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Assessing contemporary Arctic 
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mammoth proxy
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Interest continues to grow in Arctic megafaunal ecological engineering, but, since the mass extinction 
of megafauna ~ 12–15 ka, key physiographic variables and available forage continue to change. 
Here we sought to assess the extent to which contemporary Arctic ecosystems are conducive to the 
rewilding of megaherbivores, using a woolly mammoth (M. primigenius) proxy as a model species. 
We first perform a literature review on woolly mammoth dietary habits. We then leverage Oak Ridge 
National Laboratories Distributive Active Archive Center Global Aboveground and Belowground 
Biomass Carbon Density Maps to generate aboveground biomass carbon density estimates in plant 
functional types consumed by the woolly mammoth at 300 m resolution on Alaska’s North Slope. We 
supplement these analyses with a NASA Arctic Boreal Vulnerability Experiment dataset to downgrade 
overall biomass estimates to digestible levels. We further downgrade available forage by using a 
conversion factor representing the relationship between total biomass and net primary productivity 
(NPP) for arctic vegetation types. Integrating these estimates with the forage needs of woolly 
mammoths, we conservatively estimate Alaska’s North Slope could support densities of 0.0–0.38 
woolly mammoth km−2 (mean 0.13) across a variety of habitats. These results may inform innovative 
rewilding strategies.
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Herbivorous megafaunal Arctic ecological engineering
Interest continues to grow in trophic rewilding as a climate change mitigation strategy1,2, and Arctic herbivorous 
megafaunal ecological engineering in particular3.

Herbivores share a long co-evolutionary history with vegetation4,5 and stimulate plant production  in 
grasslands6. The “keystone herbivore” hypothesis stipulates that megaherbivores have maintained the Pleistocene’s 
steppe-tundra (also referred to as “mammoth steppe”) through complex biophysical (e.g. trampling and 
uprooting) and biogeochemical interactions7,8. Modified vegetation architecture and species composition, 
increased albedo and therefore cooling, long distance seed dispersal, and enhanced nutrient cycling/productivity 
and carbon storage each represent a special class of scalar effects primarily active when megaherbivores are 
present9.

A wave of megafauna extinctions took place ~ 12–15 ka, coinciding with arctic shrub tundra expansion and 
a loss of the Pleistocene steppe-tundra. It remains debated to what extent the change in vegetation was a top-
down10–12 result of human-precipitated megafaunal extinctions or the megafaunal extinctions a bottom-up13,14 
response to coeval climate change (e.g. increased moisture/temperatures). Ultimately, only 7 of the 13 megafauna 
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taxa present in eastern Beringia immediately prior to ~ 12–15 ka survived, which left an impoverished ecological 
community.

Megafaunal biomass today is estimated to be about 30 times less dense than in the Pleistocene15 and complex 
networks of biophysical and biogeochemical interactions are currently missing in much of the Arctic biome. 
This means that vast swaths of land they used to inhabit have been replaced by forests and shrubs rather than 
the forb- and graminoid-rich grasslands for which they were ecologically tuned and possibly played a key role 
in maintaining the presence and productivity of.

In addition, in recent decades, amplified warming trends continue to modify Arctic landscapes, characterized 
by coincident decreases in lichens and graminoid biomass and increases in deciduous and evergreen shrub 
biomass16. Satellite remote sensing has revealed a resultant widespread increase in overall plant productivity 
and biomass across the Arctic tundra biome17. These changes are only exacerbated by the continued evidence of 
rapid ecological shifts to novel ecosystems resulting from continued contemporary megaherbivore extinctions18.

The impacts of megaherbivores on grassland preservation and productivity may point to a contemporary 
natural climate solution of reverting the current wet/moist moss and shrub-dominated tundra and the sparse 
forest–tundra ecotone to grassland through the rewilding of a guild of large herbivores in the Arctic, the extent 
of which remains unknown.

Rationale
Resolving the theoretical carrying capacity of contemporary Arctic ecosystems to rewilded megaherbivores is 
critical to planning for such megafaunal ecological engineering strategies of meaningful impact19.

Since vegetation landscapes have changed in the last ~ 12–15 ka, we sought to assess whether and to what 
extent contemporary Arctic landscapes were conducive to the rewilding of megaherbivores, using a woolly 
mammoth (M. primigenius) proxy. Since woolly mammoths thrived in steppe-tundra, boreal, and temperate 
habitats across the northern circumpolar region approximately 700,000 to ~ 10,000 years ago (with the very last 
populations going extinct 4000 years ago)20, we use them as a model species21,22.

Previous modeling work has pointed to an estimated total megaherbivore density during the Late Pleistocene 
ranging from 10.5 tonne km−2 (2.5 tonnes km−2 for woolly mammoths) based on the density of bone remains in 
Northern Siberia21 to 8.8 tonne km−2 total megafauna (4.5 tonnes km−2 for woolly mammoths) based on assumed 
caribou (R. tarandus) density comparisons15.

In this study, we sought to provide a novel estimate of the carrying capacity of megaherbivores of 
contemporary Arctic regions. We specifically leverage global meta-analyzed biomass carbon density data at a 
300-m resolution to resolve the conservative carrying capacity of a population of rewilded megaherbivores on 
the North Slope of Alaska using a woolly mammoth proxy, hereafter referred to as woolly mammoth, as a model 
species. To this end we assess the biomass of their primary forage (forbs, graminoids, and deciduous shrubs) 
across the North Slope, downgrading it to take into account yearly primary productivity only, and compare it to 
their intake needs based on body mass estimates.

