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Trait impulsivity influences 
behavioural and physiological 
responses to threat in a virtual 
environment
Christopher Baker 1*, Stephen Fairclough 2, Ruth S. Ogden 2, Rachel Barnes 2 & Jessica Tootill 2

Trait impulsivity represents a tendency to take action without forethought or consideration of 
consequences. This trait is multifaceted and can be decomposed into attentional, motor and non-
planning subtypes of impulsivity. The purpose of the current study was to investigate how subtypes 
of trait impulsivity responded to different degrees of threat within room-scale virtual reality (VR) with 
respect to behaviour and level of physiological activation. Thirty-four participants were required to 
negotiate a virtual environment (VE) where they walked at height with the continuous threat of a 
virtual ‘fall.’ Behavioural measures related to the speed of movement, interaction frequency and risk 
were collected. Participants also wore ambulatory sensors to collect data from electrocardiogram 
(ECG) and electrodermal activity (EDA). Our results indicated that participants who scored highly 
on non-planning impulsivity exhibited riskier behaviour and higher skin conductance level (SCL). 
Participants with higher motor impulsivity interacted with more objects in the VE when threat was 
high, they also exhibited contradictory indicators of physiological activation. Attentional impulsivity 
was associated with a greater number of falls across the VE. The results demonstrate that subtypes 
of trait impulsivity respond to threats via different patterns of behaviour and levels of physiological 
activation, reinforcing the multifaceted nature of the trait.

Impulsivity is a multifaceted trait characterised by a predisposition to act hastily and without adequate fore-
thought, which can result in negative consequences for the individual or  others1,2. Impulsive behaviour is often 
perceived to be characteristic of youth and is expected to diminish as people mature. In mature individuals, 
impulsivity is generally considered to be a maladaptive trait. Empirical evidence has linked trait impulsivity 
to substance  abuse3–6, aggressive  tendencies7, pathological  gambling5 and criminal  behaviour8,9. High levels 
of trait impulsivity has also been associated with career  difficulties10, marital  strife11,  overeating12,13 and risky 
sexual  choices14,15, as well as psychiatric disorders e.g. ADHD (Attention Deficit Hyperactivity Disorder)16,17, 
BPD (Borderline Personality Disorder)18,19, ASPD (Antisocial Personality Disorder)20, bipolar and schizophrenia 
 conditions21,22.

In the psychological literature, impulsivity refers to personality traits and behaviours that are inherently 
 multifaceted23. The trait of impulsivity is characterised as a tendency to take action without consideration of 
 consequences24,25; it also exhibits some overlap with the trait of sensation  seeking26, e.g., disinhibition, suscep-
tibility to boredom. Behavioural manifestations of impulsivity include an inability to inhibit an inappropriate 
action or response, which is called motor  impulsivity24,27,28. Impulsive individuals tend to commit errors as a 
direct consequence of their tendency to make fast decisions without gathering and evaluating  information29 
(reflection impulsivity); similarly, they may have difficulties in delaying reward  gratification30–32, known as tem-
poral  impulsivity33. These cognitive characteristics may stem from a fundamental attentional deficit as impulsive 
behaviours may reflect an inability to focus or concentrate on relevant  information24; see Herman et al.23 and 
Winstanley et al.31 for summaries.

A number of variables are known to modulate both trait and behavioural forms of impulsivity. These factors 
can include demographic characteristics, such as  gender34,35 and  age36. However, psychophysiological arousal 
and affective processes relating to emotional reactivity also can also modulate impulsivity, enhancing the ten-
dency towards rash  action25, e.g., non-planning or motor  impulsivity24. Psychophysiological activation has been 
associated with both decision-making37 and behavioural impulsivity in a number of ways. The under-arousal 
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hypothesis (Eysenck and  Eysenck38) argued that individuals with lower baseline arousal exhibit greater propen-
sity to seek risk and other forms of  stimulation38. Similarly, Damasio and colleagues outlined a neurobiological 
 framework39–42 where decision-making processes in the prefrontal cortex are influenced by ‘somatic markers’ 
and activation at an autonomic level. With respect to empirical evidence, lower baseline arousal has been associ-
ated with increased behavioural  impulsivity43, whereas Mathias & Stanford reported under-arousal in impulsive 
individuals at rest, which transformed into higher activation for those individuals under conditions of  challenge44. 
When levels of physiological arousal were pharmacologically increased, the tendency towards temporal impulsiv-
ity was reduced while reflection impulsivity was  enhanced45. There is also evidence that reduced interoceptive 
sensitivity (cardiac discrimination) is associated with increased trait scores on non-planning  impulsivity45, which 
is broadly supportive of the somatic marker hypothesis, i.e., impulsivity is associated with blunted awareness of 
autonomic activation with consequences for decision-making and behaviour. However, others have found no 
evidence of any association between impulsivity and autonomic activity from electrodermal activity (EDA) or 
heart rate during a gambling  scenario45.

