
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports

A low‑latency graph computer
to identify metastable particles
at the Large Hadron Collider
for real‑time analysis of potential
dark matter signatures
Ashutosh Vijay Kotwal 1*, Hunter Kemeny 1, Zijie Yang 2 & Jiqing Fan 2

Image recognition is a pervasive task in many information-processing environments. We present
a solution to a difficult pattern recognition problem that lies at the heart of experimental particle
physics. Future experiments with very high-intensity beams will produce a spray of thousands of
particles in each beam-target or beam-beam collision. Recognizing the trajectories of these particles
as they traverse layers of electronic sensors is a massive image recognition task that has never
been accomplished in real time. We present a real-time processing solution that is implemented in a
commercial field-programmable gate array using high-level synthesis. It is an unsupervised learning
algorithm that uses techniques of graph computing. A prime application is the low-latency analysis of
dark-matter signatures involving metastable charged particles that manifest as disappearing tracks.

Keywords  Unsupervised learning, Fast pattern recognition, Low latency, Disappearing track trigger, Large
Hadron Collider

One of the challenges of machine intelligence is its application in use cases of high throughput and low latency.
Since data often populate a high-dimensional parameter space, the classification function contains a huge number
of parameters which can limit the computational speed. The evaluation of elaborate functions such as deep neural
networks in software on generic CPUs is often replaced by porting the code to run on specialized hardware such
as GPUs, resulting in substantial increase in throughput. Another approach is to use configurable logic blocks,
distributed memory and digital signal processors on a field-programmable gate array (FPGA) to implement a
dedicated algorithm. The advent of high-level synthesis (HLS), wherein a high-level programming language such
as C/C++ can be used to code the algorithm in a manner amenable to an FPGA implementation, has helped
to reduce the development time by automating the conversion of C/C++ code to a digital circuit on an FPGA.

Broadly speaking, applications of machine intelligence can be classified as supervised/reinforcement or
unsupervised learning. Two requirements for the former are (1) the availability of high-quality training data, as
exemplified by deep-learning models, and (2) external intervention or feedback during the training or testing
phase. Supervised learning models can be executed with a deterministic latency. On the other hand, unsupervised
learning methods typically have a data-dependent latency, but with the advantage of not having requirements
(1) and (2).

This paper is novel in three respects. First, we present an implementation of an unsupervised learning
method1,2 that executes with a fixed latency. Second, instead of software, we demonstrate a digital circuit imple-
mentation that executes with much higher throughput and lower latency than is possible in software. Third, the
method is based entirely on a graph-computing architecture; all computations are uniformly distributed across
all graph nodes with a complete absence of any central processor. Its highlights also include modularity, paral-
lelizability and amenability to pipelining.

For a demonstration we choose an extreme use case for machine intelligence; the reconstruction of particle
trajectories at the Large Hadron Collider (LHC), as described in3. High-density bunches of protons collide at 25
ns intervals, and each bunch crossing is expected to produce up to 200 individual proton-proton collisions on
average at the high-luminosity LHC (HL-LHC). With each collision generating about 70 charged particles that

OPEN

1Department of Physics, Duke University, Durham, NC 27708, USA. 2Department of Electrical and Computer
Engineering, Duke University, Durham, NC 27708, USA. *email: ashutosh.kotwal@duke.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60319-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

pass through the cylindrical layers of fast, pixelated silicon sensors, tens of thousands of space points are gener-
ated at a rate of 40 MHz at the intersections of the particle trajectories with these layers3. Within this massive
point cloud, occasionally there are embedded sets of space points associated with a handful of high-momentum
charged particles; these signatures lasting for a few nanoseconds indicate the occurrence of rare quantum-
mechanical processes. Such processes have identified fundamental laws of physics that govern the behavior of
the building blocks of matter, their interactions via quantum forces, and the mass-generating effect called the
Higgs mechanism (see4,5 for reviews).

An exciting possibility for the LHC is that similar quantum-mechanical processes might describe the produc-
tion and decay of heavy particles associated with dark matter. If such processes were active soon after the Big
Bang and were responsible for creating the observed dark matter relic density in the Universe, the LHC beam
energy and collision rate may be sufficient to reproduce these processes in the laboratory (see references of3).
The key question is—can we identify and filter out these rare, ephemeral traces from the enormous point clouds
which are refreshed at 40 MHz? To date, no computational scheme has been operated to cope with this use case
at the ATLAS and CMS experiments.

A potential solution to this challenge was proposed in3 using unsupervised machine learning based on graph
computing. This algorithm proceeds in two steps. In the first step, the entire point cloud is sliced into one-dimen-
sional (azimuthal boundaries only) or two-dimensional (azimuthal and longitudinal boundaries) wedges such
that each wedge contains N = 2n space points on each of the concentric, cylindrical sensor layers. The overlap
between these subsets may be tuned to optimize the acceptance for a high-momentum particle, i.e. the trajec-
tory of such a particle of interest must be completely contained within one of the wedges. The boundaries of the
wedges vary from event to event depending on the distribution of the points on the layers. The implementation
of this “slicing” algorithm will be the topic of a future paper.

In this paper we describe the FPGA implementation of the second step whose conceptual design was discussed
in3. This graph-computing algorithm performs unsupervised pattern recognition on the set of 3D space points
in a wedge, such that the radially-distributed set of selected points is consistent with the sensor signals (“hits”)
deposited by a high-momentum particle traversing a uniform, axial magnetic field.

We demonstrate that the graph-computing algorithm can be implemented in an FPGA to achieve the 40 MHz
throughput with a latency of 250 ns. Charged-particle progenitors of dark matter may be produced at the LHC
(see references of3), with the only visible signature being a charged-particle trajectory (“track”) if the progenitor
decays invisibly into dark matter after traversing the silicon sensors, i.e. disappearing tracks. Since each beam
crossing produces many megabytes of sensor data, the total data rate at the beam crossing frequency of 40 MHz
exceeds the readout and processing capability by two orders of magnitude. Fortunately, a very large fraction of
collisions do not produce the rare processes of physics interest. The essential technology for filtering out the small
fraction of interesting collisions is “trigger” electronics that performs fast pattern recognition of sought-after
signatures hidden in the sensor data. Such triggers have been operational for electrons, muons, photons and
collimated particle flows called jets. However, a trigger for disappearing tracks has never been operational at the
LHC, potentially preventing new physics from being discovered. Our trigger design is a significant step towards
creating a disappearing track trigger with the requisite throughput and latency to handle the full bandwidth of
the LHC experiments.

