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Relativistic analysis 
of the Michelson‑Gale experimental 
result
Yang‑Ho Choi 

The result of the Michelson‑Gale experiment, which shows fringe shifts by the interference between 
two light beams traversing a rectangular loop in opposite directions, has been nonrelativistically 
analyzed based on the Galilean transformation. We relativistically analyze it via the transformation 
under the constant light speed (TCL) and via the framework of Mansouri and Sexl (MS). The TCL 
provides a coordinate transformation between the isotropic frame and a rotating frame, in which 
the two‑way speed of light is a constant c irrespective of direction on the surface that has the same 
radius of rotation. When using TCL, we assume that the Solar System is isotropic so that the one‑way 
speed of light is c in it. On the contrary, considering its movement, the analysis is carried out without 
the assumption of isotropy based on the MS framework. The analysis results via the TCL and via the 
MS framework correspond to each other and are in agreement with the result of the experiment. It is 
shown that the difference between the travel times of the counter‑propagating light beams, which 
results in the fringe shift, takes place due to the two factors, the anisotropy of the one‑way speed of 
light in inertial frames and the different rotation radii at different latitudes on the Earth surface.

Keywords Michelson-Gale experiment, Coordinate transformation, Standard synchronization, Speed of 
light, Sagnac effect

Michelson had shown a great passion to search for the luminiferous ether. He continued his efforts in the 
Michelson-Gale (MG)  experiment1, more than 35 years after the null result in the famous Michelson-Morley 
(MM)  experiment2, and at last had observed fringe shifts. The MG experiment employed a large rectangular 
loop with a perimeter of about 1.9 km that two light beams traverse in opposite directions. The fringe shift is due 
to the difference between the travel times of the counter-propagating light beams that travel the same distance. 
Though nearly 100 years have passed since then, very few relativistic analyses on the experiment result are found, 
which may indicate the difficulty that the special and general relativity suffers in consistently handling circular 
 motions3–5. It is stated in ref.6 that “an imposing list of more than a thousand books and papers on the subject 
of the velocity of light makes no mention of this experiment.” In ref.6, the travel times of the light beams were 
nonrelativistically analyzed, under the assumption that the speed of light is constant regardless of direction in 
the Solar System. In ref.7, mentioning that the hypothesis of a dragging of the ether is not valid as an explanation 
about the null result, the MG experiment is invoked.

Circular motions can be consistently dealt with by the transformation under the constant light speed (TCL)8, 
which provides a relativistic coordinate transformation between a uniformly rotating frame S̃′ and the isotropic 
frame S . The speed of light is a constant c in the isotropic frame S . The two-way speed of light in S̃′ is c on the 
surface that has the same rotation radius. Circular motion can be considered locally and momentarily inertial. 
Accordingly, a coordinate transformation between S and an inertial frame, which is termed the inertial transfor-
mation, can be derived from the TCL, which shows that it is consistent with the transformation between inertial 
frames. When the standard synchronization is employed in the inertial frame the inertial transformation becomes 
identical to the Lorentz transformation.

The Mansouri-Sexl (MS)  framework9, which presupposes a privileged isotropic frame, can allow us to gen-
erally deal with motions of arbitrary direction. Under the MS framework, circular motions can also be relativ-
istically  approached5,8. We analyze the travel time difference in the MG experiment via TCL and via the MS 
framework. In the analysis based on TCL, the Solar System is assumed to be isotropic so that it is regarded as S 
and then the Earth can be represented as S̃′ . As a matter of fact, it moves in our galaxy, Milky Way, and its frame 
would not be isotropic. Without the assumption of isotropy, the experimental result can be investigated using 
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the MS framework. Introducing the standard synchronization of clocks such that the speed of light appears to 
be isotropic in the Earth and the Solar System, we make the analysis under the unique isotropic frame. These 
analysis results correspond and are in agreement with the result of the experiment. It has been believed that the 
one-way speed of light is constant in inertial frames. However, the anisotropy of the speed of light in inertial 
frames has already been observed empirically in the experiments of the generalized Sagnac  effect10–14. The fringe 
shift in the MG experiment is shown to take place due to the anisotropy of the one-way speed of light in inertial 
frames and the difference in the rotation radii of the two segments, laid at different lines of latitude on the Earth 
surface, of the rectangular loop.

