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A low‑latency graph computer 
to identify metastable particles 
at the Large Hadron Collider 
for real‑time analysis of potential 
dark matter signatures
Ashutosh Vijay Kotwal 1*, Hunter Kemeny 1, Zijie Yang 2 & Jiqing Fan 2

Image recognition is a pervasive task in many information-processing environments. We present 
a solution to a difficult pattern recognition problem that lies at the heart of experimental particle 
physics. Future experiments with very high-intensity beams will produce a spray of thousands of 
particles in each beam-target or beam-beam collision. Recognizing the trajectories of these particles 
as they traverse layers of electronic sensors is a massive image recognition task that has never 
been accomplished in real time. We present a real-time processing solution that is implemented in a 
commercial field-programmable gate array using high-level synthesis. It is an unsupervised learning 
algorithm that uses techniques of graph computing. A prime application is the low-latency analysis of 
dark-matter signatures involving metastable charged particles that manifest as disappearing tracks.

Keywords  Unsupervised learning, Fast pattern recognition, Low latency, Disappearing track trigger, Large 
Hadron Collider

One of the challenges of machine intelligence is its application in use cases of high throughput and low latency. 
Since data often populate a high-dimensional parameter space, the classification function contains a huge number 
of parameters which can limit the computational speed. The evaluation of elaborate functions such as deep neural 
networks in software on generic CPUs is often replaced by porting the code to run on specialized hardware such 
as GPUs, resulting in substantial increase in throughput. Another approach is to use configurable logic blocks, 
distributed memory and digital signal processors on a field-programmable gate array (FPGA) to implement a 
dedicated algorithm. The advent of high-level synthesis (HLS), wherein a high-level programming language such 
as C/C++ can be used to code the algorithm in a manner amenable to an FPGA implementation, has helped 
to reduce the development time by automating the conversion of C/C++ code to a digital circuit on an FPGA.

Broadly speaking, applications of machine intelligence can be classified as supervised/reinforcement or 
unsupervised learning. Two requirements for the former are (1) the availability of high-quality training data, as 
exemplified by deep-learning models, and (2) external intervention or feedback during the training or testing 
phase. Supervised learning models can be executed with a deterministic latency. On the other hand, unsupervised 
learning methods typically have a data-dependent latency, but with the advantage of not having requirements 
(1) and (2).

This paper is novel in three respects. First, we present an implementation of an unsupervised learning 
method1,2 that executes with a fixed latency. Second, instead of software, we demonstrate a digital circuit imple-
mentation that executes with much higher throughput and lower latency than is possible in software. Third, the 
method is based entirely on a graph-computing architecture; all computations are uniformly distributed across 
all graph nodes with a complete absence of any central processor. Its highlights also include modularity, paral-
lelizability and amenability to pipelining.

For a demonstration we choose an extreme use case for machine intelligence; the reconstruction of particle 
trajectories at the Large Hadron Collider (LHC), as described in3. High-density bunches of protons collide at 25 
ns intervals, and each bunch crossing is expected to produce up to 200 individual proton-proton collisions on 
average at the high-luminosity LHC (HL-LHC). With each collision generating about 70 charged particles that 
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pass through the cylindrical layers of fast, pixelated silicon sensors, tens of thousands of space points are gener-
ated at a rate of 40 MHz at the intersections of the particle trajectories with these layers3. Within this massive 
point cloud, occasionally there are embedded sets of space points associated with a handful of high-momentum 
charged particles; these signatures lasting for a few nanoseconds indicate the occurrence of rare quantum-
mechanical processes. Such processes have identified fundamental laws of physics that govern the behavior of 
the building blocks of matter, their interactions via quantum forces, and the mass-generating effect called the 
Higgs mechanism (see4,5 for reviews).

An exciting possibility for the LHC is that similar quantum-mechanical processes might describe the produc-
tion and decay of heavy particles associated with dark matter. If such processes were active soon after the Big 
Bang and were responsible for creating the observed dark matter relic density in the Universe, the LHC beam 
energy and collision rate may be sufficient to reproduce these processes in the laboratory (see references of3). 
The key question is—can we identify and filter out these rare, ephemeral traces from the enormous point clouds 
which are refreshed at 40 MHz? To date, no computational scheme has been operated to cope with this use case 
at the ATLAS and CMS experiments.

A potential solution to this challenge was proposed in3 using unsupervised machine learning based on graph 
computing. This algorithm proceeds in two steps. In the first step, the entire point cloud is sliced into one-dimen-
sional (azimuthal boundaries only) or two-dimensional (azimuthal and longitudinal boundaries) wedges such 
that each wedge contains N = 2n space points on each of the concentric, cylindrical sensor layers. The overlap 
between these subsets may be tuned to optimize the acceptance for a high-momentum particle, i.e. the trajec-
tory of such a particle of interest must be completely contained within one of the wedges. The boundaries of the 
wedges vary from event to event depending on the distribution of the points on the layers. The implementation 
of this “slicing” algorithm will be the topic of a future paper.

In this paper we describe the FPGA implementation of the second step whose conceptual design was discussed 
in3. This graph-computing algorithm performs unsupervised pattern recognition on the set of 3D space points 
in a wedge, such that the radially-distributed set of selected points is consistent with the sensor signals (“hits”) 
deposited by a high-momentum particle traversing a uniform, axial magnetic field.