A disappearing-track trigger has to satisfy two requirements. First, a track must be found as soon as it is
produced and before it decays. To satisfy this requirement, the track trigger must process information from the
silicon pixel detector at the closest possible distance from the beam axis, typically within a radius of ≈ 25 cm.
For this reason we focus on track-triggering with a 5-layer pixel detector that is being built for the ATLAS and
CMS experiments at the LHC. If the track trigger is based on sensors at larger radii, a significant loss in efficiency
is incurred for interesting ranges of particle lifetime, as shown in3.

The second requirement of a disappearing-track trigger is that no charged particle or energy be detected at
larger distances from the beam collision point, that can be associated with the trigger track in the pixel detector.
This veto can be provided by existing calorimeter/muon-based triggers for high-momentum electrons, muons,
protons, pions and kaons using the spatial and momentum correlation between the trigger signals. Optionally,
the veto can be incorporated in the software-based filter at a later stage in the trigger chain. Hence we prioritize
the first requirement of a real-time track trigger using the small-radius pixel detector.

We emphasize that our design is not limited or specific to the pixel detector; it is configurable for any number
of layers at any radii, and for any geometry of the pixels or strips. Silicon strip-based detectors will be deployed
by the ATLAS and CMS experiments in the radial range of 30–100 cm. Our design can be configured for
general-purpose track reconstruction above a momentum threshold in the strip detector; this application will
be considered in future work.

Detailed comparisons of our method with other methods based on associative memory, the Hough transform,
neural networks, or tracklet-finding in paired sensors have been presented in Refs.3,6. The primary advantage of
our method compared to the associative memory7, Hough transform8 and neural network9 techniques is that
our method is intended to operate in the first-level trigger with an input rate of 40 MHz, while the latter are
being pursued for the next trigger level with a lower input rate. The tracklet approach can process input data at
40 MHz but requires a special sensor configuration with pairs of closely-spaced strip layers10; our approach is
compatible with any sensor configuration. A review of tracking triggers at the HL-LHC can be found in Ref.11.

Methods
The methodology of3 is summarized here. We consider L = 5 silicon pixel-sensor layers and N = 2n = 16 hits
per layer in the wedge; L and N are adjustable within FPGA resource constraints. With L× N coordinates as
input, this algorithm finds smooth trajectories of particles. Each hit in the N × L grid is treated as a node in a

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

graph. Graph-computing logic is used to compute discretized second derivatives (“laplacians”) at each node of
the middle three layers. A particle’s helical trajectory is represented by a path through the graph that contains
one node in each layer. As shown in3, reconstructing the trajectory corresponds to minimizing the (absolute
value of the) laplacian at all nodes on this path.

A key insight of the algorithm is that the global minimum of all (L− 2)N3 laplacians is not found by searching
for the local minima at each node. On the contrary, the algorithm succeeds by iteratively vetoing poor trajectories,
i.e. rejecting the combinations of three nodes (triplets) that correspond to a large laplacian value. We refer to
this method of convergence as pruning. The fraction of triplets that are rejected at each iteration can be tuned;
following3, this implementation uses the fraction of 50%. Faster convergence would be achieved if the rejection
fraction were say 75%—whether the robustness demonstrated in3 would be maintained for a larger rejection
fraction is a topic for future study.

The number of links at a node with its two adjacent layers is initially N2 , so the total number of links is
initially (L− 1)N2 . These links are iteratively pruned, until only links that comprise smooth paths through all
layers remain. Each iteration comprises two logical operations, pruning and consensus.

At the end of the iterative procedure, multiple trajectories are found in a wedge, most of which are “ghosts”
and result from combinatorial chance. Ghost tracks zig-zag and do not satisfy smoothness criteria. A quality
control procedure selects the smoothest trajectory. We show that the smoothest trajectory is always that of the
high-momentum particle of interest, should one exist in the wedge. In the rare circumstance that there are two
or more particles of interest in the wedge, simple extensions of the algorithm allow for further selection on the
basis of momentum, smoothness and the desired number of tracks; these quantities are computed in the quality-
control procedure. Thus it is straightforward to configure the quality control procedure to output all trajectories
that satisfy trigger criteria.

Pruning
Pruning is described in3 as follows: “The sort engine sorts the N × N list of �ijk,l values in increasing magnitude.
Each �ijk,l value is stored as part of a tuple containing the associated j and k values which identify the
corresponding triplet of hits. The sorted list of tuples is used by the scan engine to create a ranked list of j and k
values, where the rank is defined as the ordinal number of first appearance in the sorted �ijk,l list. Thus, a j or k
value with a large rank is one that never makes a smooth trajectory, while a low rank corresponds to a smoother
trajectory. In each sort cycle, the j and k values with large rank are dropped, which purges those links that are
unlikely to form smooth trajectories.” Here �ijk,l represents the 1D or 2D laplacian value as defined in3 for the
triplet of hits (i, j, k), where hit i in layer l ∈ {1, . . . , L− 2} is linked to hit j in the next radial layer (l + 1) and hit
k in the previous radial layer (l − 1) . We implement the tuple as a 24-bit integer in which the upper 16 bits store
the laplacian and the lower byte stores j and k in 4 bits each.

Pruning is an iterative and distributed algorithm. The iteration count t runs from t = n to t = 1 and t → t − 1
for each successive iteration. For a given iteration, at each node i in layer l, there are approximately 2t × 2t
possible local paths connecting the nodes in layers l − 1 , l, and l + 1 . Each local path at node (i, l) consists of
two links; one link to an outer node (j, l + 1) and one link to an inner node (k, l − 1) . We denote these links as
(i, l; j, l + 1) and (i, l; k, l − 1) respectively. This local path has the discrete laplacian value �ijk,l . As described
in3, pruning reduces the number of viable paths at each node to 2t−1 × 2t−1 , such that there are 2t−1 surviving
(i, l; j, l + 1) links and 2t−1 surviving (i, l; k, l − 1) links.