Results
Review of the preferred forage types of the woolly mammoth
Despite harboring evolutionary adaptations that facilitate grazing, woolly mammoths were monogastric 
herbivorous generalists23 with a high degree of flexibility in their food choice, engaging in mixed-feeding outside 
core feeding areas with a preference for grazing24. This is consistent with the fact that mammoths had high δ15N 
values (which are higher in grasses than shrubs) than modern elephants, as determined by isotopic analyses of 
woolly mammoth bone collagen25. Their foraging habits are further aligned with the tendency of megaherbivores 
to have generally long gut retention times, exploit resources across broad spatial scales, and utilize mixed feeding 
strategies to survive on lower quality, seasonally-restricted vegetation sources26. Further, the megaherbivore body 
size itself likely evolved to process diverse low-quality forage while surviving harsh climates27.

A combination of independent lines of evidence including palynological (pollen) analyses of gut content28, 
multiproxy analyses of dung from the lower intestine (including microscopic, chemical, and molecular 
techniques such as gas chromatography/mass spectrometry, thermally assisted hydrolysis and methylation, and 
DNA sequencing)29, visual analyses of gut content30, fatty acid profiling of fatty tissues31, DNA sequencing / 
metabarcoding of gut and coprolite samples32, meta-proteomic analyses by shotgun mass spectrometry of gut 
tissue samples33, DNA metabarcoding, palynological and macrofossil analyses of coprolite (feces) samples34, and 
isotopic analyses of tooth enamel35,36, suggest that woolly mammoths consumed primarily forbs, graminoids 
(grasses and sedges), and shrubs, supplementing their diet with trees mosses and even lichen and green algae 
(as detailed in Supplementary Table 1).

Nutrient-dense forbs were a staple32, while potentially large graminoids (reaching up to 75–100 cm), may 
have also provided ample nutritional value34. In addition, herbivores in the Arctic have a strong preference for 
palatable deciduous shrubs compared with evergreen shrubs when given the choice, which, as supported by 
gut and coprolite content studies, stands to reason would have likely been the case for the woolly mammoth as 
well37,38. Only trace amounts of trees were reported in previous studies, which are unsubstantial compared to the 
contribution of forbs, graminoids, and deciduous shrubs (as reported in Supplementary Table 1). In addition, 
mosses were not expected to play a critical role in their diets given their low digestibility and nutritional value. 
Moss has been suggested to be consumed in cold environments exclusively for their high concentration of 
arachidonic acid which helps animals protect against the cold39, and the consumption of moss by muskoxen has 
been suggested to indicate low availability of favored foods when confined to small winter ranges40. Meanwhile, 
even though herbivores like reindeer and caribou are known to consume large quantities of low-protein lichens 
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during winter41,42, very little is known about their relative contribution to the woolly mammoth diet. Finally, 
only one study mentioned algae, which was therefore omitted from the woolly mammoth diet in our model.

These dietary habits, despite environmental disparities, are relatively aligned with those of the woolly 
mammoth’s closest living relative the Asian elephant (E. maximus), a mixed browser and grazer43 with a proclivity 
for a variety of grasses, shrubs, and some trees44. Additionally, mixed feeding by elephants appears related to 
seasonal availability and preference, a trend seen in other arctic ungulates (as detailed in the “Discussion”)45.

These foraging habits likely contributed to their high degree of mobility revealed by multiple isotopic 
analyses20. Over their estimated life span of 60 years46, the large-scale, geographically unrestrained movements 
of an individual woolly mammoth were complex20 and could exceed a radius of 200 km36,47.

However, paleoecological habits should be placed into the context of certain ongoing ecological changes that 
could affect the future diets of woolly mammoth. These include the northward advance of the tundra shrubline48, 
changing seasonal climates49, and changes in fire regimes50.

For our model, in keeping with our objective of establishing a cautious, conservative estimate for a woolly 
mammoth carrying capacity in the contemporary Arctic, we deliberately concentrated our analysis exclusively 
on the plant functional types favored by woolly mammoths for which we found the most empirical evidence, 
specifically forbs, graminoids, and deciduous shrubs.

Carrying capacity estimates based on downgraded, mean digestible annually generated 
biomass
Collectively, the percent cover, reflecting variations in AgDB across biomes, and digestibility factors, reflecting 
variations in the estimated digestibility of the woolly mammoth’s preferred forage types, resulted in downgrading 
factors ranging from 0.0 to 0.62 (mean 0.15).

Higher downgrading factors are concentrated in the southern section where higher shrub biomass occurs (as 
visualized in Supplementary Fig. 1 and Fig. 1). The latitudinal banding pattern of the ecoregions remains legible 
in the AgDB results, with higher readings in the uplands sections of the foothills and the southernmost boreal 
sections. The coastal plain and mountains sections show the lowest AgDB readings. The downgrading process 
preserved the overall pattern reported by Berner et al. of roughly double biomass in the warmer southern section 
of this area compared to the colder, northern sections.