Relativistic coordinate transformations
The MG experimental result is relativistically analyzed under the MS framework and under the TCL. Presup-
posing a preferred frame S, the spacetime of which is isotropic so that the speed of light is c in any direction, the 
MS framework has been derived from fundamental  kinematics9 and the TCL has been developed based on the 
Lorentz  transformation8. In this section, we introduce them.

In MS framework
We represent spacetime coordinate vectors in a complex Euclidean space where time is expressed as an imagi-
nary number. The coordinate vector of the preferred frame  S is denoted as p = [τ , x, y, z]T where T stands for 
the transpose and τ = ict represents imaginary time. An inertial frame Sk is in motion at a constant velocity vk 
relative to S and its coordinate vector is designated as pk = [τk , xk , yk , zk]

T . The symbol βk is used to indicate 
the normalized velocity of vk with respect to c , i.e. βk = vk/c . For a vector q , we denote its normalized vector by 
q̂ and its magnitude by q . For example, β̂k = βk/|βk| and βk = |βk| where | · | designates the Euclidean norm.

The MS formulation includes three coefficients that have to be determined, allowing for the application of 
various synchronizations. We introduce the standard synchronization into Sk and the standard-synchronized 
frame is denoted as Sk· . The coefficients are set according to the special theory of relativity. Then the differential 
coordinate vector of S is transformed into Sk· as

where TL(βk) is the Lorentz transformation matrix,

with,

and I an identity matrix. Since dp = T−1
L (β i)dpi , the transformation from one inertial frame Si· to another Sj· 

is expressed  as5,15.

where,

It is obvious that T−1
L (βk) = TT

L (βk) , which leads to T−1
L (β j , β i) = TT

L (β j , β i).
Proper time (PT) is independent of synchronization schemes and can be obtained in any inertial frame if 

relative velocity is known. We use a subscript ‘ ◦ ’ in PT to distinguish it from the adjusted time (AT) through 
the synchronization of clocks. The PT interval is measured at the same place. From (1) and (4), the PT interval 
of an observer Oj who is at rest in Sj is expressed as dτj◦ = dτi/γji = dτ/γj , which is valid even if i  and j are 
interchanged.

In TCL
An observer Õ′ is located at a radius r′ in a primed rotating frame S̃′ , the coordinate vector of which is repre-
sented as p̃′ = [t ′, r′, ϕ̃′, z′]T in the cylindrical coordinate system where ϕ̃′ indicates an azimuth angle. The 
observer is rotating at an angular velocity ω in the isotropic frame S, the coordinate vector of which is denoted 
by p = [t, r, ϕ, z]T . In TCL, the coordinate transformation between S̃′ and S is given by,

 where γ = (1− β2)−1/2 with β = rω/c . The elapsed time and the radius in the primed are different from 
those in the unprimed. As a result, the angular velocity ω′ as seen in the primed becomes different from ω . It is 
convenient to introduce the primed inertial frame S′ corresponding to S and the unprimed rotating frame S̃ cor-
responding to S̃′ . The coordinate transformations between S and S̃ in the unprimed and between S′ and S̃′ in the 
primed are nonrelativistic Galilean. The azimuth angle ϕ′ in S′ is the same as ϕ in S8. The S̃ rotates at the angular 
velocity ω in S while the S̃′ does at the angular velocity ω′ in S′ , where ω′ and ω are related by ω′ = γ ω8. It should 
be noted that r′ is the radius seen by the observer moving with the tangential speed of r′ω′ in S′.

(1)dpk = TL(βk)dp,

(2)TL(βk) =

[

γk −iγkβ
T
k

iγkβk (γk − 1)β̂kβ̂
T

k + I

]

,

(3)γk = (1− |βk|
2)−1/2,

(4)dpj = TL(β j , β i)dpi ,

(5)TL(β j , β i) = TL(β j)T
−1
L (β i).

(6)t ′ =
t

γ
, r′ = γ r , ϕ̃′ = ϕ − ω t, z′ = z.
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The two-way speed of light is the constant c in  TCL8. In other words, when r′ is fixed, the two-way speed is 
constant regardless of direction in TCL, which is consistent with the result of the MM experiment.