Levels of physiological arousal and trait impulsivity can both interact to influence how an individual perceives 
and responds to threat-related stimuli. The presence of threat tends to increase behavioural impulsivity, reducing 
response  inhibition46 and decreasing reaction  time47. This tendency to act quickly and frequently without fully 
evaluating a situation is reinforced by intense emotional experiences, such as  anxiety48,49. There is also evidence 
that an increased level of physiological arousal associated with intense emotions can serve as the primary driver 
of impulsive  behaviour50,51. However, given the multifaceted nature of trait impulsivity and the multidimensional 
measurement of physiological activation, the nature of how both variables interact to influence responses to 
threat remains complex and unclear.

The purpose of the current study was to delineate the relationship between subtypes of trait impulsivity, 
psychophysiological arousal, and behavioural responses to threat in virtual reality (VR). A large-scale virtual 
environment (VE) was utilised to induce intense emotional  experiences52 by creating a sense of  presence53 and 
proximity to virtual threat in a way that enhanced ecological validity. Our VE also permitted a high degree of 
agency in participants to elicit individual differences in behaviour while manipulating threat in a controlled 
 environment54–58. Our virtual environment (VE) induced threat by creating an illusion of height and manipulat-
ing the probability of a virtual ‘fall’59. Participants were empowered to take agentic actions through the incor-
poration of natural sensorimotor contingencies as they navigated the VE. A pivotal element of the task’s design 
was to foster strategic behaviour, thereby enhancing both agency and ownership over actions. This approach was 
designed to prevent frustration and disengagement, even as the level of threat or difficulty was systematically 
escalated as participants progressed through the course.

The current study required to negotiate a route through a large-scale (13.6 × 8.4 m) VE while equipped with 
wearable sensors to measure EDA and heart rate. Our primary research questions were: (1) do subtypes of trait 
impulsivity lead to similar or different patterns of behaviour in response to a high level of threat, and (2) to 
what extent are changes in autonomic arousal in response to threat predicted by subtypes of trait impulsivity 
and behavioural measures. Trait impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11)24. We 
anticipated that impulsive individuals (particularly motor and non-planning subtypes) would respond to high 
levels of threat by failing to adjust behaviour, i.e., because they tend to act without thought. We also predicted 
that physiological activation would modulate behaviour when threat is high and sustained.

Methods
Participants
Thirty-four participants (14 female) were recruited to the study from a university population of undergraduates 
and postgraduates. The mean age of the participants was 23 years (SD = 3.5 years). The only criterion for inclusion 
was that participants must be aged over 18 years and able to walk without assistance. The experimental protocol 
was approved by the Liverpool John Moores University Research Ethics Committee prior to data collection 
(Ref: 22/PSY/007), which operates within guidelines from the UK Research Integrity Office Code of Practice 
for Research and in accordance with the Declaration of Helsinki.

Virtual environment
Participants were required to negotiate a path across a large grid of ice blocks suspended in the air at a virtual 
height of 200 m (see Fig. 5). The layout of the VE is illustrated in Fig. 1. Participants were required to follow the 
route from section 1 to section 9 in the numbered sequence shown in Fig. 1. The end goal of the VE was repre-
sented by a door that must be activated by hand to leave the VE. The VE occupied a physical space of 13.6 × 8.4 m, 
and each individual block shown in Fig. 1 was approximately 70 × 70 cm.

Participants interacted with the blocks via foot movements, which was achieved by attaching sensors to 
participants’ feet in addition to conventional handheld trackers (Fig. 2). Foot sensors allowed participants to 
interact with ice blocks in two ways: (1) a one-footed movement to test the block before stepping onto it with both 
feet, and (2) a two-feet movement in which participants moved fully to the block and stood on it with both feet.