The estimated AgDB of ecological landscapes generally increases with its mean average annual temperature. 
Arctic and boreal rocky uplands, due to their large spatial extents and above average AgDB have the largest 
overall carrying capacity followed by both Arctic/boreal rocky acidic alpine units, while the Arctic silty uplands 
rank third.

Finally, the net primary productivity downgraded resulted in an additional crude Arctic-specific downgrading 
factor of 0.4 over the entire area (see Materials and Methods for details, and Fig. 2 for a conceptual diagram of 
the complete downgrading process).

Considering the annual forage consumption of a woolly mammoth, using these final mean digestible annually 
generated biomass density estimates, we calculate that the ecological landscapes of Northern Alaska could 
support populations of 0.0–0.38 woolly mammoth km−2 (mean 0.13) across a variety of habitats (as visualized 

Figure 1.   Downgraded, mean digestible annually generated biomass of woolly mammoth preferred plant 
functional types (forbs, graminoids, deciduous shrubs) in the North Slope of Alaska. Map created in Esri 
ArcGIS 10.3.1 (https://​suppo​rt.​esri.​com/​en-​us/​produ​cts/​arcmap) and text/legends in Adobe Illustrator 28.3 
(https://​www.​adobe.​com/​produ​cts/​illus​trator.​html).

https://support.esri.com/en-us/products/arcmap
https://www.adobe.com/products/illustrator.html
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Figure 2.   Conceptual diagram of the downgrading process leading to the carrying capacity estimates.

Figure 3.   Estimated mean digestible annually generated biomass of woolly mammoth preferred plant 
functional types (forbs, graminoids, deciduous shrubs) available for forage and derived woolly mammoth 
carrying capacities in the North Slope of Alaska. Specifically, the legend’s left column represents the total 
digestible annually generated biomass of woolly mammoth-preferred plant functional types (forbs, graminoids, 
deciduous shrubs) (Mg km−2) while the legend’s right column represents the derived woolly mammoth carrying 
capacity based on their estimated annual forage needs based on a woolly mammoth body mass of 3.9 tonnes (see 
Supplementary Table 2 for details). Map created in Esri ArcGIS 10.3.1 (https://​suppo​rt.​esri.​com/​en-​us/​produ​cts/​
arcmap) and text/legends in Adobe Illustrator 28.3 (https://​www.​adobe.​com/​produ​cts/​illus​trator.​html).

https://support.esri.com/en-us/products/arcmap
https://support.esri.com/en-us/products/arcmap
https://www.adobe.com/products/illustrator.html
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in Fig. 3), reflecting the diversity of the landscape of the study area, and ranging from a low of 0.0 in fresh and 
marine water landscapes to a high of 0.29–0.38 in Boreal Sandy Riverine (taiga) landscapes (as detailed in 
Supplementary Table 2). Across all ecological landscapes, these density estimates suggest that the entire North 
Slope of Alaska could, in the absence of predators, major losses from disease, and landscape exclusions, among 
other considerations, theoretically support ~ 48,000 woolly mammoths (~ 42,000 for an adult woolly mammoth 
body mass of 5.2 tonnes, to ~ 55,000 for an adult woolly mammoth body mass of 3.9 tonnes).

Population density estimates based on Damuth’s law
We further sought to complement our analyses by using the known allometric relationship between population 
density and body mass, i.e. Damuth’s law, whereby population density is scaled with body mass raised to the 
power of − 3/4 irrespective of taxa or time51. Applying Damuth’s law, whereby log D =  − 0.75 (log W) + 4.23, 
with D the population density (km−2) and W the mean adult body mass of a mammalian primary consumer 
(in grams), yields, under the assumption of an adult woolly mammoth body mass ranging between 3.9 and 5.2 
tonnes, a population density of ~ 0.16–0.19 individuals km−2. Across all ecological landscapes, these density 
estimates suggest that the entire North Slope of Alaska could theoretically support ~ 72,000 woolly mammoths 
(~ 64,000 for an adult woolly mammoth body mass of 5.2 tonnes, to ~ 80,000 for an adult woolly mammoth body 
mass of 3.9 tonnes).

Summary of previously and presently carried out estimates
Finally, we summarize in Table 1 previously carried out estimates and the estimates carried out in this paper using 
both a net primary productivity-based model as well as a classical allometric scaling law in ecology.

Discussion
Woolly mammoth body mass estimate
We selected to use an estimated woolly mammoth body mass from an in-depth study by Larramendi et al. on the 
height, body mass, and shape of fully grown adult proboscideans across different taxa using a variety of skeletal 
restorations46. From this study we used the estimated body mass of an average weight M. primigenius male of 
the North Siberian form (3.9–5.2 tonnes), considered a closer estimate of an Arctic-specific body mass than the 
European form, meaning that across the different ecological landscapes of the North Slope of Alaska, the different 
ranges of woolly mammoth densities are thus based on these lower (3.9 tonnes) and higher (5.2 tonnes) body 
mass estimates, resulting, respectively, in the density estimates’ higher and lower bounds. Our estimated body 
mass range is roughly consistent with the PHYLACINE 1.2 global database of late Quaternary mammals trait 
data, which, also leveraging Larramendi et al.’s estimates, defined the mean woolly mammoth mass at 6 tonnes, 
without distinguishing between the European or North Siberian form52,53. Since very little is known about the 
demographic structure of woolly mammoths, including sex, age, and reproductive-to-non-reproductive ratios, 
we did not explicitly account for variations due to the body masses of females or young. Importantly, using the 
average body mass of an adult male, by yielding a more conservative carrying capacity estimate, is aligned with 
our methodological priorities.

