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Incremental high average‑utility 
itemset mining: survey 
and challenges
Jing Chen 1,3,7, Shengyi Yang 2,7, Weiping Ding 4*, Peng Li 5, Aijun Liu 3*, Hongjun Zhang 1 & 
Tian Li 6

The High Average Utility Itemset Mining (HAUIM) technique, a variation of High Utility Itemset Mining 
(HUIM), uses the average utility of the itemsets. Historically, most HAUIM algorithms were designed 
for static databases. However, practical applications like market basket analysis and business decision‑
making necessitate regular updates of the database with new transactions. As a result, researchers 
have developed incremental HAUIM (iHAUIM) algorithms to identify HAUIs in a dynamically updated 
database. Contrary to conventional methods that begin from scratch, the iHAUIM algorithm 
facilitates incremental changes and outputs, thereby reducing the cost of discovery. This paper 
provides a comprehensive review of the state‑of‑the‑art iHAUIM algorithms, analyzing their unique 
characteristics and advantages. First, we explain the concept of iHAUIM, providing formulas and real‑
world examples for a more in‑depth understanding. Subsequently, we categorize and discuss the key 
technologies used by varying types of iHAUIM algorithms, encompassing Apriori‑based, Tree‑based, 
and Utility‑list‑based techniques. Moreover, we conduct a critical analysis of each mining method’s 
advantages and disadvantages. In conclusion, we explore potential future directions, research 
opportunities, and various extensions of the iHAUIM algorithm.

Keywords Dynamic data mining, High Utility Item Mining, High Average Utility Item Mining, Pattern 
mining

Data Mining (DM) refers to a technique for discovering interesting and meaningful data patterns in large data-
bases. This discipline effectively integrates machine learning, statistics, and database  systems1,2 to analyze datasets 
and discover hidden relationships.  ARM3–6 is a data mining method that is well-known for discovering significant 
relationships between database  items7–9. Frequent Pattern Mining (FPM)10–13, an approach for detecting recurrent 
patterns in binary  datasets14,15, is widely used in  ARM16–18. The approach can effectively find the relationships 
between  patterns16–18 and has been implemented in various real-world  problems19–22.

Two commonly used algorithms for mining patterns in binary databases are  Apriori23 and FP-Growth24. 
Apriori uses a breadth-first search (BFS) algorithm and requires multiple scans of the database. FP-Growth, on 
the other hand, uses a DepthFirst Search (DFS) algorithm with an FP-tree structure, requiring only two scans 
of the database. Frequent Itemset Mining (FIM)25–28 is a well-known research topic aiming to discover frequent 
itemsets (FI)24 from a database. However, frequency alone is not always accurate or meaningful in real-world 
mining scenarios. In a retail market, for example, frequent items may indicate low-profit products, as lower-
priced products tend to sell better. Conversely, infrequent itemsets have the potential to generate high profits.

Addressing the limitations inherent in conventional techniques, comprehensive research and successive 
 studies29–31 have led to proposition and  development32–35 of the HUIM algorithm. Unlike conventional methods 
that concentrate only on the frequency of itemsets, each item’s internal and external utility were considered in 
HUIM. Utilizing the High-Utility Itemset Mining approach, the utility value of an itemset elevates in correlation 
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with its size, underlined by the quantity of elements within the itemset. Consequently, itemsets of greater length 
typically yield higher profits, representing a crucial metric for determining high-utility itemsets.

Hong et al.36 proposed the HAUIM approach, which measures the average utility of itemsets based on their 
length to provide a fair evaluation of itemsets. If the average utility of an itemset meets or exceeds a predeter-
mined minimum threshold, it is identified as a High Average Utility Itemset (HAUI). Consequently, as compared 
to traditional HUIM, presents a distinct set of challenges that necessitate the development of novel techniques, 
including downward-closure properties, upper-bound models, pruning strategies, and mining procedures. In 
their work, Lin et al. introduced a tree-based algorithm called HAUP  tree37 for mining HAUI sets. They leveraged 
this efficient tree structure to enhance mining performance. Furthermore, to enhance the speed of the mining 
process, they introduced a projection-based algorithm called  PAI38. In a subsequent study, Lin et al.39 devised 
an innovative data structure known as the Average Utility (AU) list, which efficiently mines HAUI from static 
databases. This AU list-based approach represents the current state-of-the-art algorithm for mining HAUI.

The efficiency of existing techniques used to detect HAUI in a static database can be compromised when 
the size of the database undergoes changes. Specifically, when new transactions are introduced, it necessitates 
reprocessing the entire database in order to update the results. To address this issue, Cheung et al.40 introduced 
the concept of FUP (Fast Update) to preserve the discovered frequent itemsets through incremental updates. 
As the database changes, their framework considers four scenarios in which the updates are handled differently 
depending on the prescribed methods. The FUP concept has already been applied to  ARM40,41,  HUIM42,43, and 
 HAUIM44,45. However, these methods still have the disadvantage of rescanning certain itemsets and requiring 
additional database scans to obtain these itemsets. To address this challenge, Wu et al.46 introduced a hierarchical 
approach that incorporates the pre-large concept in HAUIM for incremental mining. Nevertheless, an important 
limitation of their model lies in the absence of theoretical evidence supporting the ability of the pre-large concept 
to effectively preserve the correctness and completeness of the maintained HAUI.

In the past 10 years, researchers have developed over ten algorithms specifically designed for handling 
dynamic databases in the context of transaction insertion for iHAUIM. The objective of iHAUIM is to identify 
patterns that meet the minimum utility constraints while continuously inserting new records into the original 
database. This problem can be considered as a constraint-based mining problem. The development of efficient 
iHAUIM algorithms is a new research problem because it makes iHAUIM tasks more scalable with respect to 
database updates.

Real-time processing of data streams has become essential due to the increasing number of applications, 
including auditors, online clickstreams, and power throughput, that generate data streams that require immediate 
processing. These data streams are generated rapidly and accumulate in real time, demanding efficient processing 
methods. To address this, a single scan of the data stream is typically employed to build a data structure, which 
is then maintained throughout the execution. This approach ensures that newly generated data influences the 
resulting patterns. When new data is inserted, the data structure is updated and reconstructed to enable effi-
cient mining. Traditional methods used for processing static data, which involve multiple scans of the database 
and deletion of unwanted items, are not suitable for handling data streams. Instead, techniques like sliding 
 windows47–49, damping  windows50–52, and landmark  windows53 are employed to effectively handle stream data.

Moreover,  in54, a sliding window model is utilized, alongside a decay factor.  MPM55 and  DMAUP52 are both 
mining methods aiming to identify high average utility patterns, by employing a damping window concept. 
Essentially, they analyze recent transactions more heavily than prior ones, but they struggle to function effec-
tively with large databases, especially patterns that frequently occur in recently made transactions. This is due 
to their tendency to process the entire database each time they encounter a new data stream. In addition to this, 
each computation of the decay factor is considerably computation-heavy. MPM, being a tree-based method, is 
unable to store the actual utility of the respective items. This results in consuming a lot of runtime and memory 
for generating candidate patterns. Plus, verifying candidate patterns for accuracy demands extra database scans, 
and therefore, it is unsuitable for data stream analysis.