A highlight of this paper is the implementation of the sort and scan engines that is fast, modular, parallelizable
and amenable to pipelining. We prove (see section “Sort and scan engines”) that the combination of the sort and
scan engines is mathematically equivalent to: (a) for each (i, l), construct a matrix of tuples indexed by the j and k
values, (b) construct a MinimumFinder that finds the tuple with the smallest laplacian value in each row of this
matrix, (c) the array of these minima, indexed by row, is processed by a Minimum Set Selector (MSS) circuit,
which splits the array into two halves; of the 2t minima, the lower (upper) half contains the smallest (largest)
2t−1 laplacians. Only the lower half are propagated to the next iteration, achieving the intended 50% rejection
factor during pruning.

The symmetry between j and k (i.e. linked nodes in the adjacent sensor layers at larger and smaller radii
respectively) is maintained by running in parallel a second MinimumFinder circuit on a transposed matrix of
tuples.

The MSS design can be easily modified to reject say 75% at each iteration, by saving only the smallest 2t−2
laplacians. The design is efficient because no time or FPGA resources are wasted in further sorting, which is
irrelevant at a given iteration due to the iterative nature of the algorithm.

Consensus
As described in3, the consensus protocol is another crucial insight contributing to the success of the algorithm.
The consensus protocol enables the local decisions at each node to be propagated to their linked nodes in
adjacent layers so that the algorithm ultimately converges to the globally smoothest path. The consensus protocol
is invoked after each iteration of pruning. Information percolates over time from each layer to more and more
distant layers and a global vision over all layers is eventually achieved. In concert, all heavy-duty computations
in the pruning step are local and distributed across all the nodes to be executed in parallel with low latency and
high throughput.

In the consensus protocol, each link (a, l1; b, l2) is compared with its partner link (b, l2; a, l1) as maintained by
the two respective nodes (a, l1) and (b, l2) . If either link has been pruned by its respective node, the partner link is
also eliminated from its linked node. The consensus protocol ensures that all surviving links are bi-directional,

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

i.e. both nodes agree on their mutual link. Hence, after each iteration of pruning and consensus, the number of
surviving links at each node is somewhat smaller than 2t × 2t.

Quality control
At the end of this iterative algorithm, any surviving global path of length L− 1 provides a linked list of nodes
that serves as a reconstructed track3. Multiple tracks may be found in a wedge, most of which are ghosts. There
is no assurance yet of the track quality—the goal of pruning and consensus is to find the smoothest possible
tracks without any a-priori threshold on the smoothness.

A subsequent quality control procedure has been described in3. For both the first and second (signed)
derivatives, crookedness is defined as the largest difference between any pair of nodes along a track. For example,
the second derivative of a zig-zag track changes sign and will likely have a large value of crookedness. These
metrics are computed separately for each dimension of 2D tracks. If the same track has the smallest value of
crookedness for each of the four metrics, it is labelled as the smoothest track and selected as the final output of
the algorithm.

Useful byproducts of the quality control procedure are the selected track’s curvature (inverse transverse
momentum) and polar direction, as well as the four metrics of track quality. Trigger decision criteria can sub-
sequently be applied to these quantities. It is straightforward to add a simple circuit to compute the track’s
azimuthal angle.

A possibility considered and resolved in3 is the intersection of two tracks. The solution involves an
intervention after the second-last iteration to check for two smooth trajectories passing through a node. As the
pruning executes at each node simultaneously, the required actions can be inserted into each node engine. Since
the intersection of two smooth trajectories is a rare occurrence and can be resolved with a small addendum, the
circuitry required for this intervention will be discussed in a future paper.

Implementation
In this section we discuss the implementation details of the hardware modules. As shown in Fig. 1, the data
flow through the following modules in sequence; laplacian calculator (LC), minimum finders (MF), maximum
set selectors (MSS) and consensus protocol (CP). The latter three are chained n times for t = n . . . 1 . The final
module is quality control (QC).

We implement the circuit using the xilinx vitis hls tool. vitis hls generates an RTL (register-transfer level)
design of the digital network in Verilog and VHDL formats from its high-level C/C++ representation. These RTL
formats can be used for programming an FPGA. Our results are presented using the xilinx FPGA XCVU19p-2-e,
which has 4.1M lookup tables (LUT), 8.2M flip-flops (FF) and 3840 digital signal processors (DSP). All circuits
are synchronous with an internal clock of 0.85 ns cycle time. Though a little faster than the recommended 1.1 ns
clock cycle for this FPGA, it demonstrates the feasibility of a real-time track trigger.

In section “Resource usage” we show the hardware resource usage on the FPGA in terms of LUTs, FFs and
DSPs, as well as module latencies according to the vitis synthesis.

Laplacian calculator
The computation of N3(L− 2) values of �ijk,l from N × L coordinates is shown in3 using weighted sums. The
weighted coordinates incorporate the radial distances between layers, alignment corrections, and differences in
resolution between the azimuthal and longitudinal dimensions. The weights also depend on whether the first
or second derivative is being computed. For each hit there are three weighted coordinates for the three possible
second derivatives (Eq. 7 of6), and two weighted coordinates for the forward and backward difference respectively
(Eq. 6 of6). These five weighted coordinates for each hit position (per dimension) can be compacted into a long
integer and stored in a lookup table.

Using the weighted coordinates as inputs, the LC uses only addition and the absolute value operation to
compute the N3(L− 2) tuples and save them in an (L− 2)× N × N × N dimensional array TM. The tuple
(laplacian, j, k) corresponding to one local path at node (i, l) is located at TM[l − 1][i][j][k].

The loops over l and i are unrolled so that the computations at each node proceed simultaneously in
independent, replicated modules. In each module, the 3-term sum corresponding to the laplacian is split into
two sequential pairwise sums. The latter are embedded inside a pipelined loop over j and an unrolled loop over
k. A pairwise sum is performed by a DSP in one clock cycle.

The LC is designed for two-dimensional silicon sensors that measure both azimuthal ( φ ) and longitudinal (z)
coordinates. We represent these coordinates as 16-bit integers, which are passed to the LC as a bit-packed 32-bit
word. In the LC, both coordinates are unpacked and their second derivatives are computed in a set of parallelized
and pipelined DSPs. The final steps compute and add the respective absolute values, again using DSPs, to obtain
the 2D laplacian �ijk,l = |φ′′

ijk,l | + |z′′ijk,l | (for l ∈ {1, . . . , L− 2})3, and pack the 24-bit tuple. The difference in the
sensors’ measurement resolution between the azimuthal and longitudinal coordinates has already been taken
into account in their respective weighted values supplied to the LC. We expect 16-bit coordinates to provide
adequate resolution of O(1 µ m) since wedge dimensions are expected to be smaller than 6 cm.