Consistency of carrying capacity estimates with previous estimates
More convincingly, our estimates for woolly mammoth carrying capacity are in line with previous estimations 
of woolly mammoth densities during the Pleistocene (as detailed in Table 1). Previous efforts to characterize 
woolly mammoth densities range from 0.55 woolly mammoth km−2 (10.5  tonne  km−2 total megafauna 
biomass, 2.5 tonne km−2 woolly mammoth biomass; in Northern Siberia based on skeleton densities of woolly 

Table 1.   Pleistocene and contemporary woolly mammoth carrying capacity estimates across Arctic latitudes. 
Woolly mammoth km−2 estimates were derived, where not explicitly provided, under the assumption of a mean 
woolly mammoth body mass of 4550 kg (see “Discussion” for a discussion of body mass estimate)46.

Previously carried out estimates Method Region Period
Total woolly mammoth biomass 
km−2 Woolly mammoth km−2

Zimov et al. Population density calculated based 
on observed bone remains54 Northern Siberia Pleistocene 2.5 tonnes 0.55

Mann et al.
Population density estimated 
based on assumed caribou density 
comparisons15

Arctic Alaska Pleistocene 4.5 tonnes 0.99

Pederson et al.
Population density modeled as 
a function of body mass using 
phylogenetically adjusted allometric 
models52

Not applicable Not applicable 7.7 tonnes 1.7

This paper’s estimates

 Net primary productivity-based 
model

Carrying capacity estimated using 
WM-specific forage net primary 
productivity

Alaska North slope Contemporary 0.0–1.8 tonnes 0.0–0.38

 Damuth’s law-based
Population density estimated 
applying classical theoretical 
ecology law51

Not applicable Not applicable 0.8 tonnes 0.17
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mammoths54) to 0.99 woolly mammoth km−2 (8.8  tonne  km−2 total megafauna biomass, 4.5  tonne  km−2 
woolly mammoth biomass; in Arctic North America, based on caribou analogue15). Finally, leveraging the 
model of a recent study which modeled population densities for extant and recently extinct mammals using field 
metabolic rates52 yielded an estimated woolly mammoth density of 1.7 woolly mammoth km−2. These models 
may best represent some physiological optimization of megaherbivores and their ecologically-engineered habitat, 
which the Arctic is currently missing.

Our carrying capacity, based on a net primary productivity-based model, of 0.0–0.38 woolly mammoth km−2 
is the same order of magnitude and vast portions of the ecological landscapes match some previous estimates (e.g. 
mean of all Arctic landscapes could support ~ 0.13 woolly mammoth km−2). However, mismatches in estimates 
may be due to the limitations inherent to our process, the vegetation changes between the Pleistocene and 
modern-day, or previously carried out estimates being biased due to over/underrepresentation of skeletal remains 
in the Siberian deposits, inaccurate assumption of stable caribou densities since the Pleistocene, or incorrect 
assumptions of body mass.

Conservative nature of estimates
Our estimates are conservative on a number of independent fronts. (1) Our choice to omit from the woolly 
mammoth diet evergreen shrubs and trees, as well as mosses, lichen, and algae yield more conservative carrying 
capacity estimates by virtue of our under-representation of the full breadth of the true woolly mammoth diet. This 
is because there is insufficient information to assess their dietary contributions, (2) There is more plant biomass 
in the Arctic available today than when the data we analyzed was obtained (2010), and projections estimate that 
shrub cover in the Arctic could increase by 2- to tenfold over the next 50 years48. The taxonomic diversity of 
arctic plant assemblages is also greater now and continues to rise32. (3) Forbs, which are more nutrient-dense 
than other woolly mammoth nutrient sources34, may be underrepresented in the Anthropocene Arctic where 
niche construction by megaherbivores is absent. We also used the highest estimated body mass/nutritional 
needs and the lowest grazing rates. (4) In the future, climate-induced increases in snowfall over the North Slope, 
resulting in expanded growing seasons, with correspondent increases in leaf nitrogen content, digestible protein 
and foraging period are expected to affect the body mass/fat reserves in caribou55. In addition, by blocking snow 
and light from reaching the ground, the expansion of shrubs may increase nitrogen and foliar biomass on some 
species, ultimately increasing forage quality and quantity56. Consequently, we would expect woolly mammoths 
to encounter a climatic shift-associated increase in biomass availability.

By opting for a pure endogenous biomass approach however, without incorporating any exogenous parasitic, 
predatorial, fire/disturbance, or competition dynamics57, our measures do not include certain factors that could 
further reduce carrying capacity.