Although the iHAUIM algorithms have been developed, there has been no comprehensive exploration or 
empirical study to compare their performance. The primary objective of this paper is to provide a comprehen-
sive and in-depth analysis of the notable progress in iHAUIM. The methodologies discussed in this study can 
serve as valuable insights not only for iHAUIM but also for other data mining tasks, including incremental data 
 mining56,57 and dynamic data  mining58.  In57, a dynamic and incremental profit environment is explored, and a 
unique approach named IncDEFIM is introduced. This method employs strategies like merging transactions, 
projecting databases, and setting strict upper bounds to minimize the expenses associated with database scans 
while efficiently removing unproductive item sets. By examining these advancements, this research aims to 
contribute to the broader field of data mining and inspire further developments in related domains.

This article made three distinct contributions. Firstly, it provided a comprehensive overview of the essential 
technologies employed in iHAUIM algorithms. Secondly, it conducted a comprehensive review of the latest 
advancements in this field. Lastly, it identified and emphasized potential areas for future research in data min-
ing. Moreover, this research paper presents a new classification system that integrates contemporary methods 
for extracting HAUIs from dynamic datasets. As a result, it offers a valuable framework for advanced iHAUIM 
algorithms, eliminating redundancies in the existing literature. The main contributions of this work are as follows:

1. The paper proposes a classification approach for the most advanced iHAUIM algorithms that includes the 
most up-to-date information on methodologies for extracting HAUIs from dynamic datasets.

2. Based on the dynamic datasets, we categorize HAUIM algorithms into three types: Apriori-based, Tree-based, 
and Utility-list-based.
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3. The article provides a thorough comparison of the benefits and drawbacks of the most sophisticated iHAUIM 
algorithms, including metrics such as running time, memory usage, scalability, data structures, and pruning 
techniques.

4. Furthermore, this paper offers a comprehensive summary and discussion of current iHAUIM techniques. 
Lastly, it outlines potential research possibilities and key areas for future iHAUIM research.

The structure of this article is as follows: “Preliminaries and problem statement of iHAUIM” section pro-
vides an overview of the fundamental concepts and definitions related to iHAUIM. “State-of-the-art algorithms 
for iHUIM” section classifies and explains iHAUIM approaches based on dynamic datasets, evaluating their 
advantages and disadvantages. “Summary and discussion” section presents a thorough overview and evaluation 
of the latest iHAUIM techniques, which highlights potential research directions and opportunities for future 
advancements in iHAUIM. Lastly, “Conclusion” section concludes the survey, summarizing the key findings 
and contributions of the article.

Preliminaries and problem statement of iHAUIM
In this section, we lay the foundation by providing essential preparations and presenting a formal definition of 
the iHAUIM problem. We will also introduce the symbols that will be used throughout the rest of this paper, 
as shown in Table 1, and these symbols will be explained in subsequent sections. Below are examples of the 
original database and item utility table, presented as Table 2 and Table 3, respectively. The original database 
comprises five transactions, each identified by a transaction identifier (TID) and containing non-redundant 
items. The internal utility of each item is specified after a colon. Table 3 displays seven items that are present in 
the original database, represented as I = {a, b, c, d, e, f, g}. The external utility of each item is shown in Table 3. 

Table 1.  Notation.

Notation Meaning

I A set of m items,I = {i1,  i2, …,  im}, where each item  ij has a profit value  pj

DB An original quantitative database, DB = {T1,  T2, …,  Tn}, in which each transaction is a subset of I, with purchase quantities 
for each item

DBn+ A set of new transactions, DBn = {t1,  t2, …,  tq}, in which each transaction includes a subset of items, with purchase quantities

TID Each transaction  Tn ∈ D has a unique transaction identifier (TID)

X A k-itemset containing k distinct items {i1,  i2, …,  ik}

u(ij,  Tp) The utility of an item  ij in a transaction  Tp

u(Tp) The sum of the utilities of items in a transaction  Tp

tuDB The total utility  tuDB of a database DB

au(X,Tp) The average utility of X in  Tp

au(X) The average utility of X in DB

HAUI High-average-utility Itemset

mu(Tp) The maximum utility of transaction  Tp

auub(ij) The average-utility upper-bound (AUUB) of item  ij

HAUUBIDB High average-utility upper bound itemset

PAUUBIDB Pre-large average-utility upper-bound itemset

HAUIUDB An itemset X is classified as an  HAUIUDB in the updated (DB + DBn) database

Table 2.  An example database (DB).

Transaction U

a:4, b:1, c:2, d:1 33

b:4, d:3, e:1, g:11 69

a:1, c:4, f:3 40

c:1, d:2, e:2 41

a:2, d:1, f:5 49

Table 3.  Unit profits of items.

Item a b c d e f g

Profit 3 5 4 8 11 7 2
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The minimum high average utility upper-bound threshold δ and the lower-bound threshold δL are set based 
on the user’s preference (positive integers). Below are commonly used definitions for incremental high average 
utility pattern  mining44,59,60, sliding  window47,49,61, and dampened window  models52,55, derived from the provided 
original database and item utility table.

Definition 1 Item  utility62. The utility of an item  ij in a transaction  Tp is represented as u(ij,  Tp) and is computed 
as the product of its internal utility in transaction  Tp, denoted as iu(ij,  Tp)62, and its external utility eu(ij).

For instance, in Table 2, the item utility of ’a’ in  T1 is calculated as u(a,  T1) = 3 × 4 = 12.

Definition 2 Transaction  utility63. The transaction utility  of63Tp is indicated and computed as  follows52.

For instance, in Table 2, the transaction utility of  T1 is calculated as u(T1) = u(a,  T1) + u(b,  T1) + u(c,  T1) + u(d, 
 T1) = 12 + 5 + 8 + 8 = 33.

Definition 3 Total  utility64. The total utility  (tuDB) of a database DB is defined as follows:

As an example, the total utility in the illustrated case of Table 2 is computed as  tuDB = 33 + 69 + 40 + 41 + 49 
(= 232).

Definition 4 Average  utility62.The average utility of item X in transaction  Tp, denoted as au(X,  Tp), is calculated 
by dividing the sum of item utilities in X by the length of  X61, |X|.

Definition 5 Itemset Average utility. The average utility of X in the database (au(X)) is determined by summing 
up the average utilities of X in all transactions present in the database  DB61.

For instance, in Table  2, the average utility of ’ac’ in the database is calculated as au(ac) = au(ac, 
 T1) + au(ac,T3) = 10 + 9.5 = 19.5.

Definition 6 HAUI. An itemset is categorized as a HAUI if its au  satisfies65:

For example, if δ is 8%, then itemset a, c is a HAUI since au(a, c) = 19.5 ≥ 2320.08 = 18.56.

Definition 7 Maximum  utility66. The maximum utility  of66 transaction  Tp is notated as follows:

For instance, in Table 2, the maximum utility of  T1 is calculated as mu(T1) = 12.

Definition 8 AUUB55. For an item  ij, the AUUB of  ij is as follows:

For instance, in Table 2, the AUUB of a is auub(a) = mu(T1) + mu(T3) + mu(T5) = 12 + 21 + 35 = 68.

Property 9 DC, Downward closure property of  AUUB46.

According to the downward closure property of  AUUB46, if an itemset Y is a superset of itemset  X46, denoted as Y ⊇ X, 
the following formula (9) can be obtained.

Hence, if auub(X)DB ≥  tuDB × δ then auub(Y)DB ≤ auub(X)DB ≤  tuDB × δ is satified for any superset of  X46.