We demonstrate that the graph-computing algorithm can be implemented in an FPGA to achieve the 40 MHz 
throughput with a latency of 250 ns. Charged-particle progenitors of dark matter may be produced at the LHC 
(see references of3), with the only visible signature being a charged-particle trajectory (“track”) if the progenitor 
decays invisibly into dark matter after traversing the silicon sensors, i.e. disappearing tracks. Since each beam 
crossing produces many megabytes of sensor data, the total data rate at the beam crossing frequency of 40 MHz 
exceeds the readout and processing capability by two orders of magnitude. Fortunately, a very large fraction of 
collisions do not produce the rare processes of physics interest. The essential technology for filtering out the small 
fraction of interesting collisions is “trigger” electronics that performs fast pattern recognition of sought-after 
signatures hidden in the sensor data. Such triggers have been operational for electrons, muons, photons and 
collimated particle flows called jets. However, a trigger for disappearing tracks has never been operational at the 
LHC, potentially preventing new physics from being discovered. Our trigger design is a significant step towards 
creating a disappearing track trigger with the requisite throughput and latency to handle the full bandwidth of 
the LHC experiments.

A disappearing-track trigger has to satisfy two requirements. First, a track must be found as soon as it is 
produced and before it decays. To satisfy this requirement, the track trigger must process information from the 
silicon pixel detector at the closest possible distance from the beam axis, typically within a radius of ≈ 25 cm. 
For this reason we focus on track-triggering with a 5-layer pixel detector that is being built for the ATLAS and 
CMS experiments at the LHC. If the track trigger is based on sensors at larger radii, a significant loss in efficiency 
is incurred for interesting ranges of particle lifetime, as shown in3.

The second requirement of a disappearing-track trigger is that no charged particle or energy be detected at 
larger distances from the beam collision point, that can be associated with the trigger track in the pixel detector. 
This veto can be provided by existing calorimeter/muon-based triggers for high-momentum electrons, muons, 
protons, pions and kaons using the spatial and momentum correlation between the trigger signals. Optionally, 
the veto can be incorporated in the software-based filter at a later stage in the trigger chain. Hence we prioritize 
the first requirement of a real-time track trigger using the small-radius pixel detector.

We emphasize that our design is not limited or specific to the pixel detector; it is configurable for any number 
of layers at any radii, and for any geometry of the pixels or strips. Silicon strip-based detectors will be deployed 
by the ATLAS and CMS experiments in the radial range of 30–100 cm. Our design can be configured for 
general-purpose track reconstruction above a momentum threshold in the strip detector; this application will 
be considered in future work.

Detailed comparisons of our method with other methods based on associative memory, the Hough transform, 
neural networks, or tracklet-finding in paired sensors have been presented in Refs.3,6. The primary advantage of 
our method compared to the associative memory7, Hough transform8 and neural network9 techniques is that 
our method is intended to operate in the first-level trigger with an input rate of 40 MHz, while the latter are 
being pursued for the next trigger level with a lower input rate. The tracklet approach can process input data at 
40 MHz but requires a special sensor configuration with pairs of closely-spaced strip layers10; our approach is 
compatible with any sensor configuration. A review of tracking triggers at the HL-LHC can be found in Ref.11.

Methods
The methodology of3 is summarized here. We consider L = 5 silicon pixel-sensor layers and N = 2n = 16 hits 
per layer in the wedge; L and N are adjustable within FPGA resource constraints. With L× N  coordinates as 
input, this algorithm finds smooth trajectories of particles. Each hit in the N × L grid is treated as a node in a 
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graph. Graph-computing logic is used to compute discretized second derivatives (“laplacians”) at each node of 
the middle three layers. A particle’s helical trajectory is represented by a path through the graph that contains 
one node in each layer. As shown in3, reconstructing the trajectory corresponds to minimizing the (absolute 
value of the) laplacian at all nodes on this path.

A key insight of the algorithm is that the global minimum of all (L− 2)N3 laplacians is not found by searching 
for the local minima at each node. On the contrary, the algorithm succeeds by iteratively vetoing poor trajectories, 
i.e. rejecting the combinations of three nodes (triplets) that correspond to a large laplacian value. We refer to 
this method of convergence as pruning. The fraction of triplets that are rejected at each iteration can be tuned; 
following3, this implementation uses the fraction of 50%. Faster convergence would be achieved if the rejection 
fraction were say 75%—whether the robustness demonstrated in3 would be maintained for a larger rejection 
fraction is a topic for future study.

The number of links at a node with its two adjacent layers is initially N2 , so the total number of links is 
initially (L− 1)N2 . These links are iteratively pruned, until only links that comprise smooth paths through all 
layers remain. Each iteration comprises two logical operations, pruning and consensus.

At the end of the iterative procedure, multiple trajectories are found in a wedge, most of which are “ghosts” 
and result from combinatorial chance. Ghost tracks zig-zag and do not satisfy smoothness criteria. A quality 
control procedure selects the smoothest trajectory. We show that the smoothest trajectory is always that of the 
high-momentum particle of interest, should one exist in the wedge. In the rare circumstance that there are two 
or more particles of interest in the wedge, simple extensions of the algorithm allow for further selection on the 
basis of momentum, smoothness and the desired number of tracks; these quantities are computed in the quality-
control procedure. Thus it is straightforward to configure the quality control procedure to output all trajectories 
that satisfy trigger criteria.

Pruning
Pruning is described in3 as follows: “The sort engine sorts the N × N list of �ijk,l values in increasing magnitude. 
Each �ijk,l value is stored as part of a tuple containing the associated j and k values which identify the 
corresponding triplet of hits. The sorted list of tuples is used by the scan engine to create a ranked list of j and k 
values, where the rank is defined as the ordinal number of first appearance in the sorted �ijk,l list. Thus, a j or k 
value with a large rank is one that never makes a smooth trajectory, while a low rank corresponds to a smoother 
trajectory. In each sort cycle, the j and k values with large rank are dropped, which purges those links that are 
unlikely to form smooth trajectories.” Here �ijk,l represents the 1D or 2D laplacian value as defined in3 for the 
triplet of hits (i, j, k), where hit i in layer l ∈ {1, . . . , L− 2} is linked to hit j in the next radial layer (l + 1) and hit 
k in the previous radial layer (l − 1) . We implement the tuple as a 24-bit integer in which the upper 16 bits store 
the laplacian and the lower byte stores j and k in 4 bits each.