Woolly mammoth flexibility and adaptability
Woolly mammoth dietary diversity
A striking aspect of the woolly mammoth diet was its remarkable diversity in composition and spatial breadth. 
Molar enamel profiles show diets alternating between browse and grasses likely dependent on seasonal and/or 
geographic availability, similar to contemporary proboscideans32,45,58. Woolly mammoth guts have been found 
to harbor the seeds of herbaceous species and genera common to both tundra and boreal zones59, and recent 
multiproxy analyses have suggested that woolly mammoths occupied a variety of environments in addition to 
the cold, dry “mammoth steppe”, spanning wet, marshy environments, saline meadows, dry meadows, and even 
gravely slopes in mountainous/rocky habitats34. On St Paul island, a study from Wang et al. (Ref60 discussed more 
below) has suggested that woolly mammoths can survive on just shrub and graminoid tundra in the Holocene 
era. This is consistent with the fact that woolly mammoths had high δ15N values, which are higher in grasses than 
shrubs, as determined by isotopic analyses of woolly mammoth bone collagen, compared to modern elephants25. 
High δ15NPhe values of the woolly mammoth further imply that within these habitats they were able to selectively 
consume plants more enriched in 15N than the forage consumed by most other herbivores61.

This is aligned with recent work pointing to the mosaic and dynamic nature of the Pleistocene “mammoth 
steppe”, which, likely recourse partitioning within their ecosystems25, woolly mammoths could fully exploit given 
their flexible, varied diets from different non-analogous habitats34 spanning their vast geographic distribution62. 
Further, the broad classification of the Palearctic landscape as “mammoth-steppe” may misrepresent a more 
complex environment with wet, mesic, and woodland ecotypes present in northern Eurasia and North American 
during and after the Pleistocene63.

Furthermore, different woolly mammoths as a result of intraspecific variation were likely to have different 
energy economies in terms of both composition and volume64, demonstrating a high degree of flexibility and 
adaptability.

Consistently, caribou and other ungulate studies show constant influence of snow and ice constraints on 
winter feeding65, shifting from selective when resource-abundant to energy-restricted and quantity focused 
later. Indeed, recent descriptions of caribou diet reveal a dynamic diet influenced by seasonal variations in 
resource availability, with a preference for graminoids and vascular plants in warmer seasons. In addition, 
during population declines, females adjust their habitat use, favoring shrublands and barrens with greater plant 
resources66, overall demonstrating a remarkable degree of habitat and dietary adaptability42.

In a similar fashion, during droughts, modern African elephants constrict their feeding ranges to areas with 
permanent water and increase their reliance on woody vegetation, as a result of decreased grass availability67,68. 
Metcalfe et al.’s results suggest that woolly mammoths in Arizona’s San Pedro Valley sought the greenest portions 
of the landscape, as do modern elephants35,69.
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Unique dietary niches between sympatric species
Although the isotopically defined dietary niche of woolly mammoths and mastodons shows increasing overlap 
as they approach extinction implying a certain degree of competition36, isotopic analyses of bulk collagen suggest 
that mammoths occupy a distinct habitat or forage niche relative to other Pleistocene herbivores61.

Ecodividends: ecosystem feedback loops
The “keystone herbivore” hypothesis suggests that megaherbivores would have been key to unintendedly geo-
engineering and maintaining the Pleistocene’s steppe-tundra through a number of complex biophysical and 
biogeochemical interactions7,8,70,71, which, pending further studies specifying these impacts, point to important 
potential impacts of a rewilded population of megaherbivores in contemporary Arctic regions. First, as evidence 
of positive feedforward loops between the growth of grasslands and presence of megaherbivores continues 
to grow72,73, polyphage woolly mammoths may have maintained a grass/herb ecosystem by uprooting shrub/
tree assemblages7,74—not only contributing to an increased surface albedo but also helping explain the high 
productivity of the Pleistocene’s steppe-tundra27,75. Second, snow removal and trampling by megaherbivores 
may lead to a more condensed, colder layer of permafrost; data suggests that Pleistocene park proxies like 
caribou, Yakutian horses, and bison can increase soil heat diffusion and decrease soil temperatures by 1.9 °C 
compared to control areas76. Third, megaherbivores dispersed the seeds of the plants they consumed, enhancing 
the species richness and adaptability of plant communities while acting as vectors of nutrient movement77; 
effects are only expected to increase under the increased soil nutrient conditions expected with continued Arctic 
warming78. Finally, data from yak and ibex in a Trans-Himalayan ecosystem79, muskoxen in Greenland80, and 
various herbivores in Northern Siberia suggest that soil carbon pools are stabilized by the presence of mammalian 
herbivores, leading to shallower thaw depths and enhanced carbon storage compared to non-grazed regions81.

Trophic rewilding: an optimistic future
Concretely, the rewilding of other proboscideans, such as the African elephant, has proved successful in recent 
years, enhancing the open, mosaic nature of their ecosystems82, while the trophic rewilding of ungulates has 
reduced woody invaders at landscape scale in Mozambique in a mere 4-year period in Gonrongosa83.

Meanwhile species distribution models have been used to suggest that future climate change might not prevent 
megafauna rewilding84, and increased attention is thus duly being paid to trophic rewilding, or ‘the restoration 
of missing ecological functions and evolutionary potential of lost megafauna’, as a climate mitigation strategy1. 
More broadly, this is reflective of a new thinking that supports the restoration and conservation of wild animals 
and their ecosystem roles as a key element of natural climate solutions1,2,85.