The grid of ice blocks contained three types of blocks. If the block was Solid (green in Fig. 1), it would support 
the weight of the participant and did not change appearance when activated with either one-foot or two-feet 
interaction. Crack blocks (blue in Fig. 1) would also support the weight of the participant but any interaction 
caused a change of colour from translucent to blue accompanied by a cracking sound effect 500 ms after activa-
tion. Fall blocks (red in Fig. 1) would not support the weight of participants. A Fall block behaved in exactly the 
same fashion as Crack blocks during a one-foot interaction, i.e., the block would change colour and make a crack-
ing sound, but any subsequent two-feet activation to the block triggered a shattering sound effect after 500 ms 
whereupon the block would disintegrate and participants experienced a virtual fall. Therefore, participants 
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learned to use one-footed movements to test each block in order to identify Crack blocks, which could also be 
the Fall blocks that they should avoid.

Participant psychophysiological measures were recorded simultaneously with a record of their actions within 
the VE. When the experimenter started the VE, the Unreal Engine application created a text file. As participants 
interacted with specific virtual objects, such as leaving the Start Study location area or interacting with each 
block, a time-referenced string value was added to the file. Each interactive ice block was coded with the time 
the event occurred, interaction type (one-foot or two-footed), block type, and section (see Fig. 1 for section 
numbers), along with an alphanumeric code (e.g., 12:38:58.089 Intent Solid S1B2). These markers were then used 
to measure the onset and offset of specific events within the study and to divide psychophysiological measures 
into discrete events.

The composition of blocks within the VE, specifically the inclusion of Crack and Fall blocks, was configured 
to manipulate the level of threat experienced by participants (Fig. 1). From section 1 to section 3 (S1:S3), the 
number of Crack and Fall blocks increase in a linear fashion to acclimatise the participant to an increasing level 
of threat. The middle sections (S4:S6) is the sole focus of the current study because the threat was maximal, 
i.e., these three sections contained mostly Crack and Fall blocks, forcing participants to make risky two-footed 
movements to cracked blocks that could lead to a fall. In the final three sections of the VE (S7:S9), there was a 
reduction in the number of Crack and Fall threat blocks in a linear fashion.

As participants moved forward through the VE, the previous two rows were removed from behind partici-
pants to remove any opportunity for “backtracking”, i.e., participants must keep moving forward (See Fig. 6). 
In the event of a fall, participants were returned to the block that they occupied before a fall and a gap would 
appear in the grid to indicate the former position of the Fall block. A video of a participant negotiating the VE 
is included in the supplementary materials.

Virtual reality system
Participants wore a HTC Vive head-mounted display (HMD) with a wireless connection enabled by the HTC 
Vive Wireless Adapter with four base stations positioned in each corner of the space. Each participant held two 

Figure 1.  Layout of the virtual environment.

Figure 2.  SteamVR trackers applied to feet of participants.
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hand controllers and two trackers were attached to their feet. Hand and feet positions were represented as robotic 
hands and white luminous outlines respectively in the VE (Figs. 3 and 4) constructed in Unreal Engine 4.27. All 
assets were purpose built for the study. The VE was rendered on a desktop PC with custom C++ code integrated 
directly into the Unreal Engine system to capture interactions with blocks and recorded timings (Figs. 5 and 6).

Trait impulsivity
Trait Impulsivity was assessed using the eleventh version of the Barratt Impulsiveness Scale (BIS-11)24. This 
questionnaire contains 30 items, which are rated on a 4-point Likert scale that ranges from “Rarely/Never” to 
“Almost Always/Always.” Responses on the BIS-11 can be used to measure three dimensions of impulsivity, which 
are: (1) Attentional Impulsivity (i.e., an inability to focus or concentrate), (2) Motor Impulsivity (i.e., a tendency 
to act before thinking),and (3) Non-planning impulsivity (i.e., a lack of forethought or planning with respect to 
the long-term consequences of actions).

Psychophysiology
Skin Conductance Level (SCL) was recorded at 2000 Hz via the Bionomadix ambulatory psychophysiology sys-
tem (BIOPAC). SCL data were collected from the index finger and second digit of the non-dominant hand and 

Figure 3.  View as solid block is stepped on.

Figure 4.  View as crack block is stepped on.