Pruning is an iterative and distributed algorithm. The iteration count t runs from t = n to t = 1 and t → t − 1 
for each successive iteration. For a given iteration, at each node i in layer l, there are approximately 2t × 2t 
possible local paths connecting the nodes in layers l − 1 , l, and l + 1 . Each local path at node (i, l) consists of 
two links; one link to an outer node (j, l + 1) and one link to an inner node (k, l − 1) . We denote these links as 
(i, l; j, l + 1) and (i, l; k, l − 1) respectively. This local path has the discrete laplacian value �ijk,l . As described 
in3, pruning reduces the number of viable paths at each node to 2t−1 × 2t−1 , such that there are 2t−1 surviving 
(i, l; j, l + 1) links and 2t−1 surviving (i, l; k, l − 1) links.

A highlight of this paper is the implementation of the sort and scan engines that is fast, modular, parallelizable 
and amenable to pipelining. We prove (see section “Sort and scan engines”) that the combination of the sort and 
scan engines is mathematically equivalent to: (a) for each (i, l), construct a matrix of tuples indexed by the j and k 
values, (b) construct a MinimumFinder that finds the tuple with the smallest laplacian value in each row of this 
matrix, (c) the array of these minima, indexed by row, is processed by a Minimum Set Selector (MSS) circuit, 
which splits the array into two halves; of the 2t minima, the lower (upper) half contains the smallest (largest) 
2t−1 laplacians. Only the lower half are propagated to the next iteration, achieving the intended 50% rejection 
factor during pruning.

The symmetry between j and k (i.e. linked nodes in the adjacent sensor layers at larger and smaller radii 
respectively) is maintained by running in parallel a second MinimumFinder circuit on a transposed matrix of 
tuples.

The MSS design can be easily modified to reject say 75% at each iteration, by saving only the smallest 2t−2 
laplacians. The design is efficient because no time or FPGA resources are wasted in further sorting, which is 
irrelevant at a given iteration due to the iterative nature of the algorithm.

Consensus
As described in3, the consensus protocol is another crucial insight contributing to the success of the algorithm. 
The consensus protocol enables the local decisions at each node to be propagated to their linked nodes in 
adjacent layers so that the algorithm ultimately converges to the globally smoothest path. The consensus protocol 
is invoked after each iteration of pruning. Information percolates over time from each layer to more and more 
distant layers and a global vision over all layers is eventually achieved. In concert, all heavy-duty computations 
in the pruning step are local and distributed across all the nodes to be executed in parallel with low latency and 
high throughput.

In the consensus protocol, each link (a, l1; b, l2) is compared with its partner link (b, l2; a, l1) as maintained by 
the two respective nodes (a, l1) and (b, l2) . If either link has been pruned by its respective node, the partner link is 
also eliminated from its linked node. The consensus protocol ensures that all surviving links are bi-directional, 
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i.e. both nodes agree on their mutual link. Hence, after each iteration of pruning and consensus, the number of 
surviving links at each node is somewhat smaller than 2t × 2t.

Quality control
At the end of this iterative algorithm, any surviving global path of length L− 1 provides a linked list of nodes 
that serves as a reconstructed track3. Multiple tracks may be found in a wedge, most of which are ghosts. There 
is no assurance yet of the track quality—the goal of pruning and consensus is to find the smoothest possible 
tracks without any a-priori threshold on the smoothness.

A subsequent quality control procedure has been described in3. For both the first and second (signed) 
derivatives, crookedness is defined as the largest difference between any pair of nodes along a track. For example, 
the second derivative of a zig-zag track changes sign and will likely have a large value of crookedness. These 
metrics are computed separately for each dimension of 2D tracks. If the same track has the smallest value of 
crookedness for each of the four metrics, it is labelled as the smoothest track and selected as the final output of 
the algorithm.

Useful byproducts of the quality control procedure are the selected track’s curvature (inverse transverse 
momentum) and polar direction, as well as the four metrics of track quality. Trigger decision criteria can sub-
sequently be applied to these quantities. It is straightforward to add a simple circuit to compute the track’s 
azimuthal angle.

A possibility considered and resolved in3 is the intersection of two tracks. The solution involves an 
intervention after the second-last iteration to check for two smooth trajectories passing through a node. As the 
pruning executes at each node simultaneously, the required actions can be inserted into each node engine. Since 
the intersection of two smooth trajectories is a rare occurrence and can be resolved with a small addendum, the 
circuitry required for this intervention will be discussed in a future paper.

Implementation
In this section we discuss the implementation details of the hardware modules. As shown in Fig. 1, the data 
flow through the following modules in sequence; laplacian calculator (LC), minimum finders (MF), maximum 
set selectors (MSS) and consensus protocol (CP). The latter three are chained n times for t = n . . . 1 . The final 
module is quality control (QC).

We implement the circuit using the xilinx vitis hls tool. vitis hls generates an RTL (register-transfer level) 
design of the digital network in Verilog and VHDL formats from its high-level C/C++ representation. These RTL 
formats can be used for programming an FPGA. Our results are presented using the xilinx FPGA XCVU19p-2-e, 
which has 4.1M lookup tables (LUT), 8.2M flip-flops (FF) and 3840 digital signal processors (DSP). All circuits 
are synchronous with an internal clock of 0.85 ns cycle time. Though a little faster than the recommended 1.1 ns 
clock cycle for this FPGA, it demonstrates the feasibility of a real-time track trigger.