Analysis of the MG experiment result
We investigate the result of the MG experiment with the transformation (6) in Subsection "With TCL", assuming 
that the Solar System is isotropic, and based on the MS framework without the assumption in Subsection "Based 
on the MS framework". Michelson had speculated about an interferometer to measure the Sagnac  effect16 by 
the rotation of the Earth and, together with Gale and Pearson in 1925, carried out the experiment using a large 
rectangular loop. Figure 1 illustrates the closed loop for the MG experiment laid on the surface of the Earth. The 
angular velocity of the Earth is ω as seen in the Solar System. The light source and detector are located at the 
same place P0 . Two light beams emitted from the source at the same time travel along the closed loop in opposite 
directions. We denote by b+ and b− the light beams leaving the source in the horizontal and vertical directions 
respectively. It is assumed that R′

1 = R′
2(= R′) where R′

m is the radius of the Earth seen by an observer at the 
location Pm , m = 1, 2 . The polar angle is αm at Pm and the radius of rotation is written as,

The segments P0P3 and P1P2 have the same length of l′h and α1 and α2 are related by α1 = α2 +�α where 
�α = l′h/R

′ . The azimuthal angles that subtend the arcs P0P1 and P2P3 are equal to �ϕ̃′ . Their lengths are given by.

When the light beams b+ and b− return to the detector, their travel times are different, which brings about 
a fringe shift. The times that are taken for b+ and b− to transverse the segments P0P3 and P1P2 , by symmetry 
between them, are equal and thus the travel time difference results from the others. For convenience, we use L1 
and L2 to represent the segments P0P1 and P3P2 , respectively.

With TCL
The Solar System is assumed to be isotropic. Our Earth and Solar System correspond to S̃′ and S, respectively. 
The angular velocity of S̃ is ω in S while that of S̃′ is ω′(= γ ω) in S′ . If we know the speeds in S̃′ of b± their travel 
times can be calculated. The speed of light is known in S. Using the speed of light in S, we can obtain the speeds 
of b± in S̃′ . If r′ is fixed, so is r and vice versa. Then the squared line element on the surface of a cylinder of radius 
r is written in S as,

Substituting (6) into (9) gives,

The differential interval is independent of dr′ since r′ is fixed. Noting r′ω′ = cγ 2β , (10) is rewritten as,

For light signals, ds reduces to zero, which leads to,

(7)r′m = R′ sin αm.

(8)l′wm = r′m�ϕ̃′, m = 1, 2.

(9)ds2 = −c2dt2 + r2dϕ2 + dz2.

(10)ds2 = −c2(γ dt ′)2 + r′2(dϕ̃′ + ω′dt′)2/γ 2 + dz′2.

(11)ds2 = −(cdt′)2 + 2β r′dϕ̃′(cdt′)+ r′2dϕ̃′
2
/γ 2 + dz′2.

Figure 1.  Closed loop in the MG experiment.
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where dl′ = (r′2dϕ̃′2 + dz′2)1/2 . It can be easily shown from (12) that the two-way speed is the constant c irre-
spective of direction. Suppose that a light beam takes a round trip along a differential dl′ . The sign of dϕ̃′ at one 
path in the round trip is reversed at the other. The round trip time is thus dt′� = 2dl′/c , and the two-way speed 
of light becomes c′� = c . When a light beam traverses L1 or L2 , dz′ is zero and dl′ = r′|dϕ̃′| . The speeds of the 
co-rotating and counter-rotating light beams, which are denoted by c′+ and c′− respectively, are given by,

According to the second equation of (6), r′m and rm , m = 1, 2 , are related by r′m = γmrm with 
γm = (1− β2

m)
−1/2 where βm = rmω/c . From (13), the elapsed times of b± during the travel to the segment L1 

are calculated, respectively as,

and in the case of the travel to L2,

One can also confirm from (14) and (15) that the two-way speed of light is c . For example, 
c′1� = 2 l′w1/( t

′
1+ + t ′1−) = c where c′1� is the two-way speed at L1 . The elapsed times t ′′2± are measured at L2 . 

What we try to attain is the time difference at the detector, which is located at L1 . Therefore the t ′′2± should be 
converted into the times by the clock of the detector, which are written as

where ξ21 = γ2/γ1 . The time intervals t ′′2± at L2 are observed as γ2t ′′2± in S, which correspond to t ′2± when seen by 
the clock of the detector. The difference between the travel times of b± is expressed as,

where t ′± = t ′1± + t ′2±.
The tangential speed at the equator is less than 500 m/s, and β1, β2 << 1 . The fringe shift N is given, to a 

first-order approximation by,

where � is the wavelength of light. For derivation of (18), see the Supplementary Information. The quantity l′w1l
′
h 

corresponds to the area of the rectangular loop. Equation (18) agrees with the result of the MG  experiment1.