(1)u
(

ij ,Tp

)

= iu
(

ij ,Tp

)

× eu
(

ij
)

(2)u
(

Tp

)

=
∑

ij∈Tp

u
(

ij ,Tp

)

(3)tuDB =
∑

Tp∈DB

u(Tp)

(4)au(X,Tp) =

∑

X⊆Tp∧ij∈Xu(ij ,Tp)

|X|

(5)au(X) =
∑

Tp∈DB∧X⊆Tp

au(X,Tp)

(6)HAUI ← {Xau(X) ≥ TUDB × δ}

(7)mu(Tp) = u(ij ,Tp)

(8)auub(ij) =
∑

mu(Tp), where ij ∈ Tp and Tp ∈ DB

(9)auub(X)DB ≥ auub(Y)DB
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Definition 10 HAUUBI46. For the dataset DB, if an itemset X is a  HAUUBIDB, it should satisfy the following 
condition  as46:

Definition 11 PAUUBI. Itemset X is a PAUUBIDB in the initial  database62:

For  instance62, suppose δ the and δL are respectively set as 13% and 8%. The itemset (ce) is PAUUBI with an 
auub of 26, which lies between δL (= 232 × 8%)(= 18.56) and δ(= 232 × 13%) (= 30.16).

Definition 12 The condition of  HAUIUDB.In the updated (DB + DBn) database, in Table 4, an itemset X qualifies 
as a  HAUIUDB if it meets the following  conditions46:

where au(X)UDB indicates the new average-utility of X,TUDB and  TUDBn+ are respectively the transaction utility 
in DB and DBn + , and δ is the upper bound of utility  threshold46.

State‑of‑the‑art algorithms for iHUIM
In recent years, a considerable number of iHAUIM (Insert-based High Average Utility Itemset Mining) tech-
niques have been developed to handle dynamic databases involving transaction insertions. So far,a total of 19 
iHAUIM algorithms have been proposed, as shown in Fig. 1, which can be classified into three main categories: 
apriori-based, tree-based, and utility-list-based methodologies. In the upcoming sections, we will evaluate the 
strengths and weaknesses of each algorithm, as indicated in Table 5, with the primary aim of mining itemsets 
that exhibit high average utility during transaction updates.

The traditional HAUIM algorithm is only applicable to static datasets. However, if the dataset undergoes 
record updates, the static techniques necessitate processing all the data from the start to extract HAUI. Conse-
quently, this results in high time and memory consumption.

(10)HAUUBIDB ← {auub(X)DB ≥ tuDB × δ}

(11)PAUUBIDB ← {X|tuDB × δL ≤ auub(X)DB ≤ tuDB × δ}

(12)HAUIUDB ← {X|au(X)UDB ≥ (TUDB + TUDBn+) × δ}

Table 4.  Additional DB1+, DB2+ and the updated MU table.

(A) DB1+ (A) DB2+

TID Contents TID Contents

T6 a:3, b:5, c:3, d:1 T8 a:3,b:5,d:1,f:4

T7 a:4, c:2, e:1, f :1, g:5 T9 a:5,b:6,c:1,e:1,f:3

Figure 1.  Classification of iHAUIM Algorithms.
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Apriori‑based iHAUIM
Based on the Fast Update (FUP)  concept40, the  TPAU67 algorithm discovered HAUI from dynamic datasets that 
change with the insertion of new records. FUP records the previously frequent large itemsets and their counts for 
use in the maintenance process. when a new transactions are added, the FUP(Frequent Utility Pattern) algorithm 
generates candidate 1-itemsets. Subsequently, the candidate itemsets are compared with the previous itemsets 
in order to classify them into the following four cases:

Case 1:  The itemset is large in both the original database and the newly added transactions, resulting in its 
categorization as large in both domains.

Case 2:  The itemset is large in the original database but not in the newly inserted transactions.
Case 3:  Although not considered large in the original database, the itemset demonstrates significance in the 

newly inserted transactions.
Case 4:  The itemset does not meet the threshold for being deemed large in either the original database or the 

newly inserted transactions.

The suggested algorithm adopts an approach similar to Apriori to systematically explore the layers of HAUI. 
To optimize the search process, it employs early pruning techniques to discard low-utility itemsets. The algorithm 
leverages the downward closure property in a two-stage process, enabling it to generate a reduced set of candidate 
items at each level. In the first stage, an overestimated itemset is obtained using an average utility upper bound. 
In the second stage, an actual average utility value is computed, considering a high upper bound. Through these 
steps, the algorithm efficiently extracts HAUIs from incremental transaction datasets, enhancing its mining 
capabilities. Afterwards, the modified itemsets are categorized into four groups based on their characteristics, 
and whether their count difference in the modified records is positive, negative, or zero. Each group is then 
subjected to its specific processing approach.

The M-TP59 proposes a two-stage record modification maintenance method, aimed at mining HAUI from 
updated datasets. To begin, this approach calculates the count difference by comparing the AUUB (Average Utility 
Upper Bound) of each modified itemset before and after modification. Then, the modified itemsets are divided 
into four parts based on their characteristics. This classification is determined by whether they are HAUUBI 
(High Average Utility Upper Bound Itemsets) in the original dataset and whether their count difference in the 
modified records is positive or negative (including zero). Each part is then subjected to its specific processing 
approach. The M-TP algorithm reduces the time required to reprocess the entire updated dataset. In the original 
dataset, the itemsets are larger in the first two cases, and smaller in the last two cases. Conversely, the first and 
third cases exhibit a positive count difference, while in the modified records, the count difference turns nega-
tive or remains zero in the second and fourth cases. Lan et al.59 proposed four cases of modifying records from 
existing datasets in Fig. 2.

In contrast to conventional approaches, the  algorithm59 reduced the time required for the entire dataset 
updating time. In terms of runtime, the M-TP algorithm demonstrates superior performance to the Batch TP 
algorithm across different minimum average utility  thresholds68.

The  algorithm69 is proposed to handle transaction deletions in dynamic databases using the pre-large con-
cept on HAUIM, called PRE-HAUI-DEL. The pre-large concept is used as a buffer on HAUIM to reduce the 
number of database scans, particularly during transaction deletions, and its overview is illustrated in Fig. 3. 
Additionally, two upper bounds are established in the algorithm to early prune unpromising candidates, which 
can accelerate computation costs. Compared to Apriori-like models, PRE-HAUI-DEL excels in efficiently min-
ing high-average utility items in updated databases. In addition, the developed algorithm also uses the LPUB 

Table 5.  Algorithm advantage. IM incremental maintenance, DCP downward closure property, TSA two-stage 
algorithm, HDS handling data streams, PNU positive and negative utilities, PpP pre-processing and pruning, 
TD transaction deletion, IU incremental updates.

Algorithm IM DCP TSA HDS PNU PpP TD IU

ITPAU √ √ √ √ √

M-TP √ √ √ √ √

SHAU √ √ √

EHAUI √ √ √ √

IMHAUI √

FUP-based √ √ √

MAM √ √ √

IHAUPM √ √

FUPHAUIMI √

FUP-HAUIMD MHAUIPNU √ √ √ √

PRE-HAUIMI √ √ √

LIMHAUP √ √

APHAUI √ √
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upper bound model, which can significantly reduce the number of candidate items that need to be checked in 
the search space. Compared to the general model that updates discovered knowledge Using batch processing 
mode, our designed PRE-HAUI-DEL can effectively maintain the discovered HAUI without the need for multiple 
database scans, as illustrated in Figs. 4 and 5. This not only reduces computational costs but also correctly and 
completely maintains knowledge about HAUI.