This design results in a 4-stage pipeline with N = 2n iterations over the pipeline, resulting in efficient (high
duty factor) usage of LUTs, FFs and DSPs. With N = 16 we achieve a latency of 21 ns (24 clock cycles) for the LC.

Minimum finder
The MF architecture is a pipeline of t stages, with each stage consisting of 2t−1, 2t−2, . . . , 1 compare-and-minimize
(CAM) units running in parallel. Each CAM outputs the smaller of its two input laplacians. The MF finds the
minimum of 2t inputs with a latency of 2t clock cycles. For each node (i, l) the row-wise minima of the 2D array

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

TM[l − 1][i] are stored in a 1D array of length 2t indexed by row. The loop over rows is pipelined to use a single
MF and obtain an efficient architecture with a high duty factor. A second, identical MF processes the transpose
of TM[l − 1][i] to obtain the column minima. The two MF circuits per node run concurrently. The 1D array of
row minima (and equivalently, the column minima) is denoted as RM in Fig. 2 as the MF module’s output and
in Fig. 3 as the MSS module’s input respectively.

Figure 1.   Block diagram of the data flow through the FPGA.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

The block diagram of a pipelined MF is shown in Fig. 2. Each MF uses 2t − 1 CAM units. The latency of the
MF is less than 29 clock cycles and reduces as both 2t (due to pipelining) and as t (since the number of sequential
internal stages s = t).

Minimum set selector
The MSS is based on Batcher’s bitonic sorter12,13 that uses compare-and-exchange (CAE) units. Each CAE sorts
its two inputs into ascending order. We implement an MSS that sorts 2t inputs minimally so that the first 2t−1
values are the smallest.

Figure 3 shows a block diagram of a pipelined MSS. We take advantage of the pipelined design to process both
the row-minima and the column-minima sequentially using a single MSS per node. It is possible to increase the
duty factor by using the same MSS for multiple nodes, further increasing efficiency and reducing resource usage
for a given latency requirement. The latency of the MSS is less than 29 clock cycles and reduces with t as ≈ t2 ,
since the number of sequential internal stages s = 1

2 (t − 1)t + 1 . MSS uses 2t−1s CAE units.

CAM

CAM

CAM

CAM

CAM

CAM

CAM

. . .

Minrow 0

Minrow 1

Minrow 7

RM

TMP
row 0

CAM

CAM

CAM

CAM

CAM

CAM

CAM

TMP
row 1

Latency (Cycles)
0 1 2 3 4

Figure 2.   Block diagram of a pipelined MF8 corresponding to an MF built for t = 3.

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

CAE

RM

Latency (Cycles)
0 1 2 3 4

Min-4

Max-4

Figure 3.   Block diagram of a pipelined MSS8 corresponding to an MSS built for t = 3 . The green (red) arrows
represent the smaller (larger) of the two outputs of the respective CAE units.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

Usage Timing Resources

Block Module
Pipelined
function Latency (cc) Latency (ns)

Initiation
interval (cc)

Digital signal
processors Flip-flops Lookup tables

(full system) 4160 4,368,233 3,237,529

all_LC 24 20.60 24 3936 644,468 400,689

LC (×48) 22 18.90 22 82 13,554 8320

LC_(D + D) 2 1.70 1 2 768 130

LC_(16D + D) 2 1.70 1 32 576 301

LC_(16U+) 2 1.70 1 48 – 150

LC_ET 1 0.85 1 – – 7120

all_MF16 27 22.95 27 – 480,676 285,638

MF16 (×48) 26 22.10 26 – 10,013 5653

MF16_PS0
(×2)

1 0.85 1 – 392 320

MF16_PS1
(×2)

1 0.85 1 – 196 160

MF16_PS2
(×2)

1 0.85 1 – 98 80

MF16_PS3
(×2)

1 0.85 1 – 49 40

all_MSS16 29 24.65 29 – 326,596 342,865

MSS16 (×48) 27 22.95 27 – 6035 6833

MSS16_PS
(×7)

1 0.85 1 – 392 512

CP 8 6.80 1 – – 1024

all_MF8 29 24.65 29 – 546,101 627,548

MF8 (×48) 27 22.95 27 – 5232 12,911

BPM16 → 8 10 8.50 10 – 1757 10,763

MF8_PS0
(×2)

1 0.85 1 – 196 160

MF8_PS1
(×2)

1 0.85 1 – 98 80

MF8_PS2
(×2)

1 0.85 1 – 49 40

all_MSS8 19 16.15 19 – 112,372 196,993

MSS8 (×48) 17 14.45 17 – 1956 3938

MSS8_PS
(×4)

1 0.85 1 – 196 256

CP 4 3.40 1 – – 1024

all_MF4 19 16.15 19 – 381,845 157,052

MF4 (×48) 17 14.45 17 – 1810 3181

BPM8 → 4 6 5.10 6 – 463 2445

MF4_PS0
(×2)

1 0.85 1 – 98 80

MF4_PS1
(×2)

1 0.85 1 – 49 40

all_MSS4 13 11.18 13 – 41,284 89,809

MSS4 (×48) 11 9.46 11 – 667 1777

MSS4_PS
(×2)

1 0.85 1 – 98 128

CP 2 1.70 1 – – 1024

all_MF2 12 10.20 12 – 321,509 83,132

MF2 (×48) 10 8.50 10 – 553 1686

BPM4 → 2 4 3.40 4 – 137 1337

MF2_PS0
(×2)

1 0.85 1 – 49 40

all_MSS2 9 7.65 9 – 15,574 90,450

MSS2 (×48) 6 5.10 6 – 206 1538

MSS2_PS
(×1)

1 0.85 1 – 49 40

CP 2 1.70 1 – – 1024

Continued

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

Consensus protocol
The implementation of the CP is based on an array of booleans GL[l − 1][i][2][j] storing valid links between a
node (i, l) and another node (j, l ± 1) , where the sign is stored in the third (binary) dimension. GL contains a
redundancy since for each pair of nodes in adjacent layers, the status of both unidirectional partner links, one
directed radially outward and the other directed radially inward, are stored. This redundancy is an important
aspect of the design since it enables a completely deterministic (data-independent) architecture and latency.