Figure 5.  View of environment from starting position (all blocks raised to final height for illustration).
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processed in python using the cvxEDA Convex Optimisation to Electrodermal Activity  Processing60 function 
to extract the phasic and tonic components of the signal. An electrocardiogram (ECG) was recorded at 2000 Hz 
via the Bionomadix system with three disposable electrodes placed on the left and right sides of the collarbone 
and the lower left rib cage. The mean heart rate (HR) was processed in python via the neurokit2 library and the 
nk.ecg_peaks function. For behavioural data, Time taken in Sections of the VE, one-foot and two-footed move-
ments, markers were generated by the Unreal Engine VE to specify when a participant began and ended the study. 
These markers were activated either automatically when the study began or via trigger volumes within the VE 
i.e. touching the virtual button at the end of the task. Markers where also generated via the worn foot trackers 
during differing interactions i.e. individually for one-footed movements when are participants interacted with 
one-foot on a virtual block, or in timed beginning and end pairs for two footed decision events i.e. when both 
feet step on a block and a corresponding end event when both feet stepped off a block.

Procedure
Participants arrived at the laboratory, they read a Participant Information Sheet and provided informed consent. 
Participants completed the BIS-11 and received written instructions about the task and the VE. The SCL sensors 
were taped to the second phalanx of fingers on the non-dominant hand and disposable ECG electrodes attached 
to both sides of the collarbone and the rib cage. Signal quality of the psychophysiological data were checked. 
Participants were subsequently fitted with the Vive Tracker sensors on their feet, which were attached to their 
shoes via velcro-straps. The HMD were placed over the head, adjusted and checked for comfort, and participants 
received the handheld controllers. The baseline VE was activated and participants were required to stand in a 
neutral grey toned environment designed to provide no sensory stimulation for a period of 3 min. Participants 
were instructed to relax during the baseline period. The task VE was activated after this phase and participants 
stood at virtual height on the starting platform before the first section of 16 ice-blocks (Fig. 1). Participants 
could progress at their own speed. As they advanced and reached the end row of each the next Section would 
animate upwards. This design decision prevented rapid advancement and ensured progress into each successive 
Section preventing advancement to the goal via a direct route, e.g. diagonally across the grid. After advancing 
through section 9 participants activated the goal doorway and proceeded through it. Participants then had the 
VR apparatus and psychophysiological sensors removed, were thanked for their time and debriefed.

Hypotheses and statistical analyses
The VE was divided into three parts (see Fig. 1) to create three levels of threat. In S1:S3, the probability of 
encountering a crack block rose from 18.75 to 56.25%, with the probability of encountering a fall block rising 
from zero to 18.75%. This level of threat was sustained in S4:S6. In the final part at S7:S9, the high level of threat 
from S4:S6 was reduced to 18.75% chance of encountering a crack block and zero probability of a fall block.

We postulated that this behavioural tendency would be maximal during S4:S6 when threat is high and 
sustained, due to a combination of trait and increased physiological activation. It was also anticipated that any 

Figure 6.  Two rows “falling away” as participant proceeds.
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association between subtypes of trait impulsivity and psychophysiology would be most apparent at S4:S6 because 
physiological activation would be highest when threat is maximal and sustained. Therefore, we only analysed 
data from S4:S6 in order to focus on the period of peak threat and to minimise the number of statistical tests 
performed in the analyses.

Five multiple linear regression models were created to explore the association between subtypes of trait 
impulsivity (independent variables) and dependent variables (time duration, risk ratio, SCL, HR). Each linear 
regression model was generated using SPSS v.28 (IBM). For all models, normality of residuals was checked and 
the relationship between normalised residuals and predicted values was visually explored. If any normalised 
residual or predicted value was greater than 3 or less than − 3, that participant was deemed to be outlier and 
excluded from the analysis. As six different regression models are reported in the “Results” section, we have used 
the Bonferroni method to reduce the alpha level from 0.05 to 0.008.

With respect to statistical power, we included five multiple regression models in our analyses, two of which 
contained 3 predictors, two containing 5 predictors and one containing 4 predictors. Sample sizes for all five 
models were calculated using G*Power61. Because we were using a multiple regression approach where all vari-
ables were entered simultaneously, we used the setting for ‘Linear Multiple Regression: Fixed model,  R2 deviation 
from zero’ from G*power. The alpha level was set to 0.05 and Power was set to 0.80. With respect to effect size, 
we anticipated a large effect size (> 0.35) given the strong emotional responses to the VE observed in previous 
work, we decided to set the effect size to 0.45. We subsequently calculated the minimal sample sizes for the 2-, 
4- and 5-predictor models, which were respectively N = 29, N = 32 and N = 35. Therefore, we reached the limit 
of statistical power for the 5-predictor model using the current sample.