In65, this article introduces the APHAUI algorithm, a HAUP (High-Utility Association Pattern) algorithm 
based on Apriori, capable of effectively mining HAUI from dynamic datasets. This algorithm follows an Apri-
ori-like  approach23 and employs the pre-large  concept56 to reduce the search space and proactively prune less 
promising candidate items, revealing promising itemsets during maintenance. The final results of cases 1, 5, 6, 
8, and 9 remain unaffected. Moreover, the amount of information discovered in cases 2 and 3 can be reduced, 
while some new information might emerge in cases 4 and 7. As shown in Fig. 6,the pre-large concept can easily 
handle itemsets in cases 2, 3, and 4. The authors devised two upper bounds, namely Partial Upper Bound (pub) 
and Lower pub (lpub), to enhance the efficiency of the mining process. The pub serves as astringent upper limit 
that reduces the size and upper utility bound of promising itemsets. A High pub itemset (pubi) with greater 
utility than pub was developed.

Furthermore, the algorithm introduces a subset named lpubi (Lead-pubi) as a part of pubi, capable of further 
reducing the candidate itemset for subsequent mining processes. Despite the algorithm generating both pubi 
and lpubi itemsets, the applicability of lpubi is constrained compared to pubi. Lead-pubi contributes to reducing 
the count of candidate items. Additionally, a formula is employed to curtail unnecessary dataset scans. Lastly, 
the introduction of a linked list ensures that each transaction is scanned at most once, thereby minimizing the 
frequency of dataset scans during the update process.

The algorithm begins by scanning the input dataset, followed by the dynamic processing flow of the APHAUI 
method. By employing a designed re-scanning threshold, it can automatically determine the update pace of the 
incremental dataset, enhancing mining efficiency. During the algorithm’s execution, two upper bounds, pub, 
and lead-pub, along with two itemsets, pubi and lead-pubi, are used to reveal the complete set of HAUIs within 
the transaction dataset. This algorithm not only demonstrates strong performance but also holds significant 
potential in real-time scenarios.

Figure 2.  Four cases when records are modified from an existing dataset.

Figure 3.  Nine cases of the pre-large concept.
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Previous HAUIM algorithms processed dynamic datasets using batch processing. As a result, the  APHAUIM46 
incurred costs in terms of past computations and the discovery of pattern information. To address this issue, 
the concept of FUP (Frequent Update Pattern) was  introduced40 for real-time pattern discovery and storage of 
pattern information. However, this requires rescanning the dataset to acquire the latest information.  In70, a new 
model called Apriori-based Potential High Utility Itemset Mining (APHAUIM) is proposed, which effectively 
reveals potential high utility patterns from uncertain databases in industrial IoT by maintaining two item sets 
(phps and plhps) using two tight upper-bound values (pub and lead-pub), while ensuring the completeness and 
correctness of the mining results.

Based on the concepts of pre-large56,58 and the Apriori  method23, a new algorithm called APHAUIM is intro-
duced to mine HAUI from incremental transaction datasets. PAUBI is introduced to retain promising HAUBI. 
PAUBI acts as a buffer to minimize the rescans needed for checking whether a small itemset evolves into a large 
itemset. An overview of the pre-large concept is depicted in Fig. 6.

Compared with the benchmark FUP-based HAUIM  algorithm67, the designed algorithm is better suited for 
streaming environments in dynamic datasets. However, a limitation lies in the fact that, similar to the benchmark 
method, the proposed algorithm also incurs a considerable amount of rescanning time. This is because locating 
itemsets in the buffer to update the insertion process requires additional time. Therefore, selecting appropriate 
thresholds is a topic of significant importance.

Tree‑based iHAUIM
The  SHAU61 introduces an effective algorithm named SHAU for analyzing time-sensitive data in terms of sig-
nificance. The algorithm employs the HAUPM algorithm based on sliding windows to process data streams. The 

Figure 4.  PRE-HAUI-DEL.
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HAUPM algorithm considers only new data during the pattern mining process for discovering data streams. As 
the algorithm is based on the concept of sliding  windows71–74, it divides the data stream into multiple blocks or 
batches. The concept of sliding windows for data streams was initially proposed by Yun et al.61.

The SHAU algorithm employs a novel SHAU tree structure. In this tree, each node consists of three elements: 
the first element stores the tid that includes the item, the second element is used to store the recent auub data 
information of the data stream batch by batch, and the third element is a link pointing to another node with the 
same tid. The auub of different items in the data stream is stored in the header table of the SHAU tree. Addition-
ally, the efficiency of SHAU is enhanced by utilizing a new strategy called RUG.

The EHAUI-tree  algorithm75 is proposed as an improved iteration of the HAUI-tree  algorithm76. The primary 
objective is to enhance mining efficiency and reduce memory consumption. The algorithm aims to mine by add-
ing new transactions instead of restarting the dataset. It utilizes the downward closure property and employs an 
index table structure. This innovative approach enhances computational efficiency while simultaneously reducing 
memory requirements. In addition, the algorithm introuces a bit-array structure to compute utility values more 
efficiently. However, the algorithm performs poorly on large datasets or small thresholds.

In45, a new approach called IHAUPM is proposed for handling frequent transaction insertions in updated 
datasets. The algorithm leverages an adapted FUP concept to efficiently integrate prior information and update 
the results when new information is discovered during updates. The newly inserted transactions are categorized 

Figure 5.  Maintenance process of PRE-HAUI-DEL.

Figure 6.  Nine cases of the pre-large concept.
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into four distinct cases, considering the occurrence frequency of the original dataset and the newly inserted 
transactions. This categorization ensures effective handling of different scenarios and minimizes repetition dur-
ing the updating process. In cases where the itemset is the original dataset or the HAUUBI in the new insert, it 
remains a HAUUBI, while in cases where it is not, it remains non-HAUUBI.

For cases where it is necessary to determine whether the itemset is actually a HAUUBI based on existing 
information or to rescan the original dataset, the algorithm employs a compressed HAUP tree data structure to 
store and utilize the required information. This approach requires minimal scanning of the original dataset and 
is highly efficient while preserving the count of prefix items processed in each node of the tree.

This  article60 proposes an algorithm called IMHAUI, which is based on the IHAUI-tree and uses node shar-
ing to preserve the information of the incremental dataset, thereby addressing the problem of adding new data 
to the dataset which may cause the number of items to exceed or fall below the minimum support threshold. 
Each time new data is added, node sharing undergoes reconstruction. To achieve this, transactions within the 
dataset are sorted in descending order based on their AUUB values. During the reconstruction process, each 
path is rearranged in decreasing order of the optimal AUUB value. To maintain compactness, a path adjustment 
technique is  utilized77. Additionally, the algorithm preserves the AUUB value of each itemset by maintaining 
a header table. Subsequently, the mined tree is examined to access candidate itemsets, and their actual average 
utility is computed during the candidate validation phase.