Limitations: assumptions and approximations
No perfect extant analogs for woolly mammoth habitat or physiology
While a collagen isotope study showed that environmental proxies for Pleistocene steppe might be landscapes 
found in west-central Yukon, eastern Kluane Lake, and south-central Whitehorse valley86, no intact, largescale 
analogs exist75. Others have pointed to the plateaus and basins found in the Altai-Sayan Mountains in southern 
Siberia as a potential relict with long surviving Late Pleistocene animals, plants and an overall steppe-tundra 
mosaic landscape87. In addition, it remains challenging to accurately use physiological models for large 
endotherms, especially extinct ones, as there remains a high degree of unknowns in their biodata88. Our selected 
downgrading factors for preferred forage types, digestibility rates, and forage utilization rates, although based 
on studies of other herbivores, may not perfectly represent woolly mammoth dietary preferences; applying our 
50% reduction for shrubs based on proboscidean dietary preferences for example involves a hereto unresolved 
assumption about woolly mammoth behavior.

Pleistocene vs. contemporary Arctic plant composition
Several lines of evidence suggest that plant distributions have not substantially changed since the Pleistocene 
across the North Slope of Alaska. Several grasses and forbs still exist in the tundra; their relative prevalence have 
been marginally altered by a set of biotic (e.g. megafaunal pressure) and abiotic factors89. In addition ancient 
environmental DNA from the Yukon further indicates that no plant taxa became locally extinct during the 
transition to the Pleistocene-Holocene transition90. Rather, the relative dominance of graminoids/forbs likely 
flipped with shrubs/forest/woody species. Overall however, the complexity and variability of ecosystems over 
time, including the changing Arctic landscape due to climate change, land cover change, and other factors, make 
it exceptionally challenging to accurately predict the precise impact of reintroducing extinct megaherbivores.

Plant digestibility, palatability, non‑toxicity
In addition to physical defenses and adjusting growth rate, plants produce chemicals that can optimally, in 
response to herbivore pressure, decrease their digestibility, palatability, or increase their toxicity91–95. However, 
herbivores adapt their dietary strategies accordingly. In muskoxen (O. moschatus) (ruminants), season and diet 
are known to affect fiber digestion by relying on a large suite of bacterial genera to digest plants that vary widely in 
both abundance and nutritional quality throughout the year96. Meanwhile, caribou avoid over half of understory 
vegetation, possibly because of low digestibility and defensive compounds of mosses, evergreen shrubs, and 
conifers38. Various herbivorous/omnivorous megafauna are further known to develop seasonal diet mixing and 
macronutrient optimization strategies, as has been demonstrated in the grizzly bear (U. arctos) for example97.

We used conservative downgrading factors to approximately account for remaining unknowns in plant 
digestibility and palatability, and woolly mammoth adaptability thereto.
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Seasonal variations
In our model, we use an annually averaged NPP estimate, assuming a constant relationship between aboveground 
biomass and net primary productivity, and annually averaged dry matter intake estimate of 2%. This incorporates 
a certain degree of uncertainty since our model is limited by unknowns related to varied metabolic needs 
and dry matter intake of certain populations, such as reproductive females, and winter forage availability. Yet, 
the woolly mammoth and arctic herbivores are highly adaptable in their diet and tend adjust their metabolic 
needs according to the season. In the Arctic, while summers allow for a replenishment of body reserves, long 
9–10 month winters have low food and increased energy demands (for net energy maximization), for which 
caribou, elk, bison, muskoxen, Przewalski horses, and woolly mammoths are known to physiologically adapt 
through reduced resting time, reduced organ size, slowed metabolic rate, minimized forage time, slowed gut 
passage time, and increased fat storage31,98–100. This complexity presents challenges modeling existing arctic 
mammals, and even more so an extinct non-ruminant herbivore, which is why we selected to use a conservative 
large-bodied herbivore estimated dry matter intake of 2%. The precise impacts of winters however continue to 
warrant additional research.

Interspecies competition
The true carrying capacity of woolly mammoths on the North Slope of Alaska will further depend on the level and 
direction of competition between woolly mammoths and extant arctic species. Despite our use of conservative 
downgrading factors (including foraging factor), there remain unknowns with regard to the impacts on and of 
such interspecies competition dynamics. For example whether woolly mammoths were more or less efficient 
competitors relative to caribou and small mammals (e.g. lemmings, arctic ground squirrels) remains unknown 
and may affect our woolly mammoth carrying capacity estimates. In addition, the dynamic and interconnected 
nature of modern ecosystems are not entirely reflected in our straightforward model. In particular, the potential 
interactions with current species, vegetation dynamics, and land use practices may affect woolly mammoth 
carrying capacities; these elements may be addressed in future research.

Conclusion
Trophic rewilding triggers a range of complex, interrelated questions of compatibility, capacity, and resilience. 
Though the present study only begins to delve into that complex set of interacting conditions, megaherbivore 
capacity is critically dependent on the digestible biomass available for foraging intake. We provide a technically 
feasible density range for woolly mammoths based on a conservative set of nutritional and behavioral assumptions 
which are roughly one order of magnitude lower than paleontological estimates of woolly mammoth densities 
(2.5–4.5 tonne km−2). Naturally, a variety of real world limitations paired with a complex set of ecological 
feedbacks will net out a more refined supportable megaherbivore density.