Results
The analyses of data are reported in two main sections, the first will focus on measures of overt behaviour whereas 
the second will describe analyses of psychophysiological variables. In both cases, measures of trait impulsivity 
are utilised as independent variables alongside other covariates to predict dependent variables derived from 
behaviour and psychophysiology.

Each dependent variable was analysed via a regression model created using data from section 4 to section 6 
(S4:S6) when participants experienced a consistently high level of threat.

Participants descriptive statistics
The study recruited from an opportunity sample and the descriptive statistics for all three dimensions of impul-
sivity are provided in Table 1 below. In order to illustrate that the average levels of impulsivity for our sample do 
not deviate significantly from population norms, we have included descriptive statistics in Table 1 from the study 
conducted by Stanford et al.62; their sample of 1577 participants included a large (N = 1178) sample of college 
students of similar age range to our opportunistic sample.

Behavioural variables
The number of falls experienced by participants during the S4:S6 section of the VE was analysed via multiple 
regression using all three subtypes of trait impulsivity as predictors. One participant was excluded as an outlier. 
The resulting model did not achieve statistical significance [F(3,29) = 1.29, p = 0.30]. Therefore, none of the three 
subtypes of trait impulsivity were significantly associated with the recorded number of falls.

The duration of time participants spent to complete the S4:S6 section of the VE. The task was self-paced in 
the sense that participants selected their own speed of movement and the number of 1-footed checks performed 
prior to 2-footed movements.

The regression model on duration of time for crossing S4:S6 was significant [F(3,27) = 3.33, p = 0.03] with a  R2 
of 0.27 (Adj-R2 = 0.21). The coefficients are presented in Table 2, which show that higher levels of non-planning 
impulsivity were significantly associated with shorter time duration to complete S4:S6.

This model revealed that non-planning impulsivity had a significant negative relationship with time to com-
plete the section, i.e., individuals with higher non-planning impulsivity moved faster across S4 to S6.

The level of risky behaviour exhibited by participants as they negotiated the VE was calculated by creating a 
ratio measure based on the proportion of 2-footed movements to one-footed checks. When confronted with an 
ice block, participants had the option of checking each block with one foot (to check if it was a cracked block) 

Table 1.  Descriptive statistics for impulsivity dimensions of attentional impulsivity, motor impulsivity and 
non-planning impulsivity for current sample and sample reported by Stanford et al.62.

Sample Statistics Attentional Motor Planning

Current study (N = 34)

Mean 16.1 21.0 24.9

SD [3.9] [4.4] [4.5]

Median 15 21 26

Min 10 11 17

Max 25 29 34

Stanford et al. (N = 1577)
Mean 16.7 22.0 23.6

SD [4.1] [4.0] [4.9]
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before choosing to step onto the block with both feet. Therefore, our risk ratio represents the number of two-
footed movements divided by the number of one-footed checks, i.e., an increase of the risk ratio = smaller number 
of one-footed checks: 2-footed movements. We reasoned that the frequency of falls experienced by participants 
would also influence their level of behavioural risk and included falls in the three regression models alongside the 
impulsivity subtypes. Four participants were removed from this model as outliers. The  R2 for this model was 0.35 
(Adj-R2 = 0.27) and it was statistically significant [F(4,25) = 3.39, p = 0.02], see Table 3 for listing of coefficients.

The analysis of risk ratio indicated that participants with higher levels of non-planning impulsivity had a 
higher score on the risk ratio, i.e., they made a smaller number of one-footed checks compared to two-feet 
movements.

Psychophysiology
Skin Conductance Level (SCL) was captured for each third of the VE and was baselined for each participant. The 
mean baseline-adjusted SCL (henceforth called mean SCL) was entered into a regression model as a dependent 
variable with trait impulsivity as independent variables. Because speed of movement and frequency of falls could 
also influence mean SCL, both those independent variables were added to the regression model. Four participants 
were excluded as outliers from this model.

The regression for mean SCL during S4:S6 was found to be significant [F(5,24) = 5.41, p < 0.01] with a  R2 of 
0.53 (Adj-R2 = 0.47). The coefficients for this model are presented in Table 4.

The coefficients in the regression model revealed a significant positive relationship between mean SCL and 
both frequency of falls and non-planning impulsivity, i.e., higher mean SCL for participants with a higher number 
of falls and higher scores on non-planning impulsivity.