Based on the MS framework
In reality, our Solar System moves in the Milky Way and it would be different from the isotropic frame S . Though 
it moves, we can consider that it belongs to an inertial frame during a very short time that the light beams traverse 
the closed loop. We denote the Solar System by Si· , which includes the orbital motion of the Earth. The speed of 
light is c with respect to AT, ti , in Si· . The closed loop in Fig. 1 is divided into an infinite number of differential 
elements. A differential segment dlj , which can be located on the segment L1 or L2 , belongs to an inertial frame 
Sj· . The direction of dlj is defined such that it is the same as the direction of travel of the light beam b+.

From (4), |dpi| = |dpj| . Since Si· and Sj· are standard-synchronized, the time that is taken for a light beam to 
travel a distance dlj is dlj/c and so dτj = idlj . When dpj = [idlj , dl

T
j ]

T , the corresponding differential vector in 
Si· is dpi = [dτi , dl

T
i ]

T . For the light travel, |dpj| = 0 and thus dτ 2i + |dli|
2 = 0 . Equivalently,

The differential vector dpi is related to dpj by dpi = TL(β i , β j)dpj . Equation (19) indicates that dli can be 
obtained if the first row of TL(β i , β j) is known so that dτi is found, even though the rest is unknown. The first 
row of TL(β i , β j) is given by TL(β i , β j)1r = γij[1, −iβT

ij ] where βkl is the normalized velocity of Sk· relative to 
Sl·

5,15. Then dτi is calculated as,

In the travel of b+(b− ), dlj and β ij are in opposite directions at L1(L2 ) and in the same direction at L2(L1 ). Recall 
βm = rmω/c , m = 1, 2 . At L1 , γij = γ1 , where βij = β1 , and βT

ij dlj = ∓dlj for b± respectively. At L2 , βij = β2 , 
γij = γ2 , and βT

ij dlj = ±dlj for b± . The travel distances in Si· of b± at Lm , m = 1, 2 , each are given from (19) and 
(20) by,

(12)cdt′ = β r′dϕ̃′ + dl′,

(13)c′± =
dl′

dt′
=

c

1± β
.

(14)t ′1± =
(1± β1 ) l

′
w1

c
,

(15)t ′′2± =
(1∓ β2 ) l

′
w2

c
.

(16)t ′2± = ξ21t
′′
2±,

(17)� t ′d = t ′+ − t ′− =
2(β1 l

′
w1 − ξ21β2 l

′
w2)

c
,

(18)N =
4l′w1l

′
hω

′ cosα1

�c
,

(19)dli = |dτi|.

(20)dτi = iγij(dlj − βT
ij dlj).

(21a)l1± = (1± β1) γ1l
′
w1,
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and the travel times are tm± = lm±/c . Then the time difference in Si is calculated as,

The time difference at P0 is,

Equation (23) is the same as (17) and is valid regardless of whether the spacetime of Si∙ is actually isotropic 
or not.

The time intervals tm± in the unprimed correspond to t ′m± = tm±/γm in the primed. The speeds of b± at Lm 
are written from tm± = lm±/c and (21a, 21b) as,

Equation (24) is consistent with (13). Virtually L1 and L2 can be considered to belong to certain inertial frames 
during the very short time of the light travel. As shown in (24), the inertial frames are anisotropic, the speed of 
light depending on the propagation direction, which has also been observed in the experiments of the general-
ized Sagnac  effect11–13. The time difference is caused due to two factors. One is the anisotropy of the light speed 
at L1 and L2 each. The other is the difference between the rotation radii of L1 and L2 , which results in different 
tangential speeds. Although the speed of light is anisotropic, there would be no time difference, as can be seen 
from (22), if there were no difference in radius, i.e. r′1 = r′2 . Although the radii are different, no fringe shifts would 
occur if the speed of light were isotropic in inertial frames.

