.06/0.8376

Parameters(M) 9.87 13.48 14.65 14.07 14.07
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respectively. This also suggests that both stronger high frequency feature extraction ability and a larger receptive 
field are important for Transformer. To visually observe the effect of the CNN branch on the network’s ability 
to activate pixels, we performed LAM analysis on models E, F, and G, respectively, and the results are shown in 
Fig. 8. The results show that when either LCAB (model E) or GCAB (model F) are introduced individually, the 
activation range of pixels is extended to different extents compared to model B. However, including both LCAB 
and GCAB (model G) activates more pixels and yields superior reconstruction outcomes. We also use the stand-
ard MAFT model as model H. The combination of HFE and LCAB, which both aim to extract high frequency 
information, could result in better reconstruction performance. It is important to note that models E, F and G 
integrate the output features of the Transformer branch with the CNN branch through T-CFFM.

Effectiveness of window size
To explore the effect of different window sizes on the MAFT reconstruction performance, we set the window sizes 
of W-MSA and GPHA to 4, 8 and 16 successively for training and show quantitative results with different window 
sizes for × 4 SR on the five benchmark datasets. The results are shown in Table 3. It is clear that the reconstruction 
performance of MAFT improves as the window size increases. Compared to the network with the 4 × 4 window 
size, the network with the 8 × 8 window size achieves a performance Improvement of 0.08 dB, 0.07 dB, 0.04 dB, 
0.17 dB and 0.23 dB on the five benchmark datasets, while the network performance is further improved by using 
the 16 × 16 window size. The Diffusion Index (DI) is employed to illustrate the pixel range of the input images 
utilized by various models during the reconstruction. A higher DI value signifies a broader range of activated 
pixels within the network. Using 20 random images from the Urban100 dataset as an example, we compare the 
distribution of activated pixels in the reconstruction process with different window sizes. As shown in Table 4, 
increasing the window size leads to a continuous increase in the DI value. This is because a larger window size 
provides the Transformer network with a greater receptive field, thereby enhancing the network’s utilization 
of pixels. After comprehensive consideration, we ultimately set the window size in the standard MAFT to 16.

Comparison experiments
In order to verify the effectiveness of the proposed MAFT, we compare MAFT with 14 advanced SR methods, 
which include:  SRCNN7,  EDSR10,  DBPN54,  RDN32,  RCAN13,  SAN22,  IGNN55,  CSNLN56,  HAN38,  DRLN57, SwinIR 
18,  DLSN58, CAT-A21 and  HAT59. The comparison results are classified into several groups according to the 
upscaling factor.

Quantitative evaluation analyses
Table 5 shows the quantitative comparison results of our MAFT and 14 state-of-the-art SR methods under differ-
ent scale factors. This table shows that our proposed MAFT outperforms other state-of-the-art models on almost 
all benchmark datasets with scale factors. For example, when the × 4 scale factor is taken as an example and PSNR 
is used as the evaluation metrics, compared with CAT-A, the reconstruction performance of MAFT designed 
by us on Set5, Set14, BSD100, Urban100, and Manga109 is improved by 0.03 dB, 0.08 dB, 0.06 dB, 0.19 dB 
and 0.18 dB, respectively. While comparing with HAT, MAFT achieves performance improvements of 0.07 dB, 
0.06 dB, 0.05 dB, 0.11 dB and 0.09 dB on the five baseline datasets. To better demonstrate the superiority of our 
designed MAFT, we also compared the computational complexity of different SR algorithms at ×4 scale factor. 
The results are shown in Table 6. Compared to CAT-A, MAFT has 15.24% decrease in parameters and 28.19% 
decrease in FLOPs. And compared to HAT, MAFT has 32.55% decrease in parameters and 38.01% decrease in 
FLOPs. This is largely attributed to the effectiveness of sparse attention, which allows MAFT to acquire more 
global information by requiring fewer Transformer blocks.

Qualitative evaluation analyses
The qualitative comparison was conducted by implementing visualization operations on the proposed MAFT and 
eight other state-of-the-art (SOTA) methods. Figures 9, 10 and 11 display the visual effects of super-resolution 
reconstruction achieved by different networks on the BSD100, Urban100, and Manga109 datasets, all with a × 4 

Table 3.  Quantitative results of MAFT with different window sizes for × 4 SR. PSNR used as evaluation metric. 
The best and second best results are marked in italics and bold, respectively.

Window size Set5 Set14 BSD100 Urban100 Manga109

(4, 4) 32.94 29.14 27.94 27.65 32.24

(8, 8) 33.02 29.21 27.98 27.82 32.47

(16, 16) 33.09 29.29 28.03 28.06 32.55

Table 4.  Comparison of the average diffusion index (DI) among different window sizes.

Window size (4, 4) (8, 8) (16, 16)

DI 20.57 22.03 23.86
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Table 5.  Quantitative results on the SISR benchmark dataset, the best and second best results are annotated in 
italics and bold, respectively.