Heart rate data (beats-per-minute) was collected from participants during a one-minute long standing base-
line and during the VE. A baselined mean Heart Rate (HR), henceforth called mean HR, was calculated for S4:S6 
and used as a dependent variable in combination with the same independent variables that were entered during 
the analyses of mean SCL. However, the resulting model was not statistically significant [F(5,28) = 0.34, p = 0.88].

Discussion
One purpose of the study was to explore the relationship between impulsivity subtypes and behaviour during 
changing levels of threat in VR. Our analyses revealed that participants’ behavioural and psychophysiological 
responses to high levels of threat in the VE were significantly influenced by their scores on the non-planning 
impulsivity subscale of the BIS-11. Our analyses revealed a positive association between the mean level of skin 
conductance level, which is a marker of sympathetic activation, and non-planning impulsivity (Table 4). From 
a behavioural perspective, those with high scores on non-planning impulsivity also travelled from S4 to S6 in 

Table 2.  Coefficients in the regression model for duration of time to complete S4:S6.

Coefficient Standard beta t Sig Tolerance VIF

Attentional 0.27 1.43 .163 0.76 1.31

Motor − 0.35 1.75 .090 0.70 1.44

Non-planning − 0.55 − 2.84 .008 0.71 1.41

Table 3.  Coefficients in the regression model for the risk ratio measure.

Coefficient Standard beta t Sig Tolerance VIF

Attentional − 0.04 − 0.23 .819 0.73 1.38

Motor − 0.18 − 0.89 .382 0.67 1.52

Non-planning 0.55 2.97 .006 0.75 1.33

Frequency of falls 0.39 2.31 .029 0.91 1.01

Table 4.  Coefficients in the regression model for SCL.

Coefficient Standard beta t Sig Tolerance VIF

Attentional − 0.09 − 0.54 .594 0.79 1.27

Motor − 0.42 − 2.23 .035 0.55 1.83

Non-planning 0.60 3.47 .002 0.65 1.54

Frequency of falls 0.49 3.28 .003 0.87 1.14

Movement time 0.10 0.63 .535 0.78 1.28
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less time (Table 2) and with a reduced frequency of one-footed checks before the decision to move to a new 
block (Table 3).

The association between non-planning impulsivity and elevated SCL revealed by our analyses is supported 
by earlier  work44 where impulsivity was linked to greater autonomic reactivity under conditions of challenge 
for this subtype of impulsivity. Based on our analyses of SCL and heart rate, we found no evidence to support 
the underload  hypothesis38 i.e., reduced autonomic reactivity to threat for participants who score high on trait 
impulsivity. This is notable because the level of threat and likelihood of a fall was both high and sustained through 
S4 to S6 (Fig. 1).

Non-planning impulsivity was associated with lower completion time and risky behaviour, e.g., higher ratio of 
two-footed to one-footed interactions, which was indicative of fewer one-footed checks before stepping on blocks 
with both feet (Tables 2 and 3). Non-planning impulsivity was also positively associated with SCL (Table 4). These 
findings beg a number of questions with respect to the direction of causality. Did a strategy of fast movement/little 
forethought/reduced checking increase physiological activation because non-planning participants negotiated 
the VE in a way that was fast, ill-considered and inherently risky? Or were the higher levels of SCL observed for 
those participants reflective of a more intense emotional response to threat that created the impetus for them 
to behave in a risky way? We also observed a positive association between the frequency of falls and elevated 
SCL (Table 4), which could also be contribute to the effect observed for individuals with higher scores on non-
planning impulsivity; however, we found no evidence of a significant association between falls and scores on any 
subscales of impulsivity, i.e., scoring higher on non-planning impulsivity, despite a style of moving across S4:S6 
that was inherently risky, did not result in a greater number of falls. It could also be argued that greater physi-
ological activation resulted from higher metabolic demands of faster movement speed, however both speed of 
movement and trait non-planning impulsivity were entered in the same regression model, and their respective 
effects on physiological activation appeared to be independent of one another.