Consensus is imposed by setting both partner links to false if either of the partner links is false. This crucial
step propagates locally-generated information in both directions along the tracks, enabling a globally-optimal
decision.

Build pruned matrix
As described above, all laplacians are computed once at the beginning of the wedge data flow into the circuit and
stored in TM as one 2n × 2n matrix per node. Starting with the second iteration of the algorithm, t < n , the MF
process 2t × 2t matrices of surviving paths and the MSS process 2t-length arrays. Thus we need to build pruned
versions of TM for each node, TM→TMP, with the lengths of the j and k dimensions each reduced by a factor
of 2 (given our rejection factor of 50%). The 2t × 2t TMP matrices per node serve as the inputs to MF for t < n.

Table 1.   Timing performance and resource usage of various modules and sub-modules as estimated by
synthesis using version 2020.2 of vitis hls. In the “block” column, “all” refers to the collection over all 3× 16
nodes in the graph, corresponding to 3 intermediate sensor layers and 16 hits per layer. This replication of the
LC, MF and MSS modules is also indicated in the “module” column. In the “pipelined function” column, “PSp”
refers to the pth pipeline stage of the minimum finders, and the replication of the pipeline stages in the MSS
is indicated. The pipelined functions used in LC are described in section “Resource usage”. Initiation interval
refers to the wait time until the circuit can process new data. Time delay in terms of the number of clock cycles
is denoted by “cc”, where 1 cc = 0.85 ns. The first row shows the total resources used by the entire system.

Usage Timing Resources

Block Module
Pipelined
function Latency (cc) Latency (ns)

Initiation
interval (cc)

Digital signal
processors Flip-flops Lookup tables

(full system) 4160 4,368,233 3,237,529

QC fAT 2 1.70 2 – 284,388 120,911

fBT 24 20.62 24 224 98,936 71,689

rGT 6 5.10 6 – 3860 86,302

Figure 4.   Block diagram of the event-level pipeline. The logic modules are indicated in color and the shift
registers for TM and the node coordinates (NC) are indicated by the clear blocks.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

Pruning eliminates 34 of the local paths at each node. Therefore TM is initially a completely dense matrix and
pruning and consensus increases its sparsity; with each iteration of pruning its density decreases by a factor of 4.

Figure 5.   Examples of the track-finding ability of the algorithm, demonstrated on simulated data. The C code
used for vitis synthesis is executed as software to emulate the algorithm’s hardware results. The red points
represent the hits associated with the high-momentum particle of interest, and the blue points represent hits
from random noise. The red curve shows the trajectory identified by the algorithm. The embedded particle has a
transverse momentum of 10 GeV/c and traverses an axial magnetic field of 2 T.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

Figure 6.   Results of a high-statistics C simulation test. Distributions of the smoothness metrics �φ′′ and �z′′
and the consistency metrics �φ′ and �z′ in the two dimensions respectively are shown for ten million simulated
particles ( pT > 10 GeV). The distributions are discrete because all hit coordinates and their derivatives are
represented as integers. The rate of unreconstructed or poorly reconstructed tracks, which are indicated by a
value set to 104 for these metrics (shown in red), is 0.05%.

Figure 7.   Results of a high-statistics C simulation test. Distributions of the difference
σc ≡ (creconstructed − ctruth) and σ� ≡ (�reconstructed − �truth) are shown for ten million simulated particles,
where c refers to the curvature of the trajectory in the azimuthal dimension and � refers to the cotangent of the
polar angle in the longitudinal dimension. The curvature is defined as c ≡ q/pT where q is the particle charge
and pT is its momentum component transverse to the beam collision axis. The curvature and � distributions are
generated uniformly over the intervals [−0.1, 0.1] GeV−1 and [−0.8, 0.8] respectively. The curvature resolution is
7.9 TeV−1 and the � resolution is 0.25 ‰.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

The purpose of the build-pruned-matrix (BPM) module is to compactify the sparsified version of TM to
produce TMP which is smaller and almost completely dense. BPM uses the information on surviving links stored
in the GL matrix to perform the compactification. BPM executes before MF in order to supply TMP to MF.

One of the goals of the algorithm proposed in3 is to make the FPGA circuit architecture, as well as its
throughput and latency, completely independent of features of the data. All characteristics of the circuit should
be a-priori deterministic and calculable. To this end, BPM defines TMP with fixed-length dimensions based on
the deterministic nature of pruning.

The data dependency is handled by the consensus protocol. Another function of BPM is to propagate this
information garnered by CP. One of the sub-modules of BPM sets the laplacians to ∞ in TMP for those local
paths that are eliminated by CP. In this way, the data structures and logic circuits remain data-independent; the
local paths flagged by CP for elimination are removed by the next iteration of pruning.

This factorization of functions is one of the insights presented in this paper as a way to handle all data
with pre-determined circuits. One of the enabling features of this implementation is redundancy of critical
information. In the case of BPM, the information in GL is partially replicated by storing the node indices of
surviving links in redundant arrays. In practice, the additional memory usage is minimal and the benefit is
substantial. The latency of BPM is less than 10 clock cycles and reduces with t.

Quality control
The QC module consists of three sub-modules, findAllTracks (fAT), findBestTrack (fBT) and removeGhostTracks
(rGT). We choose one of the L layers as the anchor layer at which tracks are defined; in practice, the layer that
is radially in the middle is the most convenient. Iterating over all nodes in this layer, fAT creates a linked-list of
nodes connected to each of these anchor nodes, thereby making a collection of tracks.

Next, fBT computes the four crookedness values along each of these tracks, as mentioned in section “Quality
control”, using the node coordinates as inputs to DSPs to calculate first and second derivatives. Batcher’s bitonic
sorters are used to find the smallest and the largest values of each metric; four sorters are deployed in parallel to
ensure low latency. DSPs are used to calculate the crookedness values from these extrema.