In section “Resource usage” we show the hardware resource usage on the FPGA in terms of LUTs, FFs and 
DSPs, as well as module latencies according to the vitis synthesis.

Laplacian calculator
The computation of N3(L− 2) values of �ijk,l from N × L coordinates is shown in3 using weighted sums. The 
weighted coordinates incorporate the radial distances between layers, alignment corrections, and differences in 
resolution between the azimuthal and longitudinal dimensions. The weights also depend on whether the first 
or second derivative is being computed. For each hit there are three weighted coordinates for the three possible 
second derivatives (Eq. 7 of6), and two weighted coordinates for the forward and backward difference respectively 
(Eq. 6 of6). These five weighted coordinates for each hit position (per dimension) can be compacted into a long 
integer and stored in a lookup table.

Using the weighted coordinates as inputs, the LC uses only addition and the absolute value operation to 
compute the N3(L− 2) tuples and save them in an (L− 2)× N × N × N  dimensional array TM. The tuple 
(laplacian, j, k) corresponding to one local path at node (i, l) is located at TM[l − 1][i][j][k].

The loops over l and i are unrolled so that the computations at each node proceed simultaneously in 
independent, replicated modules. In each module, the 3-term sum corresponding to the laplacian is split into 
two sequential pairwise sums. The latter are embedded inside a pipelined loop over j and an unrolled loop over 
k. A pairwise sum is performed by a DSP in one clock cycle.

The LC is designed for two-dimensional silicon sensors that measure both azimuthal ( φ ) and longitudinal (z) 
coordinates. We represent these coordinates as 16-bit integers, which are passed to the LC as a bit-packed 32-bit 
word. In the LC, both coordinates are unpacked and their second derivatives are computed in a set of parallelized 
and pipelined DSPs. The final steps compute and add the respective absolute values, again using DSPs, to obtain 
the 2D laplacian �ijk,l = |φ′′

ijk,l | + |z′′ijk,l | (for l ∈ {1, . . . , L− 2})3, and pack the 24-bit tuple. The difference in the 
sensors’ measurement resolution between the azimuthal and longitudinal coordinates has already been taken 
into account in their respective weighted values supplied to the LC. We expect 16-bit coordinates to provide 
adequate resolution of O(1 µ m) since wedge dimensions are expected to be smaller than 6 cm.

This design results in a 4-stage pipeline with N = 2n iterations over the pipeline, resulting in efficient (high 
duty factor) usage of LUTs, FFs and DSPs. With N = 16 we achieve a latency of 21 ns (24 clock cycles) for the LC.

Minimum finder
The MF architecture is a pipeline of t stages, with each stage consisting of 2t−1, 2t−2, . . . , 1 compare-and-minimize 
(CAM) units running in parallel. Each CAM outputs the smaller of its two input laplacians. The MF finds the 
minimum of 2t inputs with a latency of 2t clock cycles. For each node (i, l) the row-wise minima of the 2D array 
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TM[l − 1][i] are stored in a 1D array of length 2t indexed by row. The loop over rows is pipelined to use a single 
MF and obtain an efficient architecture with a high duty factor. A second, identical MF processes the transpose 
of TM[l − 1][i] to obtain the column minima. The two MF circuits per node run concurrently. The 1D array of 
row minima (and equivalently, the column minima) is denoted as RM in Fig. 2 as the MF module’s output and 
in Fig. 3 as the MSS module’s input respectively.

Figure 1.   Block diagram of the data flow through the FPGA.
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The block diagram of a pipelined MF is shown in Fig. 2. Each MF uses 2t − 1 CAM units. The latency of the 
MF is less than 29 clock cycles and reduces as both 2t (due to pipelining) and as t (since the number of sequential 
internal stages s = t).

Minimum set selector
The MSS is based on Batcher’s bitonic sorter12,13 that uses compare-and-exchange (CAE) units. Each CAE sorts 
its two inputs into ascending order. We implement an MSS that sorts 2t inputs minimally so that the first 2t−1 
values are the smallest.

Figure 3 shows a block diagram of a pipelined MSS. We take advantage of the pipelined design to process both 
the row-minima and the column-minima sequentially using a single MSS per node. It is possible to increase the 
duty factor by using the same MSS for multiple nodes, further increasing efficiency and reducing resource usage 
for a given latency requirement. The latency of the MSS is less than 29 clock cycles and reduces with t as ≈ t2 , 
since the number of sequential internal stages s = 1

2 (t − 1)t + 1 . MSS uses 2t−1s CAE units.
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Figure 2.   Block diagram of a pipelined MF8 corresponding to an MF built for t = 3.
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Usage Timing Resources

Block Module
Pipelined 
function Latency (cc) Latency (ns)

Initiation 
interval (cc)

Digital signal 
processors Flip-flops Lookup tables

(full system) 4160 4,368,233 3,237,529

all_LC 24 20.60 24 3936 644,468 400,689

LC (×48) 22 18.90 22 82 13,554 8320

LC_(D + D) 2 1.70 1 2 768 130

LC_(16D + D) 2 1.70 1 32 576 301

LC_(16U+) 2 1.70 1 48 – 150

LC_ET 1 0.85 1 – – 7120

all_MF16 27 22.95 27 – 480,676 285,638

MF16 (×48) 26 22.10 26 – 10,013 5653

MF16_PS0 
(×2)

1 0.85 1 – 392 320

MF16_PS1 
(×2)

1 0.85 1 – 196 160

MF16_PS2 
(×2)

1 0.85 1 – 98 80

MF16_PS3 
(×2)