FIMHAUI based on mIHAUI-tree, to address the problems of time-consuming candidate itemset genera-
tion and expanding search space while determining the upper limit value caused by  IMHAUI60. The algorithm 
performs a singlescan of the dataset to extract information from HAUI. It stores transaction information in each 
node of IHAUI-Tree, which completely overlaps with the path from the root to that node, and thus only saves 
the necessary information in the leaf nodes of mIHAUI-Tree. Initially, all transactions are inserted into an empty 
mIHAUI-tree in a sequential order based on alphabetical order. Subsequently, the path adjustment method pro-
posed  in60 is to adjust the paths in order to enhance the sharing efficiency of nodes within the mIHAUI-tree. The 
algorithm uses data set projection and merge techniques to efficiently find itemsets. mIHAUI-tree introduces 
a novel approach by directly obtaining the projected data set for candidate itemsets, eliminating the need for 
generating conditional patterns and local trees. Additionally, a transaction merge technique identifies identical 
transactions in dictionary order within one scan. In contrast to the IHAUI-tree, the proposed algorithm offers not 
only time savings but also a reduction in repetition. However, the performance of the algorithm is unsatisfactory 
when applied to large datasets or small thresholds.

In55 the MAMs algorithm was designed to effectively analyze time-sensitive data which was applicable to data 
streams and employs an exponential damping window model and pattern growth methods. Furthermore, the 
algorithm considers the temporal aspect of the provided data to acquire pertinent and current pattern knowl-
edge. The algorithm employs DAT structure and TUL to handle dynamic data streams. As new data is inserted 
into a transaction, the algorithm constructs a DAT data structure and incorporates average utility information. 
This procedure persists until a user-initiated mining request is encountered. Upon receiving such a request, the 
MPM algorithm follows the pattern growth approach on the dataset.

The common goal of these algorithms is to enhance the efficiency of data mining, reduce memory consump-
tion, and adapt to the dynamic nature of data. The SHAU algorithm utilizes the HAUPM algorithm based on 
sliding windows to process data streams, employing the SHAU tree structure to store itemset information from 
the data stream and enhancing efficiency through the RUG strategy. The EHAUI-tree algorithm, as an improved 
version of the HAUI-tree algorithm, and the IHAUPM algorithm, introduce new methods for handling frequent 
transaction insertions in updated datasets. The FIMHAUI algorithm, based on the mIHAUI-tree, addresses 
the time-consuming generation of candidate itemsets and the expansion of search space in IMHAUI. These 
algorithms share a common challenge in that they attempt to optimize the mining process through various 
data structures and strategies to accommodate the dynamic changes and time sensitivity of data. However, they 
may encounter performance issues when dealing with large datasets or small thresholds, indicating that further 
optimization and improvement may be necessary in practical applications.

List‑based iHAUIM
To address the issue of inadequate performance in mining advanced association rules in dynamic environments, 
Wu et al. proposed an update  algorithm44 to update the obtained advanced association rules using transaction 
insertion. The proposed algorithm builds upon the AU  list39 and incorporates the concept of FUP (Frequency 
Upper Bound)40 to enhance its performance. To adapt and update advanced association rules with transaction 
insertion, the proposed algorithm employs a two-stage approach. In the initial stage, the 1-HAUUBI set is 
derived from the original dataset. Subsequently, an AU list is constructed from the 1-HAUUBI set, facilitating 
subsequent processing. In the second stage, the algorithm efficiently handles transaction insertion by dividing 
the HAUUBI set into four partitions based on the FUP (Frequency Upper Bound) criterion. This partitioning 
strategy minimizes repetition and enhances efficiency during the updating process. The proposed algorithm, as 
described  in44, presents four distinct cases for handling transaction insertion, as illustrated in Fig. 7.

In each case, the algorithm preserves the HAUUBI set for each partition, with the exception of non-advanced 
association rules in case 4. These non-advanced items are excluded from the HAUUBI set during dataset updates, 
as they do not qualify as advanced association rules. This approach effectively reduces redundancy in the algo-
rithm, as illustrated in Fig. 8. The updateADD and updateDEL methods are used for adding and deleting items 
in the AU-list structure, respectively. The updateADD function can easily update the auub value of the itemsets 
based on the AU-list structure. As for the updateDEL function, it can directly remove the unpromising itemsets 
based on the AU-list structure after the database has been updated.
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The AU list reduces the number of scans on the dataset and the generation of candidate itemsets. After updat-
ing the dataset, HAUUBI is added to the AU list, while non-HAUUBI is removed from the AU list. The proposed 
algorithm effectively updates HAUUBI to identify the actual HAUI in the updated dataset. Subsequently, the 
remaining itemsets in the AU list are compared against the minimum high average utility threshold, resulting 
in the identification of the true HAUI within the updated dataset. The proposed algorithm efficiently updates 
the HAUUBI to discover the actual HAUI. However, sometimes more candidate items need to be evaluated.

The FUP-HAUIMI78 algorithm is a modified version based on the FUP  concept40, for discovering HAUI from 
updated datasets. The algorithm consistently preserves and updates the uncovered information, eliminating the 
requirement to create data for transaction deletion. Furthermore, it improves the updating process by avoiding 
the need for multiple scans of the dataset.

Figure 7.  Four cases of the proposed algorithm with transaction insertion.

Figure 8.  Proposed FUP-based.
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The algorithm first constructs the AU-list39 data structure by scanning the original dataset effectively storing 
information for mining patterns (candidates) and gradually updating results. All items inserted in transactions 
are kept in the initial AU-list, and then 1-HAUUBI is classified into four categories based on the FUP concept, as 
described  in45, with these four categories illustrated in Fig. 9. Finally, the algorithm is able to efficiently discover 
updated HAUUBI and HAUI without generating candidates, as illustrated in Figs. 10, 16 and 17.

After the dataset is updated, the concept of FUP is applied to handle transaction  insertions42. Moreover, a 
depth-first search approach is employed to generate candidate itemsets.

A data mining method called the FUP-HAUIMD  algorithm79, which is based on the removal of transactions 
from the original dataset and utilizes the MFUP (modified FUP)40 extension  from80. In this algorithm, deleted 
transactions can be categorized into four types, each with distinct implications for identifying HAUUBI (Highly 
Associated Unordered Unique Binary Itemsets), as illustrated in Fig. 11. In the first category, existing information 
can be used to determine whether the itemset remains a HAUUBI. For the second category, the item continues 
to be a HAUUBI. The third category can be safely discarded as it only contains non-HAUUBI. For the fourth 
category, a complete rescan of the original dataset is necessary. The auub value of each HAUUBI is stored in an 
AU  list39, and the AU list is updated every time data is removed. Mining the enumeration tree allows for the 
evaluation of its true HAUI without requiring multiple scans of the dataset, as illustrated in Figs. 12 and 13.

Figure 9.  Four cases of the adapted FUP concept.

Figure 10.  FUP-HAUIMI algorithm.
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Initially, Algorithm 4 scans the database to identify items from the recently added transactions, creating 
their AUL structures. Subsequently, the AUL structures originating from the initial database and the added 
transactions are combined. Upon merging the AUL structures, if the mean utility of an itemset surpasses the 
revised minimum average utility count, it qualifies as a high average utility itemset. Following this, its super-
sets are explored through a depth-first search approach based on the enumeration tree. This iterative process 
continues recursively until no additional tree nodes are generated. The average utility of the chosen itemsets is 
then computed, culminating in the algorithm’s conclusion. The revised patterns are then successfully derived.