Discussion
To find exact physical quantities, we have to use TL(β j , β i) . However, the absolute velocities β i and β j are 
unknown and we cannot. Disguising the inertial frame Si as isotropic via the standard synchronization and 
then using TL(β ji) instead of TL(β j , β i) , nonetheless, we can exactly obtain some physical quantities such as 
PTs, Doppler shifts, spatial lengths, and speeds with respect to  PT5. It is because the first rows of TL(β j , β i) and 
TL(β ji) are  identical5,15. One can readily see in the analysis of Subsection "Based on the MS framework" that 
even if TL(β ji) is used in place of TL(β j , β i) the same time difference as (22) is obtained. A similar disguise via 
the standard synchronization can be introduced to the TCL as well.

An inertial frame Si· that is in motion with a constant velocity of β i is standard-synchronized. In Fig. 2, a 
circle of radius r is rotating with an angular velocity ω in Si· . The circle is approximated as n line segments so that 
circular motion can be treated as rectilinear motion at each segment. As n tends to infinity, the linearized shape 
becomes a circle. The line segments momentarily belong to inertial frames the speeds of which are all equal to rω . 

(21b)l2± = (1∓ β2)γ2l
′
w2,

(22)�td =

2
∑

m=1

(tm+ − tm−) =
2(β1γ1l

′
w1 − β2γ2l

′
w2)

c
.

(23)�t ′d =
�td

γ1
.

(24)c′m± =
l′wm
t ′m±

=
c

1∓ (−1)mβm
, m = 1, 2.

Figure 2.  Approximation to a circle with line segments.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9956  | https://doi.org/10.1038/s41598-024-60515-7

www.nature.com/scientificreports/

As seen in Si· , an observer Õ is located at a line segment dlj , whose direction varies as the circle rotates. The primed 
observer corresponding to the unprimed Õ is Õ′ , whose coordinate system is also standard-synchronized. In the 
coordinate transformation associated with Õ and Õ′ , as a matter of fact, the observer Õ represents an observer in 
Si· who instantaneously meets Õ′ as the circle rotates. The Õ′ instantaneously moves with the velocity β ji relative 
to the observer in Si· represented by Õ . The rotating frame S̃′ is formed by the collection of the world lines of 
these primed rotating  observers8,17. In other words, the word lines of the primed observers Õ′

jk
 corresponding to 

the unprimed Õjk located at dljk , k = 1, 2, · · · , in Si· constitute S̃′.
Suppose that momentarily Õ′ belongs to an inertial frame Sj· , the velocity of which is β ji in Si· . Then the trans-

formation matrix between Sj· and Si· is TL(β j , β i) , not TL(β ji) . The transformation (6) has been derived based 
on the Lorentz transformation for Õ and Õ′ . As mentioned above, even if TL(β ji) is employed we can find exact 
PTs and exact spatial lengths, which leads us to suggest the transformation between Si· and S̃′,

where the symbol t· is used to explicitly indicate the standard-synchronized time, AT, in Si· . The events that occur 
at the same t ′ in (6) is actually simultaneous whereas the events at the same t· in (25) is not since t· is AT. However 
t ′ is exact since it represents the PT interval.

The analysis of the MG experimental result with (25) is the same as in Subsection "With TCL" except that t  
is replaced by t· . Here, using (25), we analyze the Sagnac effect. In the experiment of the Sagnac effect, the Earth 
can be considered to be in linear motion during the traverse of light beams, though it rotates. The inertial frame 
Si· represents the one for a laboratory. The light detector Õ′ is located on a circumference of radius r in Si· . At 
t· = t ′ = 0 , two light beams b+ and b− leave a light source, which is located at the same place as the detector, and 
traverse the circular paths in the co- and counter-rotating directions respectively.

Since the transformation (25) has the same form as (6), the same equation as (12) is obtained for the former. 
The angle ϕ̃′ is positive in the same direction as the rotation direction of Õ′ . Integrating (12) with respect to ϕ̃′ 
after the replacement of dl′ by r′ |dϕ̃′| , we have,

where l′ = 2π r′ . The travel times of b± are,

The time difference is given by,

which corresponds to the experimental result. The travel distances of b± are l′ and the speeds of b± with respect 
to PT are equal to (13).

Using (25), let us make analysis on the travel of the light beams in Si· . From (25), dϕ = dϕ̃′ + ω dt· and 
dt· = γ dt ′ . While the light beams b± traverse the circular loop, ϕ̃′ and t ′ vary from 0 to ±2π and from 0 to t ′± . 
Integrating dϕ yields,

The travel distances are calculated using (29) and (27) as,

where l = 2π r . The speed of light is c with respect to AT and the travel times of b± measured by AT in Si· are given 
by t·± = l±/c , which agrees with (27), i.e. t·± = γ t ′± . These analysis results substantiate the transformation (25).