Here we emphasize that the rewilding of de-extinct functional proxies for ecological engineering purposes 
prompts important philosophical considerations102–104. The ability of this strategy to restore lost ecosystem 
functionality needs to be balanced with the potential unintended consequences of reintroducing extinct species 
into more contemporary environments and the allocation of resources to de-extinction alongside ongoing 
conservation efforts of existing species and habitats. De-extinct megafaunal ecological engineering represents 
one innovative conservation tool of many101, which must be married to ongoing conservation efforts. In so 
doing, any planned reintroduction effort must be informed by multi-stakeholder conversations about ecological, 
political, and animal and human welfare concerns with local communities and regional and federal legislators105. 
To this end, the International Union for the Conservation of Nature (IUCN)’s 2016 guidelines for de-extinction 
practice106 continue to guide a dynamically evolving regulatory framework emphasizing the importance of 
interdisciplinary dialogue and inclusive governance structures.

Ultimately, building on this theoretical carrying capacity of keystone herbivorous megafauna like the woolly 
mammoth could advance reintroduction strategies, enhance overall biodiversity initiatives, and prioritize 
largescale ecological engineering feedbacks throughout the formerly occupied megafaunal ranges.

Methods
Literature review of the preferred forage types of the woolly mammoth
The peer-reviewed literature was combed for high-yield information on woolly mammoth dietary habits by 
performing a Boolean operator-guided literature search in PubMed and Semantic Scholar for “woolly mammoth 
AND (diet OR nutrition OR forage)”).

We qualitatively complemented these analyses with knowledge of the woolly mammoth’s closest living relative, 
the Asian elephant (E. maximus).

Woolly mammoth dietary needs estimates
Graphic Double Integration volumetric estimates for M. primigenius of the North Siberian form suggest a mean 
body mass for an adult male ranging from 3900 to 5200 kg, slightly heavier than E. maximus46.

To assess daily dietary needs, we use the broadly applicable 2% body mass rule, whereby a species’ daily 
nutritional needs in biomass (kg) is estimated at 2% its body weight. This level of consumption pairs well with 
the Asian elephant consumption reports that indicate rates of 1.5–2% of body mass per day (using the highest 
possible needs to take into account non-optimal land and conservation status)45.

We use the North Siberian estimated body mass for the woolly mammoth, which results in a daily requirement 
of 78–104 kg of forage day−1 or 28–38 tonnes year−1. This is consistent with previous estimates that woolly 
mammoths consumed roughly 118–140 kg/day of wet biomass to reach daily nutritional requirements60.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9804  | https://doi.org/10.1038/s41598-024-60442-7

www.nature.com/scientificreports/

Study area
We focused on ecoregions of Northern Alaska due to its relatively well-studied physiographic qualities. The 
area consists primarily of the permafrost zones north of the Arctic Circle including the Beaufort Coastal Plain, 
Brooks Foothills, Northern Brooks Range, and Southern Brooks Range. Some extensions in coverage reach into 
Kotzebue Sound Lowlands, Kobuk Ridges and Valleys, Davidson Mountains, Yukon Old Crow Basin, and North 
Ogilvie Mountains. This area benefits from extensive geological and ecological mapping conducted by Jorgenson 
et al.107 (Supplementary Fig. 2).

Permafrost is relatively continuous throughout the region at depths from 200 to 600 m while the active 
layer depth can vary significantly based on local conditions (which ranges from 0 to 30 m; see Supplementary 
Table 2)108,109. The ecoregions exhibit a broadly latitudinal banding pattern that consists of Arctic coastal plains 
and uplands in the north, transitional foothills and mountain ranges in the middle, onto boreal ecosystems 
toward the southern section (Supplementary Fig. 2). In parallel, vegetation assemblages range from lowland 
tundra dominated by sedges and small shrubs in the northern section, shrub tundra in the foothills section, and 
onto boreal forests south of the tree line110.

Regional biomass carbon density estimates
Since the relationship between satellite-derived spectra and biomass is not straightforward at fine resolution111, 
we chose to use a recent meta-analysis-guided global biomass carbon density dataset, leveraging ORNL DAAC’s 
Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 to generate biomass 
carbon density estimates at 300 m resolution in Northern Alaska and the Seward Peninsula112.

Aboveground living biomass carbon density includes carbon stored in living plant tissues located above the 
earth’s surface (stems, bark, branches, twigs) but does not include leaf litter or coarse woody debris that was once 
attached to living plants but have since been deposited and are no longer living.

Downgrading steps to account for preferred forage, digestibility rates, and forage utilization 
rate
To evaluate ecosystem support for a potential woolly mammoth population in Northern Alaska, we sought to 
estimate digestible forage in the area.

We downgrade estimates of aboveground biomass with preferred forage types, digestibility rates, and forage/
utilization rates to form a lower, conservative estimate for aboveground digestible biomass (AgDB) for a woolly 
mammoth.

We chose to base biomass estimates on the Global Aboveground Biomass Carbon Density Maps for the 
year 2010 due to its potential global applicability, its reliance on an updated Arctic-specific model for North 
Alaska that accounts for shrub biomass17, usefulness for multiple vegetation types, and reported lack of systemic 
bias112,113.

Preferred forage types
We derived the lower bound of biomass estimates from the cumulative standard errors reported in the global 
dataset (based on the 95% prediction interval and, since the dataset represented carbon-based, not total, biomass, 
converting it back to total biomass by multiplying it by a factor of 2.03).