The process of Algorithm 5 commences by examining the removed transactions in order to form the AU-lists 
for 1-itemsets. Subsequently, utilizing these eliminated transactions, the AU-lists within the original database are 
modified, resulting in the acquisition of the revised AU-lists. Following this, Algorithm 6 is iterated recursively, 
merging the AU-lists of k-itemsets through a depth-first search strategy based on the enumeration tree structure. 
Should an itemset satisfy specific criteria, it is designated as an HAUI. In instances where these conditions are not 

Figure 11.  Four cases of the designed FUP-HAUIMD algorithm.

Figure 12.  Proposed FUP-HAUIMD maintenance algorithm.
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met, the auub value of the itemset is compared to the updated minimum high utility count to ascertain its super-
set. Additional details regarding the construction function are provided in  reference39. Subsequent to the retrieval 
of the revised AU-lists, if the average utility of an itemset equals or exceeds the minimum high utility count, it 
is identified as an HAUI. Ultimately, the algorithm yields the updated outcomes and concludes its operation.

By default, Algorithm 7 initializes the buffer (buf) to 0 in the first iteration. Next, it computes the safety 
boundary (f) and the total utility d. Following this, AUL structures for all 1-item sets in d are generated to guar-
antee the accuracy and entirety of the resulting HAUIs. This approach is logical as, in practice, the number of 
transactions in d is typically small compared to the original database D. The AUL structures from D and d are 
then merged through a sub-routine, and the total utility of the combined databases is calculated. The updated 
AUL structures are managed, and if the auub value of an itemset X does not exceed the upper utility, a HAUI is 
detected. Subsequently, the supersets of X are evaluated for potential scanning using the recursive PRE-HAUIMI 
method. The list of HAUIs is updated, with PHAUIs serving as the buffer, while the AUL structures are refreshed 
for subsequent maintenance.

Aims to mine Highly Associated Unordered Unique Binary Itemsets (HAUI) while simultaneously reducing 
their search space and the number of database scans, the MHAUIPNU  algorithm81 employs a database with both 
positive and negative utilities. It introduces a novel, tighter upper-bound model named TUBPN, alongside a 
list data structure to store the required information for mining HAUI. Furthermore, three new pruning strate-
gies are proposed to further enhance the algorithm’s performance. The first strategy is based on characteristics 
derived from the TUBPN model, while the other two leverage attributes are associated with items (or itemsets) 
having negative utilities.

The  paper65 proposes an algorithm called PRE-HAUMI (High Average Utility Itemset Mining with Pre-large 
Itemset concept) which efficiently mines HAUI from the updated dataset with transaction insertions. The algo-
rithm utilizes the Pre-large Itemset concept to effectively discover HAUIs and maintains an Average Utility List 
(AUL) structure, which ensures that each transaction is scanned at most once during the maintenance process, 
as illustrated in Figs. 14, 15, 16, 17.

In63, the paper introduces an efficient algorithm called LIMHAUP, which requires only a single scan of the 
dataset to extract HAUP from the updated dataset, thereby reducing the cost of performing multiple dataset 
scans. Additionally, a new structure named HAUP List is introduced, which stores pattern information in a 
compact manner, eliminating the need for candidate patterns. The algorithm constructs the HAUP List through 
a single dataset scan and eliminates numerous irrelevant patterns, resulting in reduced execution time and 
memory consumption during the mining process. Initially, all HAUP Lists are rearranged in real-time order 
from small to large items,aiming to shrink the search space. Then, organization process is designed to rebuild 
the HAUP List with an effective sorting order. Ultimately, the algorithm effectively handles new insertions in 
the incremental dataset.

Unpromising patterns are not removed from the global HAUI list, as they might be HAUPs in a dynamic data-
set. This is because the upper-bound pruning strategy can potentially overestimate the average utility. Therefore, 
an additional pruning strategy called  MAU82 is required to better reduce unpromising patterns. MAU rigorously 
mines extended patterns. The proposed algorithm demonstrates superior performance in terms of memory 
consumption, runtime, and scalability compared to the baseline algorithm.

The  DMAUP52 utilizes a damping window framework to extract time-sensitive patterns from incremental 
databases, aiming to mine high-utility frequent patterns. This method effectively extracts the latest high-utility 
frequent patterns, thanks to its use of damping factors to adjust item utility values based on their arrival time. 
Furthermore, to efficiently identify the latest high-utility frequent patterns, the method introduces new data 
structures known as dA-List, MU, and dUB tables. For incremental data streams, the dA-List undergoes a rebuild-
ing process to incorporate newly added data. Moreover, the mining algorithm employs two pruning techniques, 
namely damping upper bound and damping maximum average utility, in compliance with the elastic properties 
of the damping window model. By following these steps, the method can effectively extract the most recent 
high-utility frequent patterns.

Figure 13.  DEL_Miner algorithmin FUP-HAUIMD.
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For the purpose of managing a portion of the most recent data using a sliding window model.  RHUPS83 
employs an RHU list,a list-based data structure, to swiftly remove the oldest batch data from the global list, 
thereby displaying real-time updates of the most recent batch data in the global list. Consequently, when encoun-
tering dynamic changes in the window, the RHUPS algorithm can promptly mine the most recent efficient 
utility itemsets from the latest batches within the current window, without generating candidate itemsets. The 
data structure and mining techniques proposed in this article have the potential to develop into a large-scale 
machine learning system.

Figure 14.  Proposed PRE-HAUIMI.

Figure 15.  Merge algorithm in PRE-HAUIMI.
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The  algorithm49 utilizes a newly developed list structure, the SHAUP list, to gather information on recent 
batches. By deleting the oldest batch and introducing a new one after completing the mining process of the cur-
rent window, the algorithm effectively addresses the most recent stream data. The proposed approach extracts 
valuable and trustworthy pattern results while considering the length of pat- terns in unlimited data streams. 
To optimize performance, a new pruning strategy is implemented to reduce the search space, lowering the 
upper bound by utilizing residual utility. Prior algorithms resulted in numerous candidate patterns and suffered 
from performance degradation when computing the actual average utility. Conversely, our approach utilizes 
a list structure to store actual utility information of patterns. Through experimental analysis, results show the 
SHAUPM algorithm is superior in runtime, memory usage, and scalability on both real-time and synthetic 
datasets compared to the latest algorithms.

Indexed list based iHAUIM
In the realm of mining high average utility patterns, multiple algorithms have been developed for handling 
incremental environments. Nevertheless, tree-based algorithms produce potential patterns that necessitate vali-
dation through additional database scans. Conversely, list-based algorithms do not generate potential patterns 
but require numerous comparison operations to identify shared transaction entries with identical identifiers 
throughout the mining process. These limitations have adverse impacts on algorithms aiming to expediently 
deliver result patterns. Conversely, indexed list  structures84,85 effectively mitigate these shortcomings and have 
demonstrated superior efficiency compared to tree and list structures in mining high utility patterns.

A novel method for enhancing the efficiency of current average utility driven methods is introduced in the lit-
erature as  IIMHAUP86 (Indexed List Based Incremental Mining of High Average Utility Patterns). This approach 
involves designing a structured list index to facilitate the mining of high average utility patterns in incremental 
databases. In the IIHAUP algorithm uses three key subroutines to efficiently discover resultant patterns from 
the initial database ODB.

Figure 16.  Merge algorithm in FUP-HAUIMI.