1 0.85 1 – 49 40

all_MSS16 29 24.65 29 – 326,596 342,865

MSS16 (×48) 27 22.95 27 – 6035 6833

MSS16_PS 
(×7)

1 0.85 1 – 392 512

CP 8 6.80 1 – – 1024

all_MF8 29 24.65 29 – 546,101 627,548

MF8 (×48) 27 22.95 27 – 5232 12,911

BPM16 → 8 10 8.50 10 – 1757 10,763

MF8_PS0 
(×2)

1 0.85 1 – 196 160

MF8_PS1 
(×2)

1 0.85 1 – 98 80

MF8_PS2 
(×2)

1 0.85 1 – 49 40

all_MSS8 19 16.15 19 – 112,372 196,993

MSS8 (×48) 17 14.45 17 – 1956 3938

MSS8_PS 
(×4)

1 0.85 1 – 196 256

CP 4 3.40 1 – – 1024

all_MF4 19 16.15 19 – 381,845 157,052

MF4 (×48) 17 14.45 17 – 1810 3181

BPM8 → 4 6 5.10 6 – 463 2445

MF4_PS0 
(×2)

1 0.85 1 – 98 80

MF4_PS1 
(×2)

1 0.85 1 – 49 40

all_MSS4 13 11.18 13 – 41,284 89,809

MSS4 (×48) 11 9.46 11 – 667 1777

MSS4_PS 
(×2)

1 0.85 1 – 98 128

CP 2 1.70 1 – – 1024

all_MF2 12 10.20 12 – 321,509 83,132

MF2 (×48) 10 8.50 10 – 553 1686

BPM4 → 2 4 3.40 4 – 137 1337

MF2_PS0 
(×2)

1 0.85 1 – 49 40

all_MSS2 9 7.65 9 – 15,574 90,450

MSS2 (×48) 6 5.10 6 – 206 1538

MSS2_PS 
(×1)

1 0.85 1 – 49 40

CP 2 1.70 1 – – 1024

Continued
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Consensus protocol
The implementation of the CP is based on an array of booleans GL[l − 1][i][2][j] storing valid links between a 
node (i, l) and another node (j, l ± 1) , where the sign is stored in the third (binary) dimension. GL contains a 
redundancy since for each pair of nodes in adjacent layers, the status of both unidirectional partner links, one 
directed radially outward and the other directed radially inward, are stored. This redundancy is an important 
aspect of the design since it enables a completely deterministic (data-independent) architecture and latency.

Consensus is imposed by setting both partner links to false if either of the partner links is false. This crucial 
step propagates locally-generated information in both directions along the tracks, enabling a globally-optimal 
decision.

Build pruned matrix
As described above, all laplacians are computed once at the beginning of the wedge data flow into the circuit and 
stored in TM as one 2n × 2n matrix per node. Starting with the second iteration of the algorithm, t < n , the MF 
process 2t × 2t matrices of surviving paths and the MSS process 2t-length arrays. Thus we need to build pruned 
versions of TM for each node, TM→TMP, with the lengths of the j and k dimensions each reduced by a factor 
of 2 (given our rejection factor of 50%). The 2t × 2t TMP matrices per node serve as the inputs to MF for t < n.

Table 1.   Timing performance and resource usage of various modules and sub-modules as estimated by 
synthesis using version 2020.2 of vitis hls. In the “block” column, “all” refers to the collection over all 3× 16 
nodes in the graph, corresponding to 3 intermediate sensor layers and 16 hits per layer. This replication of the 
LC, MF and MSS modules is also indicated in the “module” column. In the “pipelined function” column, “PSp” 
refers to the pth pipeline stage of the minimum finders, and the replication of the pipeline stages in the MSS 
is indicated. The pipelined functions used in LC are described in section “Resource usage”. Initiation interval 
refers to the wait time until the circuit can process new data. Time delay in terms of the number of clock cycles 
is denoted by “cc”, where 1 cc = 0.85 ns. The first row shows the total resources used by the entire system.

Usage Timing Resources

Block Module
Pipelined 
function Latency (cc) Latency (ns)

Initiation 
interval (cc)

Digital signal 
processors Flip-flops Lookup tables

(full system) 4160 4,368,233 3,237,529

QC fAT 2 1.70 2 – 284,388 120,911

fBT 24 20.62 24 224 98,936 71,689

rGT 6 5.10 6 – 3860 86,302

Figure 4.   Block diagram of the event-level pipeline. The logic modules are indicated in color and the shift 
registers for TM and the node coordinates (NC) are indicated by the clear blocks.
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Pruning eliminates 34 of the local paths at each node. Therefore TM is initially a completely dense matrix and 
pruning and consensus increases its sparsity; with each iteration of pruning its density decreases by a factor of 4.

Figure 5.   Examples of the track-finding ability of the algorithm, demonstrated on simulated data. The C code 
used for vitis synthesis is executed as software to emulate the algorithm’s hardware results. The red points 
represent the hits associated with the high-momentum particle of interest, and the blue points represent hits 
from random noise. The red curve shows the trajectory identified by the algorithm. The embedded particle has a 
transverse momentum of 10 GeV/c and traverses an axial magnetic field of 2 T.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10181  | https://doi.org/10.1038/s41598-024-60319-9

www.nature.com/scientificreports/

Figure 6.   Results of a high-statistics C simulation test. Distributions of the smoothness metrics �φ′′ and �z′′ 
and the consistency metrics �φ′ and �z′ in the two dimensions respectively are shown for ten million simulated 
particles ( pT > 10 GeV). The distributions are discrete because all hit coordinates and their derivatives are 
represented as integers. The rate of unreconstructed or poorly reconstructed tracks, which are indicated by a 
value set to 104 for these metrics (shown in red), is 0.05%.