With respect to psychological explanations for our primary finding, it could be argued that non-planning 
impulsivity is associated with greater physiological activation as a consequence of a tendency to seek  risk24,25. 
Alternatively, we can adopt a perspective from the somatic marker  hypothesis40 wherein participants with high 
non-planning impulsivity exhibited greater physiological activation but perhaps lack sufficient interoceptive 
 sensitivity45 to integrate these ‘danger signs’ into their decision-making and subsequent behaviour. We could also 
reverse our direction of inference regarding the relationship between non-planning impulsivity and behaviour/
physiology. If individuals with high scores on non-planning impulsivity represent a tendency towards a lack of 
forethought with respect to long-term consequences of current actions, then those individual with low scores on 
this trait are predisposed to behave in the opposite direction, i.e., to give significant thought to the consequences 
of their actions. Therefore, individuals with low scores on non-planning impulsivity perform a greater number 
of checks in advance of action, as a consequence they tend to move more slowly. Because these individuals 
move slowly in a methodical and considered way, they are less sympathetically activated than their peers with a 
greater tendency towards non-planning impulsivity. The combination of linear modelling with bipolar traits as 
dependent variables makes it difficult to draw strong conclusions about whether low or high scores on the trait 
are driving the observed experimental effect. One solution to this ambiguity is to opt for a stratified sampling 
strategy wherein participants are specifically recruited into three groups: high trait scores, low trait scores, and 
trait scores that align with the population average. This recruitment can be combined with inter-groups compari-
sons via ANOVA or MANOVA, which differentiate where low and high scores on trait impulsivity significantly 
deviate from the population norm.

The primary weakness of the current work was the limited sample size, which was less than ideal for study-
ing individual differences with a convenience sample and an acknowledged weakness with respect to statistical 
power for the models of psychophysiology. In defence of the current study, a previous study using the same VE 
found that a similar N was sufficient to uncover statistically significant differences in behaviour between high 
and lower scorers on trait neuroticism using a median split  approach59. While the sampling approach for the 
study was not structured, there is some evidence that our participants’ scores on the trait impulsivity subscales 
did not deviate substantially from a larger population (Table 1). However, it is acknowledged that our results 
must be regarded as tentative and based on a limited sample, and in need for replication with a larger sample and 
across different experimental tasks. In addition, the current study relied heavily on self-reported levels of trait 
impulsivity and the BIS-11 in particular. Trait impulsivity can be measured using other self-report  tools24 and 
previous  research63,64 does not always support the three-factor analysis of subtypes used in the current study. It is 
also possible to measure trait impulsivity using standardised behavioural  tests65 either to compliment self-report 
scales or as an alternative to their use. While the current study revealed differences between impulsivity subtypes 
and behaviour/physiology, it would be ideal to replicate our findings using a multimodal range of measures to 
capture subtypes of trait impulsivity.

The purpose of the VE was to induce threat in a way that fully engaged the participants, and most importantly, 
provided them with enough freedom to respond to threat in different ways. However, the.

VE could be improved to promote autonomy and strategic thinking by perhaps reducing the number of crack 
blocks and designing a layout with a more finely-tuned manipulation of threat. Alternatively, our approach may 
be improved by adopting an experimental design wherein participants negotiate different layouts of the VE where 
the level of threat is stable throughout; exposure to different layouts of the VE could be accommodated into either 
a within or between-participants design. Additionally, the VE design could be adapted to increase its leverage 
over programmatic mechanisms made available by Unreal Engine. The ‘S’ shaped course of the study (See Fig. 1) 
led to transition points between Sections 3 and 4 and Sections 6 and 7 which reduced immersion and interactions 
with blocks which were not consistent with the rest of the task. The task could be redesigned to follow a circular 
pattern that could be exponentially ‘longer’. This would increase the number of block interactions and allow the 
task to more gradually modulate the level of threat experienced by the participants.
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Our methodology demonstrated the potential of using a room-scale VE to elicit realistic behaviour, induce 
strong emotional responses to threat and permit our participants a sufficient level of agency so we could observe 
individual differences. The design of the VE, in this case the layout of the blocks shown in Fig. 1, also permitted a 
high level of control over our key independent variable (threat). By combining measures from psychophysiology 
with the tracking of movement, we were able to explore both physiology and behaviour within the same statisti-
cal models. This approach could be developed by expanding the range of sensors incorporated into the study 
and increasing the fidelity of behavioural monitoring. For example, individual decisions about which block to 
step onto with two feet could be analysed on an event-related basis with respect to behaviour, psychophysiology 
and neurophysiology.

To summarise, the current study provides some evidence that subtypes of trait impulsivity can be identified 
with respect to changes in physiological activation and behavioural choices in response to threat within a virtual 
environment.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on rea-
sonable request. All data generated or analysed during this study are included in this published article and its 
supplementary information files.
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