Traditionally the Sagnac effect has been analyzed usually using the Langevin metric [e.g. Refs.3,4,7,18]. Since it is 
the first-order effect of β as shown in (28), we can approximately calculate the time difference with the Langevin 
metric. Neglecting the terms with higher degrees than β in (25) yields,

where the symbol “tilde” is used to explicitly represent the coordinates of S̃′ . The Langevin metric is found in 
accordance with (31). Clearly the transformation (31) is Galilean, which does not recognize the difference 
between t̃ ′ and t· and between r̃′ and r . If the symbol “prime” in the coordinates of S̃′ is removed so that for exam-
ple, r̃ = r and if Si· = S , (31) becomes the transformation between S and S̃ , from which the same time difference 
as (28) is exactly derived with the recognition of the difference between S̃ and S̃′  [8, p. 184]. Without the recogni-
tion of the difference, the computation results using (31) are only valid within the first-order approximation. 
In the MG  paper1, the fringe shift, which also results from the first-order effect as in (22), has been calculated 
based on (31). The frame S̃ is different from S̃′ . Under S̃ = S̃′ , the analyses by the Langevin metric or (31) are 
approximate and nonrelativistic.

(25)t ′ =
t·

γ
, r′ = γ r, ϕ̃′ = ϕ − ω t·, z

′ = z.

(26)ct′± =

∫ ±2π

0
β r′dϕ̃′ +

∫ ±2π

0
r′|dϕ̃′| = (1± β)l′,

(27)t ′± =
(1± β) l′

c
.

(28)� t ′ =
2β l′

c
,

(29)ϕ± = ±2π + γ ω t ′±.

(30)l± = r|ϕ±| =
l

1∓ β
,

(31)t̃ ′ = t·, r̃′ = r, ϕ̃′ = ϕ − ω t·, z̃′ = z.
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Meanwhile, the MM experiment was devised to test the effect of β2 on the round trip velocity. The Langevin 
metric, in which the round trip speed of light is anisotropic, fails to explain the MM experiment whereas the TCL 
of (25) can do. The experiment had been carried out to measure the effect due to the motion of the Earth relative 
to the Solar System and the two arms of the interferometer, which are very small compared with the radius of the 
Earth, can be considered to be laid at the same rotation radius. The round trip speed of light is constant in (25) 
with the radius fixed irrespective of direction. The TCL is consistent with both MM and MG experiments. It is 
stated in Ref.18 that “For uniform rotation in the case of the Sagnac effect one would expect on intuitive grounds 
that a Galilean rotation (absolute time) might give the correct choice of spacetime coordinate transformation. 
In consideration, however, of well-known experiences with electromagnetic theory in the realm of uniform 
translations where the Galilean translation (absolute time) is not an adequate substitute for a Lorentz translation, 
it is useful to give special attention to the question of selecting the right transformation for uniform rotations.”

Conclusion
The result of the MG experiment has been analyzed via the TCL and via the MS framework. These analysis results 
correspond and agree with the experimental result. In the MG experiment, the difference between the travel 
times of the light beams b+ and b− is shown to take place by the two factors, the anisotropy of the one-way speed 
of light in inertial frames and the difference between the rotation radii of the segments L1 and L2 . As the rotation 
radii are different their tangential speeds are different. The segments can be considered to belong to respective 
inertial frames during the travels of b+ and b− . As shown in (24), the one-way speed of light is anisotropic in 
inertial frames, which agrees with the experimental results of the generalized Sagnac effect.

Though inertial frames are not isotropic, regarding them as isotropic with the introduction of the stand-
ard synchronization, we can exactly obtain some physical quantities that are independent of synchronization 
schemes. These quantities can be accurately calculated using only relative velocities with no knowledge of absolute 
velocities. It is because the first rows of TL(β j , β i) and TL(β ji) are the same. As far as the experiments associated 
with circular motion are concerned, the Solar System or the Earth frame can be considered an inertial frame 
Si during a short time of test. Accordingly, we have obtained the exact time differences through the standard 
synchronization of Si that is not isotropic.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information file.
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