Figure 7.   Results of a high-statistics C simulation test. Distributions of the difference 
σc ≡ (creconstructed − ctruth) and σ� ≡ (�reconstructed − �truth) are shown for ten million simulated particles, 
where c refers to the curvature of the trajectory in the azimuthal dimension and � refers to the cotangent of the 
polar angle in the longitudinal dimension. The curvature is defined as c ≡ q/pT where q is the particle charge 
and pT is its momentum component transverse to the beam collision axis. The curvature and � distributions are 
generated uniformly over the intervals [−0.1, 0.1] GeV−1 and [−0.8, 0.8] respectively. The curvature resolution is 
7.9 TeV−1 and the � resolution is 0.25 ‰.
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The purpose of the build-pruned-matrix (BPM) module is to compactify the sparsified version of TM to 
produce TMP which is smaller and almost completely dense. BPM uses the information on surviving links stored 
in the GL matrix to perform the compactification. BPM executes before MF in order to supply TMP to MF.

One of the goals of the algorithm proposed in3 is to make the FPGA circuit architecture, as well as its 
throughput and latency, completely independent of features of the data. All characteristics of the circuit should 
be a-priori deterministic and calculable. To this end, BPM defines TMP with fixed-length dimensions based on 
the deterministic nature of pruning.

The data dependency is handled by the consensus protocol. Another function of BPM is to propagate this 
information garnered by CP. One of the sub-modules of BPM sets the laplacians to ∞ in TMP for those local 
paths that are eliminated by CP. In this way, the data structures and logic circuits remain data-independent; the 
local paths flagged by CP for elimination are removed by the next iteration of pruning.

This factorization of functions is one of the insights presented in this paper as a way to handle all data 
with pre-determined circuits. One of the enabling features of this implementation is redundancy of critical 
information. In the case of BPM, the information in GL is partially replicated by storing the node indices of 
surviving links in redundant arrays. In practice, the additional memory usage is minimal and the benefit is 
substantial. The latency of BPM is less than 10 clock cycles and reduces with t.

Quality control
The QC module consists of three sub-modules, findAllTracks (fAT), findBestTrack (fBT) and removeGhostTracks 
(rGT). We choose one of the L layers as the anchor layer at which tracks are defined; in practice, the layer that 
is radially in the middle is the most convenient. Iterating over all nodes in this layer, fAT creates a linked-list of 
nodes connected to each of these anchor nodes, thereby making a collection of tracks.

Next, fBT computes the four crookedness values along each of these tracks, as mentioned in section “Quality 
control”, using the node coordinates as inputs to DSPs to calculate first and second derivatives. Batcher’s bitonic 
sorters are used to find the smallest and the largest values of each metric; four sorters are deployed in parallel to 
ensure low latency. DSPs are used to calculate the crookedness values from these extrema.

Here again we encounter potential data-dependence in the number of track candidates. To eliminate data 
dependence, the fBT circuitry is replicated for each anchor node, regardless of whether a candidate track passes 
through that node. Typically, candidate tracks pass through half of the anchor nodes, implying that the other half 
of the fBT resources are wasted. The resource usage shown in Table 1 indicates that this cost is a small fraction 

Figure 8.   Results of a high-statistics C simulation test on ten million random hit collections, similar to Fig. 6 
but without embedding a high-momentum particle of interest. Distributions of the smoothness metrics 
�φ′′ and �z′′ and the consistency metrics �φ′ and �z′ in the two dimensions respectively are shown. The 
spurious trigger rate is estimated to be (0.3± 0.2) per million collections, where a trigger track is defined as a 
reconstructed track with all four quality metrics below the value of 10.
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of the total resources available. Hence we use this simple but effective solution to ensure a deterministic latency 
of the fBT sub-module. The array of booleans GL (see section “Consensus protocol”), which keeps a record of 
valid links between nodes, is used to flag and reject invalid track candidates subsequently.

For each of the four crookedness metrics, fBT deploys a MF to find the track with the smallest crookedness 
value. If the same track is selected by all four criteria, fBT returns this track and its parameters as the output of 
the circuit.

The final sub-module rGT removes the remaining (ghost) tracks from the array GL by purging their associated 
links.

Track parameters and metrics
As shown in3, the inverse of the particle’s momentum transverse to the beam axis (i.e. curvature) is related to the 
first derivative in the azimuthal coordinates, and the particle’s polar direction is related to the first derivative in the 
longitudinal coordinates. Since these derivatives have already been computed and sorted in the QC module, we 
use the average of the two median values (i.e. ignoring the extremum values) of these first derivatives to represent 
the best track’s curvature and polar direction. These quantities are provided for subsequent trigger decisions.

Similarly, the four crookedness metrics of the best track are also provided by the QC module. Together they 
serve as a proxy for the χ2 of a helical fit to the hit coordinates. These metrics can be used for subsequent rejection 
of ghost tracks. On the basis of these metrics, studies of the ghost rate have been shown in3 to be low enough to 
meet trigger-bandwidth requirements.

Event pipeline
The LHC produces new data every 25 ns. To accomplish a real-time processing architecture, we configure the 
modules into blocks such that each block’s latency is under 25 ns. The pipeline breaks our iterative algorithm 
into a sequence of smaller tasks to achieve data flow at a rate determined by the slowest task in the workflow. As 
shown in Fig. 4, the data flow is designed to be unidirectional with no loops or branches and hence amenable 
to pipelining.

We combine BPM and MF into one block, and MSS and CP into another block, so that together with LC 
and QC there are four types of blocks constituting the event pipeline. This grouping minimizes the number of 
pipeline stages, the idle time of the hardware and the total latency of the pipeline, while maintaining the 40 MHz 
real-time throughput.