Here again we encounter potential data-dependence in the number of track candidates. To eliminate data
dependence, the fBT circuitry is replicated for each anchor node, regardless of whether a candidate track passes
through that node. Typically, candidate tracks pass through half of the anchor nodes, implying that the other half
of the fBT resources are wasted. The resource usage shown in Table 1 indicates that this cost is a small fraction

Figure 8.   Results of a high-statistics C simulation test on ten million random hit collections, similar to Fig. 6
but without embedding a high-momentum particle of interest. Distributions of the smoothness metrics
�φ′′ and �z′′ and the consistency metrics �φ′ and �z′ in the two dimensions respectively are shown. The
spurious trigger rate is estimated to be (0.3± 0.2) per million collections, where a trigger track is defined as a
reconstructed track with all four quality metrics below the value of 10.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

of the total resources available. Hence we use this simple but effective solution to ensure a deterministic latency
of the fBT sub-module. The array of booleans GL (see section “Consensus protocol”), which keeps a record of
valid links between nodes, is used to flag and reject invalid track candidates subsequently.

For each of the four crookedness metrics, fBT deploys a MF to find the track with the smallest crookedness
value. If the same track is selected by all four criteria, fBT returns this track and its parameters as the output of
the circuit.

The final sub-module rGT removes the remaining (ghost) tracks from the array GL by purging their associated
links.

Track parameters and metrics
As shown in3, the inverse of the particle’s momentum transverse to the beam axis (i.e. curvature) is related to the
first derivative in the azimuthal coordinates, and the particle’s polar direction is related to the first derivative in the
longitudinal coordinates. Since these derivatives have already been computed and sorted in the QC module, we
use the average of the two median values (i.e. ignoring the extremum values) of these first derivatives to represent
the best track’s curvature and polar direction. These quantities are provided for subsequent trigger decisions.

Similarly, the four crookedness metrics of the best track are also provided by the QC module. Together they
serve as a proxy for the χ2 of a helical fit to the hit coordinates. These metrics can be used for subsequent rejection
of ghost tracks. On the basis of these metrics, studies of the ghost rate have been shown in3 to be low enough to
meet trigger-bandwidth requirements.

Event pipeline
The LHC produces new data every 25 ns. To accomplish a real-time processing architecture, we configure the
modules into blocks such that each block’s latency is under 25 ns. The pipeline breaks our iterative algorithm
into a sequence of smaller tasks to achieve data flow at a rate determined by the slowest task in the workflow. As
shown in Fig. 4, the data flow is designed to be unidirectional with no loops or branches and hence amenable
to pipelining.

We combine BPM and MF into one block, and MSS and CP into another block, so that together with LC
and QC there are four types of blocks constituting the event pipeline. This grouping minimizes the number of
pipeline stages, the idle time of the hardware and the total latency of the pipeline, while maintaining the 40 MHz
real-time throughput.

When a collision event occurs, data from a wedge of sensors are fed into the LC block. Its output TM is
available for the first MF (t = 4) before the next event arrives. We implement a “shift register” of TM such that
each event’s TM is accessible by all blocks processing that event sequentially (corresponding to t = 4, 3, 2, 1 ). In
synchronization, the event’s processed information evolves down the pipeline until the best track is generated
≈ 250 ns after the raw data were fed into the system. Since there are no loops and branches in this workflow, the
event pipeline can process a continuous stream of events indefinitely.

Validation
Detailed studies of the physics case for this algorithm and its analytic performance metrics have been presented
in3. It was shown that, for a 40 MHz beam collision rate with 200 proton-proton interactions per beam collision,
the algorithm can achieve a signal efficiency > 99.9 % and a spurious trigger rate of O(10) kHz.

The thrust of this paper is the algorithm’s implementation as a parallelized graph-computing architecture
that has a pre-determined latency, throughput and resource usage for a pattern recognition use case that is
typically considered to be non-deterministic. Since the algorithm has been re-implemented to deliver on these
requirements, we demonstrate the logical consistency of this implementation by executing on simulated data
the C code used for vitis synthesis. The data are simulated by embedding the hits associated with a high-
momentum charged particle ( pT > 10 GeV) within a collection of randomly distributed hits. We implement
multiple Coulomb scattering, which deflects the particle direction by an amount dependent on the momentum
and the radiation lengths traversed. The latter is 4% for each sensor layer at normal incidence, as in3. Assuming
2D pixels of dimensions 50 µ m × 50 µ m, hits are smeared uniformly over a ± 25 µ m interval in each dimension
to emulate digitization. Figure 5 shows examples of the software emulation, illustrating that the circuit logic
correctly finds the trajectory of the particle of interest.

As mentioned in the sections describing the quality control (QC) module, our circuit returns four quality
metrics as well as two physics parameters associated with the best track. The metrics referred to as �φ′′ ( �φ′ )
and �z′′ ( �z′ ) in3 quantify the largest difference in the second (first) derivatives along the track. The results of a
high-statistics C simulation (Fig. 6) show that the inefficiency of the algorithm on simulated data is 0.05%, and
demonstrate the effectiveness of the salient feature of our algorithm; local decisions coupled with information
percolation lead to the globally optimal decision.

The fidelity of the algorithm is demonstrated by comparing the curvature and the cotangent of the polar angle
of the reconstructed track with the corresponding values for the simulated particle. The comparison (Fig. 7)
demonstrates that tracks are reconstructed with the expected resolution and that the rate of non-Gaussian errors
is negligible.

An important aspect of trigger design is the rate of spurious triggers, i.e. reconstructed tracks satisfying
the trigger requirements in the absence of a true particle of interest. To estimate the spurious trigger rate for
this implementation, we execute the C code on ten million collections of random hits as for Fig. 6, but without
embedding a high-pT particle. The distributions of the quality metrics for (spurious) reconstructed tracks,
shown in Fig. 8, are skewed toward large values. We define a trigger track as a reconstructed track whose quality
metrics all have values less than 10. This selection requirement is motivated by Fig. 6 where the distributions

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

for correctly-reconstructed particles peak well below the value of 10 ( log10[metric]< 1 ), but have a second peak
well above this value when the algorithm misses one or more correct hits. With this quality requirement, the
algorithm’s efficiency is still 99.94% (the inefficiency for true particles increases from 0.05% to 0.06%), and the
spurious trigger rate is (0.3± 0.2stat) per million wedges. With the ≈ 2000 wedges needed for coverage of the
pixel detector, the expected spurious trigger rate is O(0.1%) per bunch crossing or O(40 kHz).