Figure 17.  Construct algorithm in FUP-HAUIMI.
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Summary and discussion
Categories of iHAUIM
The previous section provided an overview of three primary categories of iHAUIM algorithms: those utilizing the 
Apriori  algorithm46,59,65,67,69, those using tree  algorithms45,55,60,75, and those relying on utility  lists44,49,52,63,65,78,79,81,83. 
These algorithms differ in six key ways:

a. number of scans of the original database;
b. strategy for updating and maintaining high average utility itemsets when data changes dynamically;
c. method for searching for HAUIM;
d. type of upper bound strategy to reduce candidate itemsets;
e. type of data structure for maintaining transaction and itemset information (tree-based or utility-list-based);
f. pruning strategies to reduce search space and speed up mining.

Tables 6, 7 summarizes these characteristics for the 19 algorithms discussed, noting that not all have been 
comprehensively studied in the literature. Moving forward, we will delve deeper into these iHUIM algorithms, 
analyzing and discussing them from the angles of runtime and memory consumption.

Runtime, memory consumption and scalability
The performance of various algorithms for itemset mining has been evaluated, including those proposed 
by APITPAU Hong et al.67 and SHAU Yunet al.61 that utilize tree structures, as well as IHAUPM Lin et al.45, 
FUPHAUIMI Zhang et al.78, and LIMHAUP Kim et al.63 that use utility lists. The results indicate that utility-list-
based algorithms exhibit superior performance comparable to Apriori-based methods. Each iHAUIM algorithm 
has its own limitations, which have been analyzed. Both utility-list-based and tree-structure-based approaches 
can reduce the number of candidate itemsets generated and the transactions scanned during maintenance. The 

Table 6.  IHAUIM algorithm.

Type Algorithm Test datasets Compared algorithms Notes

Apriori-based iHAUIM

ITPAU67, (2009) A real data was from a major grocery chain 
store in America TPAU68

ITPAU is a two-stage algorithm based on the 
FUP concept, employing hierarchical search for 
HAUI and the Apriori method

M-TP59, (2011) T10I4N4KD200K Batch-TP68
Similar to the Apriori algorithm, this approach 
involves multiple scans of the dataset and gen- 
erates numerous unpromising candi- date items

PRE-HAUI-DEL69, (2021)

Mushroom
Foodmart
BMS
Accidents
Chess
Retail

Apriori23

Apriori(lpub)

The pre-large concept is applied to HAUIM 
and is used to remove transactions in dynamic 
databases
Additionally, the lpub upper bound model is 
applied, which can significantly reduce the 
number of checked candidate items in the 
search space

APHAUI65, (2020)

Retail
Foodmart
BMS
Mushroom
Chess
Accidents

Apriori(A)
Apriori(A,lpub)

The authors proposed an Apriori-based pre-
large algorithm,APHAUI, which uses a linked 
list structure to maintain transactions and 
requires at most one scan of each transaction 
during the entire maintenance process

APHAUIM46, (2020) Retail
Mushroom ITPAU67 Apriori and the pre-large concept

Tree-based iHAUIM

SHAU61, (2016)
Chain-store
Retail
Mushroom
Chess

STPAU37

ITPAU67

This method is utilized to retain information 
from recent streaming data and employs a 
strategy known as RUG to decrease the number 
of generated candidate items

EHAUI-Tree75, (2017) Accident
Retail HAUl-Tree76

It employs a data structure to preserve itemsets, 
enabling it to mine HAUI from the updated 
dataset without the need for restarting

IHAUPM45, (2018)

Foodmart
Kosarak
Mushroom
Retail
T10I4D100k
T40I10D100K

PAI38

TPAU36

HAUI-tree76

HAUI-Miner39

HAUP-growth8

The algorithm utilizes the FUP concept to 
incorporate transactions from incremental 
datasets
Uses an efficient HAUP tree structure

IMHAUI60, (2017)

Chain-store
Foodmart
Mushroom
Breast-cancer
Wisconsin

ITPAU67
The path adjustment method was modified 
to reconstruct the IHAUI-tree based on the 
descending order of AUUB

MAM55, (2018)

Breast cancer
Wisconsin
Liver disorders
Heart cleveland
Hepatitis

ITPAU67

UP-Growth*33

IMHAUI60

The algorithm utilizes DAT-tree and TUL-list 
data structures
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use of the pre-large concept strategy has been found to be more effective than the FUP concept strategy based on 
experimental results obtained from FUP-based Wu et al.44 and PRE-HAUIMI Lin et al.65. Lastly, sliding windows 
and pruning techniques have been shown to enhance the runtime of the algorithm based on the experimental 
results of LIMHAUP Kim et al.63 and SHAUPM Lee et al.49.

Challenges and future directions
Despite the effectiveness of the existing methods, there are still many future directions that require being 
explored. Following are some crucial research opportunities associated with the iHAUIM algorithm.

Enhancing the effectiveness of the algorithms
The iHAUIM algorithm can be time-consuming and occupy a large memory while executing, which can raise 
concerns in real-time dynamic database updates. Even though the current incremental high-utility mining 
algorithms are faster than their predecessors, there is a scope for improvement. To name a few, compact data 
structures like trees or lists and more efficient pruning strategies could be developed for mining methods.

Handling the complex dynamic data
Real-life data is highly dynamic, comprising vast and complex datasets used in various fields. Although the 
principle behind it is straightforward, integrating it into the design of data mining algorithms is complicated. 
Discovering dynamic data environments is much more difficult and challenging than analyzing static data.

Analyzing the massive amounts of data
Incremental mining of big databases has higher computational costs and memory consumption. Nonetheless, 
in the era of big data, processing data step-by-step and having a look at earlier analyzed results is indispensable. 
Research opportunities exist for iHAUIM to process large databases, such as designing parallelized iHUIM 
algorithms.

Table 7.  IHAUIM Algorithm.

Type Algorithm Test datasets Compared algorithms Notes

List-based iHAUIM

FUP-based44, (2017) T10I4D100K
Accidents HAUI-Miner39 The algorithm employs an AU-list, which help maintain and reduce the cost of 

multiple database scans without generating a large number of candidates

FUP-HAUIMI78, (2018)

Retail
T10I4D100K
Kosarak
T10I4N4KD100K
Mushroom
Foodmart

HAUI-Miner39

IHAUPM45

The FUP-HAUIMI algorithm has been updated by utilizing the FUP concept 
to effectively save the information of the mining patterns using the AUL 
structure

FUP-HAUIMD79, (2018)

T10I4N4KD100K
Accidents
Foodmart
Mushroom
Retail

HAUI-Miner39

EHAUPM87
Utilizes AU-list and the modified MFUP concept to maintain the discovered 
HAUIs

MHAUIPNU81, (2019)

Chess
Mushroom
Accidents
Pumsb
Retail
Kosarak

Na¨Ivetubpn81

Na¨auubpnIve81 The algorithm employs TUBPN to reduce the search space for mining HAUIs

PRE-HAUIMI65, (2020)

T10I4D100K
Retail
Kosarak
T40I10D100K
Mushroom
Foodmart

FUP-based44

IHAUPM45

HAUI-Miner39
The algorithm utilizes the AUL-list structure

LIMHAUP63, (2020)

Retail
Chess
Foodmart
Mushroom
T10I4DxK
Tx1Nx2Lx3

ITPAU67

IMHAUI60
The HAUP-list was adopted, which compactly stores information about pat-
terns and easily removes many hopeless patterns

DMAUP52, (2021)
Chain-store
Kosarak
Accidents
Pumsb

MPM55

GENHUI88

I-MHAI82

For incremental data streams, the dA-List undergoes a rebuilding process to 
incorporate newly added data

RHUPS83 (2021) T10I4DxK
Tx1Nx2Lx3

SHUPM89

DSHUP
The RHUPS algorithm applies a list-based data structure, sliding window, and 
time decay concept

SHAUPM49 (2022)

Chain-store
Chess
Retail
Foodmart
T10I4DxK
Tx1Nx2Lx3

SHAU61

LIMHAUP63  LMHAUP90

HAUI-Miner39

The algorithm extracts the entire set of recently discovered high average utility 
patterns without creating candidates in a single pass through the streaming 
data
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Analyzing the runtime
In the experiment, we assessed the runtime of five algorithms across various TH values while maintaining a 
fixed IR (= 1%), as depicted in Fig. 18. As depicted in Fig. 18, it’s clear that the designed PRE-HAUIMI algorithm 
outperforms the other two algorithms across six datasets.