When a collision event occurs, data from a wedge of sensors are fed into the LC block. Its output TM is 
available for the first MF (t = 4) before the next event arrives. We implement a “shift register” of TM such that 
each event’s TM is accessible by all blocks processing that event sequentially (corresponding to t = 4, 3, 2, 1 ). In 
synchronization, the event’s processed information evolves down the pipeline until the best track is generated 
≈ 250 ns after the raw data were fed into the system. Since there are no loops and branches in this workflow, the 
event pipeline can process a continuous stream of events indefinitely.

Validation
Detailed studies of the physics case for this algorithm and its analytic performance metrics have been presented 
in3. It was shown that, for a 40 MHz beam collision rate with 200 proton-proton interactions per beam collision, 
the algorithm can achieve a signal efficiency > 99.9 % and a spurious trigger rate of O(10) kHz.

The thrust of this paper is the algorithm’s implementation as a parallelized graph-computing architecture 
that has a pre-determined latency, throughput and resource usage for a pattern recognition use case that is 
typically considered to be non-deterministic. Since the algorithm has been re-implemented to deliver on these 
requirements, we demonstrate the logical consistency of this implementation by executing on simulated data 
the C code used for vitis synthesis. The data are simulated by embedding the hits associated with a high-
momentum charged particle ( pT > 10 GeV) within a collection of randomly distributed hits. We implement 
multiple Coulomb scattering, which deflects the particle direction by an amount dependent on the momentum 
and the radiation lengths traversed. The latter is 4% for each sensor layer at normal incidence, as in3. Assuming 
2D pixels of dimensions 50 µ m × 50 µ m, hits are smeared uniformly over a ± 25 µ m interval in each dimension 
to emulate digitization. Figure 5 shows examples of the software emulation, illustrating that the circuit logic 
correctly finds the trajectory of the particle of interest.

As mentioned in the sections describing the quality control (QC) module, our circuit returns four quality 
metrics as well as two physics parameters associated with the best track. The metrics referred to as �φ′′ ( �φ′ ) 
and �z′′ ( �z′ ) in3 quantify the largest difference in the second (first) derivatives along the track. The results of a 
high-statistics C simulation (Fig. 6) show that the inefficiency of the algorithm on simulated data is 0.05%, and 
demonstrate the effectiveness of the salient feature of our algorithm; local decisions coupled with information 
percolation lead to the globally optimal decision.

The fidelity of the algorithm is demonstrated by comparing the curvature and the cotangent of the polar angle 
of the reconstructed track with the corresponding values for the simulated particle. The comparison (Fig. 7) 
demonstrates that tracks are reconstructed with the expected resolution and that the rate of non-Gaussian errors 
is negligible.

An important aspect of trigger design is the rate of spurious triggers, i.e. reconstructed tracks satisfying 
the trigger requirements in the absence of a true particle of interest. To estimate the spurious trigger rate for 
this implementation, we execute the C code on ten million collections of random hits as for Fig. 6, but without 
embedding a high-pT particle. The distributions of the quality metrics for (spurious) reconstructed tracks, 
shown in Fig. 8, are skewed toward large values. We define a trigger track as a reconstructed track whose quality 
metrics all have values less than 10. This selection requirement is motivated by Fig. 6 where the distributions 
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for correctly-reconstructed particles peak well below the value of 10 ( log10[metric]< 1 ), but have a second peak 
well above this value when the algorithm misses one or more correct hits. With this quality requirement, the 
algorithm’s efficiency is still 99.94% (the inefficiency for true particles increases from 0.05% to 0.06%), and the 
spurious trigger rate is (0.3± 0.2stat) per million wedges. With the ≈ 2000 wedges needed for coverage of the 
pixel detector, the expected spurious trigger rate is O(0.1%) per bunch crossing or O(40 kHz).

Note that the hit resolution assumed above is for single-pixel hits; charge-sharing between adjacent pixels 
improves the cluster’s position resolution considerably. The performance of our algorithm improves with hit 
resolution; to illustrate, the study is repeated with a hit resolution improved by a factor of two (rms of 7 µ m, as 
assumed in3). For the same quality requirement on the trigger track as above, the inefficiency reduces by a fac-
tor of three, to 0.02% and the spurious trigger rate reduces by more than a factor of three, to < 0.1 per million 
wedges or O(10 kHz), consistent with the detailed study presented in3.

Discussion
As discussed in3, the 2D pixel sensors of the ATLAS and CMS experiments at the LHC would record O (105) hits 
every 25 ns. It would require a bandwidth of tens of Tbps to read out this information. An alternate approach is 
to install the track-finding circuitry on-detector, requiring data transmission over local detector regions only. 
Off-detector readout would be triggered if a high-momentum track is identified. Our design enables this edge-
computing capability; the point cloud would be partitioned into O (1000) wedges, each processed by our proposed 
circuit, all on-detector. Our long-term vision is the implementation of this “smart tracker” with self-triggering 
capability.

This edge-computing approach will require the slicing algorithm mentioned in the introduction to be 
implemented as a high-throughput and low-latency circuit which will operate upstream of the track-finder 
presented here. We note that the LUT and FF usage of the track-finder (shown in Table 1) is 80% and 50% 
respectively of the resources available on the chosen FPGA. We will investigate the possibility of implementing 
the slicing algorithm using the remaining resources, to minimize the system’s footprint, power and cooling needs.

The circuit design could be ported from an FPGA to an application-specific integrated circuit (ASIC) to 
reduce the footprint substantially; however, as FPGAs with higher circuit density become available, a transition 
to ASICs may be unnecessary. The XCVU19P is fabricated with the integrated-circuit technology node of 16 nm, 
and 7 nm is expected for the next generation of FPGAs. Radiation tolerance can be achieved by using embedded 
FPGA (eFPGA) technology to integrate the intellectual property (IP) core of the FPGA into an ASIC.