Using 2020 plant functional top cover estimates from NASA’s ABoVE: Modeled Top Cover by Plant Functional 
Type over Alaska and Yukon, 1985–2020 dataset, we downgraded the biomass measures to reflect the potentially 
preferred diet of woolly mammoths by only including the biomass per km2 of (1) all forbs, (2) all graminoids, 
and (3) all deciduous shrubs, prior to the downgrading steps114.

While lichen, moss, evergreen shrubs and trees could provide potential forage, we omitted these functional 
types to maintain a conservative approach and focus on likely preferred forage.

All raster datasets were aggregated to 300 m spatial resolution.
Modelled values for percent cover (%) for each plant functional type were used as a downgrading factor in 

lieu of a lower bound because the latter (estimated based on the RMSE) resulted in values outside the range of 
possibility (0–100%).

Digestibility rates
Each plant functional type was further downgraded to the digestible percentage based on reported digestibility 
factors of herbivores spanning digestion types, including caribou (ruminants), muskoxen (ruminants), and horses 
(monogastric non-ruminants like the woolly mammoth) in Arctic biomes.

Studies on arctic herbivore digestibility report factors of approximately ~ 0.8 for forbs, ~ 0.5 for graminoids 
(grasses, sedges, and rushes), and ~ 0.6 for deciduous shrubs94,96,115,116. Shrubs were downgraded by a further 
50% to adjust for likely proboscidean dietary preferences and to avoid biasing the overall availability toward the 
more abundant shrub biomass (approximately 50% of plant biomass in the area).

Forage/utilization rates
Grazing intensity estimates for megafaunal grazers reportedly range from 7 to 87% (elk, bison)117–119, as detailed 
in120. Among cattle and bison, conservative grazing intensity estimates use 25% utilization on grass and 12.5% 
utilization on wet meadows121.

Keeping with conservative estimates, we use the lowest reported forage rate of ~ 10% applied to the new 
total aboveground biomass of the three preferred plant functional types to adjust for sustainable consumption, 
ensure low competition with the existing guild of herbivores, and account for unknowns in forage palatability.
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Extant wild herbivore guilds have been shown to consume a median of 11% of net primary productivity 
(NPP)52. Further, the study estimates that the consumption would rise to 21% if the full complement of Late 
Pleistocene terrestrial mammals were present, indicating the scalar effects of extinct megaherbivores to the 
defaunated zones. This is relatively aligned with our estimated forage rate.

Regional downgraded estimates based on the relationship between total aboveground 
biomass and net primary productivity
Since woolly mammoths will only eat that which was grown the same year, we further downgraded the 
aboveground biomass estimates to take into account the forage which only grew within the last year (primarily 
summer) for consumption. We chose not to use a global NPP database due to the errors inherent to transforming 
raw satellite data to heterogeneous/seasonal landscape metrics122–125. We instead opted to use an additional 
downgrading factor to convert total biomass to annually generated biomass estimates. To this end we leveraged 
a recent study referencing a set of representative field sites commonly used for arctic calibration along a 
North–South transect. The data are derived from a modeling framework that uses field-based parameters to 
predict various vegetation properties in the changing Arctic climate. Averaging the estimates from the third 
table in Euskirchen et al. (tussock and wet sedge representing graminoids; heath and other shrubs representing 
shrubs, forbs assumed to be similar), working under the assumption that all values are aboveground estimates, 
C-based biomass and NPP are found to be related by a ratio of 0.4126. We thus derived a crude, Arctic-specific 
conversion factor of 0.4 between carbon-based biomass (g C m−2) to NPP (g C m−2y−2). Since carbon-based and 
total biomass are linearly related, this conversion factor of 0.4 was therefore applied to the relationship as well 
between mean digestible biomass (Mg km−2) and mean digestible annually generated biomass (Mg km−2); see 
Supplementary Table 2 for details.

Sensitivity analysis
Since our model inherently relies on numerous assumptions that cannot be further refined with available data, 
we performed a sensitivity analysis assessing the variability in woolly mammoth (WM) densities calculated using 
(1) mean, lower and upper confidence limits (LCL/UCL) of the base aboveground biomass data from Spawn 
et al. (2020), and (2) lower/higher forage rates (as detailed in Supplementary Table 3).

Data availability
Raw data used in this manuscript is available at -https://​doi.​org/https://​doi.​org/​10.​3334/​ORNLD​AAC/​1763 
(ORNL DAAC’s Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 at 
300 m resolution in Northern Alaska and the Seward Peninsula), -https://​doi.​org/https://​doi.​org/​10.​3334/​ORNLD​
AAC/​2032 (ORNL DAAC’s ABoVE: Modeled Top Cover by Plant Functional Type over Alaska and Yukon, 
1985–2020), and-https://​doi.​org/https://​doi.​org/​10.​3334/​ORNLD​AAC/​1359 (Land Cover and Ecosystem Map 
Collection for Northern Alaska). In addition, raster data representing the downgraded data using digestibility 
factors and top cover percentage is available at https://​github.​com/​clssl/​Above​ground-​Bioma​ss, where the “r_
gith_agdb2” file is an Esri Grid dataset at 300 m resolution for aboveground digestible biomass in Mg km−2 used 
for estimates. All operations were conducted in ArcGIS 10.3.1 using Map Algebra/Raster Calculator on base 
data and tabulated using Zonal Statistics.
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