Method Scale

Set547 Set1448 BSD10049 Urban10050 Manga10951

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic × 2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339

SRCNN7 × 2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663

EDSR10 × 2 38.11 0.9602 33.92 0.9195 33.32 0.9013 32.93 0.9351 39.10 0.9773

DBPN54 × 2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

RDN32 × 2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

RCAN13 × 2 38.27 0.9614 34.11 0.9216 32.41 0.9026 33.34 0.9384 39.43 0.9786

SAN22 × 2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792

IGNN55 × 2 38.24 0.9613 34.12 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786

CSNLN56 × 2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785

HAN38 × 2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785

DRLN57 × 2 38.27 0.9616 34.28 0.9231 32.44 0.9028 33.37 0.9390 39.58 0.9786

SwinIR18 × 2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797

DLSN58 × 2 38.49 0.9624 34.51 0.9251 32.53 0.9042 33.98 0.9432 39.89 0.9797

CAT-A21 × 2 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805

HAT59 × 2 38.63 0.9630 34.86 0.9274 32.62 0.9053 34.45 0.9466 40.26 0.9809

MAFT (ours) × 2 38.66 0.9632 34.84 0.9278 32.65 0.9051 34.52 0.9478 40.31 0.9816

Bicubic × 3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556

SRCNN7 × 3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117

EDSR10 × 3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476

RDN32 × 3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484

RCAN13 × 3 34.74 0.9299 30.64 0.8481 29.32 0.8111 29.08 0.8702 34.43 0.9484

SAN22 × 3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494

IGNN55 × 3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496

CSNLN56 × 3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502

HAN38 × 3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500

DRLN57 × 3 34.78 0.9303 30.73 0.8488 29.36 0.8117 29.21 0.8722 34.71 0.9509

SwinIR18 × 3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537

DLSN58 × 3 35.02 0.9315 30.90 0.8521 29.47 0.8145 29.77 0.8805 35.20 0.9535

CAT-A21 × 3 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546

HAT59 × 3 35.07 0.9329 31.08 0.8555 29.54 0.8167 30.23 0.8896 35.53 0.9552

MAFT (ours) × 3 35.12 0.9333 31.13 0.8549 29.58 0.8173 30.35 0.8915 35.64 0.9568

Bicubic × 4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866

SRCNN7 × 4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555

EDSR10 × 4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

DBPN54 × 4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RDN32 × 4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

RCAN13 × 4 32.62 0.9001 28.86 0.7888 27.76 0.7435 26.82 0.8087 31.21 0.9172

SAN22 × 4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

IGNN55 × 4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182

CSNLN56 × 4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201

HAN38 × 4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177

DRLN57 × 4 32.63 0.9002 28.94 0.7900 27.83 0.7444 26.98 0.8119 31.54 0.9196

SwinIR18 × 4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260

DLSN58 × 4 32.95 0.9026 29.14 0.7938 27.92 0.7483 27.49 0.8235 32.10 0.9252

CAT-A21 × 4 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285

HAT59 × 4 33.04 0.9056 29.23 0.7973 28.00 0.7517 27.97 0.8368 32.48 0.9292

MAFT (ours) × 4 33.11 0.9061 29.29 0.7978 28.05 0.7520 28.08 0.8376 32.57 0.9297
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scale factor. Notably, the figures illustrate that early super-resolution networks such as EDSR produce images with 
severe blurring artifacts and a loss of the main image structure. Conversely, DRLN, SwinIR and HAT demonstrate 
the ability to recover the main contour structure and restore the texture details of the image to a certain extent. 
Nevertheless, the images reconstructed by these methods still exhibit varying degrees of missing information. 
In contrast, our proposed MAFT stands out by effectively extracting and reconstructing clearer high-frequency 
details and texture edges. The reconstruction information provided by MAFT is richer, resulting in more refer-
ence and accurate reconstructed images.

Conclusion
In this paper, we propose the Multi-Attention Fusion Transformer (MAFT), a new image super-resolution 
reconstruction network based on Transformer. MAFT aims to achieve more satisfactory reconstruction results 
by increasing the pixel utilization of input features during image reconstruction. In MAFT, we design a new 
attention module, Global Pixel Hybrid Attention (GPHA), to spatially reorganize global pixel information in the 
feature map using the Shuffle operation, which effectively enhances the information interaction between different 
windows. To address GPHA’s shortcomings in high-frequency feature extraction capabilities, we design a High-
frequency Feature Enhanced (HFE) module, which improve network reconstruction performance without adding 
computational cost. Additionally, we introduce two CNN-based attention branches connected in parallel with 
the Transformer branches. This Transformer-CNN parallel connection structure enhances network modeling 
capabilities, expands pixel utilization range, and ultimately achieves excellent reconstruction performance by lev-
eraging the complementary strengths of both branches. Extensive experiments on multiple datasets demonstrate 
that the proposed method achieves comparable performance to the current state-of-the-art SR methods while 
using fewer parameters. However, compared to lightweight networks such as ELAN, MAFT is still a large-scale 
network with a significant number of parameters due to its complex structure. Therefore, in future work, we 
will focus on improving the efficiency of MAFT. Furthermore, we will also explore the potential applications of 
MAFT in image restoration areas such as image denoising and image deblurring.

Table 6.  Model complexity comparisons ( × 4). Params (M), FLOPs (G) and PSNR (dB) on Urban100 and 
Manga109 datasets are reported.

Method EDSR RCAN SwinIR CAT-A HAT MAFT

Params (M) 43.09 15.59 11.90 16.60 20.86 14.07

FLOPs (G) 823.34 261.01 215.32 360.67 417.81 258.98

Urban100 26.64 26.82 27.45 27.89 27.97 28.08

Manga109 31.02 31.22 32.03 32.39 32.48 32.57
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Figure 9.  Visual comparison of image SR ( × 4) on BSD100 dataset.

Figure 10.  Visual comparison of image SR ( × 4) on Urban100 dataset.
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