Table 2.   Resource usage according to vitis hls 2020.2 synthesis for three values of (L− 2) , the number of 
intermediate sensor layers. The quality-control module is excluded from these syntheses because its resource 
usage scales differently with (L− 2) . The usage for the rest of the circuit is proportional to (L− 2) , as expected 
since the other modules are repeated for each intermediate layer.

Resource type

L − 2

1 2 3

Digital signal processors 1,312 2,624 3,936

Flip-flops 1,336,457 2,623,670 3,929,414

Lookup tables 912,402 1,931,541 2,832,108

Figure 9.   (left) LUT usage of the synthesized MF module as a function of 2t , the number of inputs. (right) LUT 
usage of the synthesized MSS module as a function of 2t t2 , where 2t is the number of inputs to be sorted. The 
open circles show the estimates from vitis hls for t ∈ {1, 2, 3, 4} respectively. The line represents the best linear 
fit to the point estimates.
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Synposis
We summarize the salient features of our track-finding algorithm and its FPGA implementation. 

1.	 Many machine-learning solutions to pattern-recognition problems are based on supervised learning (for 
examples, see14 and references therein), thereby requiring (often large) training samples. Our solution 
requires no training and can be considered as a form of unsupervised learning.

2.	 Unsupervised learning methods of pattern recognition or feature extraction may have a data-dependent 
latency. For example, k-means clustering is a popular method of unsupervised learning to partition p points 
into k clusters. It has been shown15 to have a data-dependent latency that is, in the worst-case, exponential. 
Our method is explicitly designed to have a fixed latency; it is data-agnostic. This can be a crucial advantage 
in decision-making applications where time and reliability are both of the essence.

We have demonstrated a partial solution for the challenging use case of real-time track-triggering at the LHC at 
40 MHz. Furthermore, the latency is fixed at ≈ 250 ns which comfortably meets the experiments’ requirement 
of a few µs.

Details of circuit synthesis
We provide a proof of the sort-and-scan engine and a summary of the hardware resource usage.

Sort and scan engines
We show that the implementation using MF and MSS is equivalent to the original pruning algorithm in3. In the 
original presentation, a list L of n2 tuples (�ijk,l , j, k) at each node (i, l) is sorted in order of ascending laplacian 
values �ijk,l , and the first n2 distinct occurrences of j and k index values are noted in sets Sj and Sk respectively. 
For a given node (i, l), the creation of Sj and Sk is the goal of the pruning algorithm in3.

The same sets Sj and Sk can be built from the row and column minima of an n× n matrix TM, where TM(j, k) 
contains the corresponding laplacian value. The smallest laplacian value in row a corresponds to the first 
appearance of j = a in the ascending list L . Similarly, the smallest TM(j, k = a) in column a corresponds to the 
first appearance of k = a in L.

Let M be the array of the row minima, where M(a) contains the smallest laplacian value in row a. Note 
that if M(a) < M(b) , then the tuple with j = a occurs before the tuple with j = b in L . Therefore, the j-values 
associated with the smallest n2 row minima are the first n2 distinct j-values that appear in L i.e. these j-values are 
the elements of Sj.

Similarly, the k-values associated with the smallest n2 column minima are the first n2 distinct k-values in L , 
i.e. these k-values are the elements of Sk . The logic of the previous paragraph is symmetric between rows and 
columns, since it can equally well be applied to the transpose of TM.

Resource usage
We summarize the resource usage by the LC, MF, MSS and QC modules as estimated by vitis hls. Table 1 shows 
the timing characteristics and resource usage of the various blocks, modules and their constituent pipelined 
functions.

Per Table 1, the LC module contains three pipelined functions, (1) LC_(D + D) adds two doublets D, where 
each doublet of integer coordinates represent a 2D spacepoint, (2) LC_(16D + D) adds a doublet to an array of 
16 doublets in parallel, and (3) LC_(16U+ ) performs pairwise addition on two arrays of 16 integers, in parallel, 
after computing their respective absolute (unsigned) values, also in parallel. The last function in the LC module, 
LC_ET, encodes each laplacian value and the corresponding node indices into a 24-bit word. Other labels used 
in Table 1 are described in the table caption.

The choice of L = 5 pixel layers (planned for the ATLAS and CMS experiments at the HL-LHC) may be 
replaced by silicon strip detectors at larger radii or planar geometries at fixed-target experiments. The relevant 
parameter (L− 2) represents the number of intermediate layers at which graph computing is performed 
(excluding the first and last layer). Our circuit may be deployed on a subset of the layers, upon considerations of 
occupancy and acceptance. Table 2 shows the resource usage according to vitis synthesis for different numbers 
of intermediate layers. Excluding the quality-control module, the usage for the rest of the circuit is proportional 
to (L− 2) , as expected since the other modules are repeated for each intermediate layer.

Minimum Finder
Finding the smallest of 2t numbers requires O(t) sequential stages and clock cycles. The circuit implementation 
needs O(2t) comparators. The number of lookup tables used by vitis hls for the MF module is shown in Fig. 9 
for t ∈ {1, 2, 3, 4}.

Minimum Set Selector
Sorting 2t numbers requires O(t2) sequential stages and clock cycles. The circuit implementation needs O(2t t2) 
comparators. The number of lookup tables used by vitis hls for the MSS module is shown in Fig. 9 for 
t ∈ {1, 2, 3, 4}.

Data availability
The dataset used and analysed during the current study is available from the corresponding author on reason-
able request.
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