Note that the hit resolution assumed above is for single-pixel hits; charge-sharing between adjacent pixels
improves the cluster’s position resolution considerably. The performance of our algorithm improves with hit
resolution; to illustrate, the study is repeated with a hit resolution improved by a factor of two (rms of 7 µ m, as
assumed in3). For the same quality requirement on the trigger track as above, the inefficiency reduces by a fac-
tor of three, to 0.02% and the spurious trigger rate reduces by more than a factor of three, to < 0.1 per million
wedges or O(10 kHz), consistent with the detailed study presented in3.

Discussion
As discussed in3, the 2D pixel sensors of the ATLAS and CMS experiments at the LHC would record O (105) hits
every 25 ns. It would require a bandwidth of tens of Tbps to read out this information. An alternate approach is
to install the track-finding circuitry on-detector, requiring data transmission over local detector regions only.
Off-detector readout would be triggered if a high-momentum track is identified. Our design enables this edge-
computing capability; the point cloud would be partitioned into O (1000) wedges, each processed by our proposed
circuit, all on-detector. Our long-term vision is the implementation of this “smart tracker” with self-triggering
capability.

This edge-computing approach will require the slicing algorithm mentioned in the introduction to be
implemented as a high-throughput and low-latency circuit which will operate upstream of the track-finder
presented here. We note that the LUT and FF usage of the track-finder (shown in Table 1) is 80% and 50%
respectively of the resources available on the chosen FPGA. We will investigate the possibility of implementing
the slicing algorithm using the remaining resources, to minimize the system’s footprint, power and cooling needs.

The circuit design could be ported from an FPGA to an application-specific integrated circuit (ASIC) to
reduce the footprint substantially; however, as FPGAs with higher circuit density become available, a transition
to ASICs may be unnecessary. The XCVU19P is fabricated with the integrated-circuit technology node of 16 nm,
and 7 nm is expected for the next generation of FPGAs. Radiation tolerance can be achieved by using embedded
FPGA (eFPGA) technology to integrate the intellectual property (IP) core of the FPGA into an ASIC.

Table 2.   Resource usage according to vitis hls 2020.2 synthesis for three values of (L− 2) , the number of
intermediate sensor layers. The quality-control module is excluded from these syntheses because its resource
usage scales differently with (L− 2) . The usage for the rest of the circuit is proportional to (L− 2) , as expected
since the other modules are repeated for each intermediate layer.

Resource type

L − 2

1 2 3

Digital signal processors 1,312 2,624 3,936

Flip-flops 1,336,457 2,623,670 3,929,414

Lookup tables 912,402 1,931,541 2,832,108

Figure 9.   (left) LUT usage of the synthesized MF module as a function of 2t , the number of inputs. (right) LUT
usage of the synthesized MSS module as a function of 2t t2 , where 2t is the number of inputs to be sorted. The
open circles show the estimates from vitis hls for t ∈ {1, 2, 3, 4} respectively. The line represents the best linear
fit to the point estimates.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

Synposis
We summarize the salient features of our track-finding algorithm and its FPGA implementation.

1.	 Many machine-learning solutions to pattern-recognition problems are based on supervised learning (for
examples, see14 and references therein), thereby requiring (often large) training samples. Our solution
requires no training and can be considered as a form of unsupervised learning.

2.	 Unsupervised learning methods of pattern recognition or feature extraction may have a data-dependent
latency. For example, k-means clustering is a popular method of unsupervised learning to partition p points
into k clusters. It has been shown15 to have a data-dependent latency that is, in the worst-case, exponential.
Our method is explicitly designed to have a fixed latency; it is data-agnostic. This can be a crucial advantage
in decision-making applications where time and reliability are both of the essence.

We have demonstrated a partial solution for the challenging use case of real-time track-triggering at the LHC at
40 MHz. Furthermore, the latency is fixed at ≈ 250 ns which comfortably meets the experiments’ requirement
of a few µs.

Details of circuit synthesis
We provide a proof of the sort-and-scan engine and a summary of the hardware resource usage.

Sort and scan engines
We show that the implementation using MF and MSS is equivalent to the original pruning algorithm in3. In the
original presentation, a list L of n2 tuples (�ijk,l , j, k) at each node (i, l) is sorted in order of ascending laplacian
values �ijk,l , and the first n2 distinct occurrences of j and k index values are noted in sets Sj and Sk respectively.
For a given node (i, l), the creation of Sj and Sk is the goal of the pruning algorithm in3.

The same sets Sj and Sk can be built from the row and column minima of an n× n matrix TM, where TM(j, k)
contains the corresponding laplacian value. The smallest laplacian value in row a corresponds to the first
appearance of j = a in the ascending list L . Similarly, the smallest TM(j, k = a) in column a corresponds to the
first appearance of k = a in L.

Let M be the array of the row minima, where M(a) contains the smallest laplacian value in row a. Note
that if M(a) < M(b) , then the tuple with j = a occurs before the tuple with j = b in L . Therefore, the j-values
associated with the smallest n2 row minima are the first n2 distinct j-values that appear in L i.e. these j-values are
the elements of Sj.

Similarly, the k-values associated with the smallest n2 column minima are the first n2 distinct k-values in L ,
i.e. these k-values are the elements of Sk . The logic of the previous paragraph is symmetric between rows and
columns, since it can equally well be applied to the transpose of TM.

Resource usage
We summarize the resource usage by the LC, MF, MSS and QC modules as estimated by vitis hls. Table 1 shows
the timing characteristics and resource usage of the various blocks, modules and their constituent pipelined
functions.

Per Table 1, the LC module contains three pipelined functions, (1) LC_(D + D) adds two doublets D, where
each doublet of integer coordinates represent a 2D spacepoint, (2) LC_(16D + D) adds a doublet to an array of
16 doublets in parallel, and (3) LC_(16U+ ) performs pairwise addition on two arrays of 16 integers, in parallel,
after computing their respective absolute (unsigned) values, also in parallel. The last function in the LC module,
LC_ET, encodes each laplacian value and the corresponding node indices into a 24-bit word. Other labels used
in Table 1 are described in the table caption.