As the TH value increases, the running time of the five algorithms decreases. This is reasonable because as 
TH increases, less HAUI is found. Therefore, these five algorithms require less runtime. In addition, it can be 
seen that for some datasets, such as Fig. 19a,c,f, the PRE-HAUIMI algorithm designed remains stable for various 
TH values. HAUI Miner represents the most advanced algorithm for mining HAUI using the auub model, while 
IHAUIM stands as the most advanced algorithm for incremental HAUIM utilizing tree structures. Consequently, 
it can be concluded that the designed PRE-HAUUIMI, FUP-HAUIMI, and FUP-based algorithms exhibit strong 
performance when handling dynamic databases with transaction inserts. The efficiency of the AUL (Average 

Figure 18.  Runtimes for various threshold values.

Figure 19.  Runtimes for various insertion ratios.
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Utility List) structure facilitates streamlined calculations and retrieval of the required HAUI. Experimental evalu-
ations were conducted on six datasets, maintaining fixed TH (Transaction-Utility) values, while varying IR (Item 
Reduction) values. Figure 19 presents the results derived from these experiments, showcasing the comparative 
performance of the algorithms.

As illustrated in Fig. 19, the PRE-HAUIMI algorithm demonstrates superior performance compared to both 
FUP-HAUIMI and FUP-based algorithms. Furthermore, it is observed that the FUP-HAUIMI and FUP-based 
algorithms still outperform the HAUI Miner and IHAUPM algorithms. The stability of all algorithms, particu-
larly the PRE-HAUIMI algorithm, is evident as the IR (Item Reduction) increases. This indicates that as the IR 
increases, the performance of all algorithms remains consistent, with the PRE-HAUIMI algorithm consistently 
displaying the best performance.

Memory usage improvement
We conducted experiments to analyze the memory usage of various algorithms considering fixed IR values 
and different TH values. The results are depicted in Fig. 20. Notably, the HAUI Miner algorithm demonstrates 
superior memory usage performance across datasets (Fig. 20a,c,e). This can be attributed to the utilization of a 
utility list structure in HAUI Miner, which efficiently compresses and maintains discovered information. As a 
result, it usually demands less memory when compared to the IHAUPM algorithm, which utilizes a tree structure 
for incremental maintenance. Moreover, HAUI Miner doesn’t necessitate holding extra information for mainte-
nance purposes. Instead, when the database size changes, the algorithm rescan the database to acquire updated 
information, resulting in potential computational costs but lesser memory requirements.

Through experiments with fixed IR values and different TH values, we evaluated the memory usage of vari-
ous algorithms. Figure 21 illustrates the results, showcasing the superior memory usage performance of the 
HAUI Miner algorithm across datasets 21a, c, and e. This advantage can be attributed to the efficient compres-
sion and maintenance of discovered information facilitated by the utility list structure utilized by HAUI Miner. 
Consequently, it requires less memory compared to the IHAUPM algorithm, which employs a tree structure for 
incremental maintenance. Additionally, HAUI Miner does not require the retention of additional information 
for maintenance. Instead, it rescans the database when its size changes, obtaining updated information at the 
cost of computational overhead but with reduced memory requirements.

Number of patterns
The experiment involved evaluating the number of candidate patterns generated during the discovery of actual 
HAUI. The results, considering different TH values with fixed IR, are presented in Fig. 22. Observing Fig. 22, 
it is evident that, with the exception of Fig. 22c and d, the proposed PRE-HAUIMI, FUP-HAUIMI, and FUP-
based algorithms generate significantly fewer candidate patterns compared to the HAUI Miner and IHAUPM 
algorithms. Notably, the PRE-HAUIMI algorithm produces the fewest number of candidate patterns.

This discrepancy can be attributed to the dense nature of the T10I4N4KD100K dataset, where many transac-
tions contain the same maintenance items. As a result, the proposed PRE-HAUIMI, FUP-HAUIMI, and FUP-
based algorithms may require additional checks in the enumeration tree to determine if a superset needs to be 
generated. However, overall, these algorithms still evaluate fewer patterns compared to the other algorithms. This 
highlights the effectiveness of the AUL structure and adaptive FUP (Frequent Utility Pattern) concept in reduc-
ing the incremental mining cost of average utility itemsets. The results, considering different DR (Dependency 
Ratio) values with fixed TH, are depicted in Fig. 23.

Figure 20.  The results of memory usage w.r.t varied thresholds.
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Similarly, it is observed that in very sparse and dense datasets, such as the ones depicted in Fig. 23c and d, 
the PRE-HAUUIMI, FUP-HAUIMI, and FUP-based algorithms may require checking more candidate patterns. 
However, for other datasets, like those in Fig. 23a,b,e, these algorithms surpass the performance of the IHAUPM 
algorithm and even achieve the best outcomes, as demonstrated in Fig. 23f.

In terms of runtime performance, the proposed PRE-HAUUIMI, FUP-HAUIMI, and FUP-based algorithms 
outshine the alternative approaches. This can be attributed to the efficiency derived from the FUP concept and 
the AUL structure, enabling a significant reduction in runtime. Considering the overall results, it can be inferred 
that while the PRE-HAUUIMI, FUP-HAUIMI, and FUP-based algorithms require additional memory usage 
and may need to check more candidate patterns in certain scenarios, nevertheless, they consistently achieve 
higher levels of efficiency and effectiveness in the majority of cases. Among them, the PRE-HAUUIMI algorithm 
performs the best, with the exception of very sparse datasets with long transactions or extremely dense datasets.

Figure 21.  Usage for various insertion ratios.

Figure 22.  Number of candidate patterns for various threshold values.
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Taking these findings into account, it becomes evident that there are numerous directions that can be explored 
to further enhance and improve the iHAUIM algorithm, catering to the ever-evolving and dynamic demands 
of data mining.

Conclusion
A detailed summary of different algorithms for the IHAUIM problem is presented in this paper. We provide 
an all-inclusive and current analysis of IHAUIM algorithms in dynamic datasets and propose a classification 
system for the existing IHAUIM techniques. We explore various iHAUIM algorithms for modifying datasets in 
dynamic data settings, streaming data, and sequential datasets, and evaluate the advantages and drawbacks of 
the most advanced approaches. Additionally, we identify the significant areas for future research in incremental 
high-average utility itemset mining.

Data availability
The dataset used in this paper is a publicly available dataset sourced from the internet, and it can be accessed 
from the following website: https:// www. kaggle. com/ uciml/ pima- india ns- diabe tes- datab ase.
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