The choice of L = 5 pixel layers (planned for the ATLAS and CMS experiments at the HL-LHC) may be
replaced by silicon strip detectors at larger radii or planar geometries at fixed-target experiments. The relevant
parameter (L− 2) represents the number of intermediate layers at which graph computing is performed
(excluding the first and last layer). Our circuit may be deployed on a subset of the layers, upon considerations of
occupancy and acceptance. Table 2 shows the resource usage according to vitis synthesis for different numbers
of intermediate layers. Excluding the quality-control module, the usage for the rest of the circuit is proportional
to (L− 2) , as expected since the other modules are repeated for each intermediate layer.

Minimum Finder
Finding the smallest of 2t numbers requires O(t) sequential stages and clock cycles. The circuit implementation
needs O(2t) comparators. The number of lookup tables used by vitis hls for the MF module is shown in Fig. 9
for t ∈ {1, 2, 3, 4}.

Minimum Set Selector
Sorting 2t numbers requires O(t2) sequential stages and clock cycles. The circuit implementation needs O(2t t2)
comparators. The number of lookup tables used by vitis hls for the MSS module is shown in Fig. 9 for
t ∈ {1, 2, 3, 4}.

Data availability
The dataset used and analysed during the current study is available from the corresponding author on reason-
able request.

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:10181 | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

Received: 4 August 2023; Accepted: 22 April 2024

References
	 1.	 Watson, D. S. On the philosophy of unsupervised learning. Philos. Technol. 36, 28. https://​doi.​org/​10.​1007/​s13347-​023-​00635-6

(2023).
	 2.	 Ghahramani, Z. Unsupervised learning. In Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in Computer Science,

vol 3176 (eds. Bousquet, O. et al.) (Springer, 2004). https://​doi.​org/​10.​1007/​978-3-​540-​28650-9_5.
	 3.	 Kotwal, A. V. Searching for metastable particles using graph computing. Sci. Rep. 11, 18543. https://​doi.​org/​10.​1038/​s41598-​021-​

97848-6 (2021).
	 4.	 The ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery.

Nature 607, 52–59. https://​doi.​org/​10.​1038/​s41586-​022-​04893-w (2022).
	 5.	 The CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607, 60–68.

https://​doi.​org/​10.​1038/​s41586-​022-​04892-x (2022).
	 6.	 Kotwal, A. V. A fast method for particle tracking and triggering using small-radius silicon detectors. Nucl. Inst. Meth. Phys. Res.

A 957, 163427. https://​doi.​org/​10.​1016/j.​nima.​2020.​163427 (2020).
	 7.	 Trovato, M. (for the ATLAS and CMS Collaborations). Track Trigger at the High Luminosity LHC. PoS LHCP2018 259 (2018).
	 8.	 Gabrielli, A., Alfonsi, F., Annovi, A., Camplani, A. & Cerri, A. Hardware implementation study of particle tracking algorithm on

FPGAs. Electronics 10(20), 2546. https://​doi.​org/​10.​3390/​elect​ronic​s1020​2546 (2021).
	 9.	 Elabd, A. et al. Graph neural networks for charged particle tracking on FPGAs. Front. Big Data 5, 145. https://​doi.​org/​10.​3389/​

fdata.​2022.​828666 (2022).
	10.	 Bartz, E. et al. FPGA-based real-time charged particle trajectory reconstruction at the Large Hadron Collider. In IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM) 64–71 (2017). https://​doi.​org/​10.​1109/​
FCCM.​2017.​27.

	11.	 Ryd, A. & Skinnari, L. Tracking triggers for the HL-LHC. Annu. Rev. Nucl. Particle Sci. 70, 171–195. https://​doi.​org/​10.​1146/​annur​
ev-​nucl-​020420-​093547 (2020).

	12.	 Batcher, K. E. Sorting networks and their applications. AFIPS ’68 (Spring): Proceedings of the spring joint computer conference
307–314. ACM digital library. https://​doi.​org/​10.​1145/​14680​75.​14681​21 (1968).

	13.	 Farmahini-Farahani, A. Modular design of high-throughput, low-latency sorting units, M.Sc. dissertation, University of Wisconsin-
Madison (2012).

	14.	 Summers, S. et al. Fast inference of Boosted Decision Trees in FPGAs for particle physics. JINST 15(5), P05026. https://​doi.​org/​
10.​1088/​1748-​0221/​15/​05/​P05026 (2020).

	15.	 Vattani, A. k-means requires exponentially many iterations even in the plane. Discrete Comput. Geom. 45, 596–616. https://​doi.​
org/​10.​1007/​s00454-​011-​9340-1 (2011).

Author contributions
AVK wrote the final version of the C code, synthesized the entire circuit and wrote the manuscript. HK wrote
the initial version of the C code and contributed to code validation. ZY contributed to key aspects of the algo-
rithm and to circuit synthesis of certain components. JF contributed to key aspects of circuit synthesis. HK
prepared Figs. 5, 6, 7 and 8, ZY prepared Fig. 9, and ZY and JF prepared Fig. 1, 2, 3 and 4. All authors reviewed
the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.V.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1007/s13347-023-00635-6
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1038/s41598-021-97848-6
https://doi.org/10.1038/s41598-021-97848-6
https://doi.org/10.1038/s41586-022-04893-w
https://doi.org/10.1038/s41586-022-04892-x
https://doi.org/10.1016/j.nima.2020.163427
https://doi.org/10.3390/electronics10202546
https://doi.org/10.3389/fdata.2022.828666
https://doi.org/10.3389/fdata.2022.828666
https://doi.org/10.1109/FCCM.2017.27
https://doi.org/10.1109/FCCM.2017.27
https://doi.org/10.1146/annurev-nucl-020420-093547
https://doi.org/10.1146/annurev-nucl-020420-093547
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1088/1748-0221/15/05/P05026
https://doi.org/10.1088/1748-0221/15/05/P05026
https://doi.org/10.1007/s00454-011-9340-1
https://doi.org/10.1007/s00454-011-9340-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A low-latency graph computer to identify metastable particles at the Large Hadron Collider for real-time analysis of potential dark matter signatures
	Methods
	Pruning
	Consensus
	Quality control

	Implementation
	Laplacian calculator
	Minimum finder
	Minimum set selector
	Consensus protocol
	Build pruned matrix
	Quality control
	Track parameters and metrics
	Event pipeline

	Validation
	Discussion
	Synposis
	Details of circuit synthesis
	Sort and scan engines
	Resource usage
	Minimum Finder
	Minimum Set Selector

	References

