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Urinary metabolomic profiling 
of a cohort of Colombian patients 
with systemic lupus erythematosus
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Systemic lupus erythematosus (SLE) is an autoimmune and multisystem disease with a high public 
health impact. Lupus nephritis (LN), commonly known as renal involvement in SLE, is associated with 
a poorer prognosis and increased rates of morbidity and mortality in patients with SLE. Identifying 
new urinary biomarkers that can be used for LN prognosis or diagnosis is essential and is part of 
current active research. In this study, we applied an untargeted metabolomics approach involving 
liquid and gas chromatography coupled with mass spectrometry to urine samples collected from 
17 individuals with SLE and no kidney damage, 23 individuals with LN, and 10 clinically healthy 
controls (HCs) to identify differential metabolic profiles for SLE and LN. The data analysis revealed 
a differentially abundant metabolite expression profile for each study group, and those metabolites 
may act as potential differential biomarkers of SLE and LN. The differential metabolic pathways found 
between the LN and SLE patients with no kidney involvement included primary bile acid biosynthesis, 
branched‑chain amino acid synthesis and degradation, pantothenate and coenzyme A biosynthesis, 
lysine degradation, and tryptophan metabolism. Receiver operating characteristic curve analysis 
revealed that monopalmitin, glycolic acid, and glutamic acid allowed for the differentiation of 
individuals with SLE and no kidney involvement and individuals with LN considering high confidence 
levels. While the results offer promise, it is important to recognize the significant influence of 
medications and other external factors on metabolomics studies. This impact has the potential to 
obscure differences in metabolic profiles, presenting a considerable challenge in the identification 
of disease biomarkers. Therefore, experimental validation should be conducted with a larger sample 
size to explore the diagnostic potential of the metabolites found as well as to examine how treatment 
and disease activity influence the identified chemical compounds. This will be crucial for refining the 
accuracy and effectiveness of using urine metabolomics for diagnosing and monitoring lupus and lupus 
nephritis.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by global loss of self-
tolerance and subsequent multiple-organ inflammation, which results in several relapsing–remitting clinical 
 manifestations1. One of the main complications associated with SLE is lupus nephritis (LN), which occurs in 
approximately 50% of patients with SLE and is one of the main causes of morbidity and mortality secondary to 
 SLE2. Therefore, early diagnosis of renal disease in patients with SLE is essential. Currently, renal biopsy is the 
gold standard for LN diagnosis and  classification3. However, this invasive method is impractical for monitor-
ing real-time kidney involvement and cannot predict whether patients will respond to  treatment4. Therefore, 
it is necessary to study and identify new noninvasive biomarkers that can be used to guide renal biopsy, enable 
accurate prediction of relapse periods, monitor treatment response, and identify disease activity levels.

Metabolomics is an consolidated field defined as “the measurement of all low-weight molecules in a biologi-
cal specimen to create diagnostic profiles with a higher number of metabolites than the profiles developed by 
standard clinical laboratory techniques.” Thus, metabolomics covers all the biological processes and metabolic 
pathways  involved5. In recent years, metabolomics has been extremely useful for differentiating between sick 
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and healthy individuals using noninvasive biological fluids, and multiple potential new diagnostic biomarkers 
of diseases have been  identified6.

Metabolomics holds promise as a diagnostic and screening tool, enabling the identification of potential 
biomarkers across diverse pathological contexts, as well as offering novel insights into the underlying disease 
 mechanisms7. Some reports describe metabolomics as an important tool for discriminating SLE patients with 
kidney involvement from SLE patients without kidney  involvement8. However, few studies have explored the 
metabolomic profiles of SLE and LN in urine, a biological fluid considered a liquid biopsy of the kidney that can 
accurately reflect kidney imbalances in SLE patients.

In this study, we explored the usefulness of metabolomics as a way of identifying metabolites in the urine of 
a cohort of Colombian individuals with SLE and LN. Our findings revealed evident differences in the metabolic 
profiles of the study groups, with apparent changes in the metabolism of metabolic pathways such as those of 
fatty acids, bile acids, and amino acids.

Materials and methods
Study design and participants
This study was authorized by the Research Ethics Committee of Universidad Simón Bolívar (The project was 
formalized through Project Approval Record No. 00220 on May 24, 2019). All patients gave informed consent 
before sample collection and all methods were performed in accordance with the current guidelines and 
regulations for studies involving humans. A total of 50 individuals were included: 17 patients diagnosed with 
SLE and no kidney involvement (SLE group), 23 patients diagnosed with focal and diffuse LN (LN III/IV group: 
6 were classified as LN stage III, while the remaining 17 were classified as LN stage IV.), and 10 clinically healthy 
individuals (HC, group) with no history of autoimmune disease or kidney involvement.

Patients were classified as having SLE based on the American College of Rheumatology (ACR)  criteria9. 
Patients with clinical and laboratory alterations fulfilling the screening guidelines for LN by the ACR—LN defined 
as continuous proteinuria > 0.5 g/24 h, urinary sediment alteration, and/or progressive kidney dysfunction—were 
classified within the LN group, and their histopathological diagnosis was confirmed by renal biopsy. Patients 
diagnosed with other autoimmune or immunological diseases were excluded.

Sample collection and preparation
Urine samples were collected from each participant in a sterile polypropylene container during the first hours 
of the morning. After collection, the samples were centrifuged at 1500×g for 15 min at 4 °C to remove the urine 
sediment. To prevent bacterial contamination and interference with downstream metabolomics analyses, sodium 
azide was added at a final concentration of 10 mM, and the samples were divided into single-use 1000-μL aliquots. 
Following sample collection, all procedures were conducted on ice, and the aliquots were stored at − 80 °C until 
chromatography was performed.

Quality control (QC) samples were prepared by mixing equal volumes of each urine sample. The QC 
samples were treated in the same manner as the analytical samples and were introduced at the beginning of 
the experiment to balance the systems, then they were injected every 10 samples in the analytical sequence to 
evaluate the reliability of the large-scale metabolomics analysis.

Metabolomic analysis by GC–QTOF–MS
The urine samples were vortexed for 1 min for homogenization. Subsequently, 50 units of urease solution 
were added to 100 μL of urine, and the samples were incubated at 37 °C for 1 h. After incubation, 400 μL of 
cold methanol (− 20 °C) was added to each urine sample, and the samples were vortexed again for 5 min and 
immediately incubated at − 20 °C for 20 min. Subsequently, the samples were centrifuged at 31,208×g at 4 °C 
for 15 min.

In the next step, 100 μL of the previous preparations was dried using a SpeedVac (Thermo Scientific). 
Furthermore, 30 μL of O-methoxyamine in pyridine (15 mg/mL) was added, and the preparation was vortexed 
at 986×g for 5 min, followed by incubation in the dark at room temperature for 16 h. Silylation was conducted by 
adding 30 μL of N,O-bis(trimethylsilyl)fluoroacetamide to 1% trimethylchlorosilane, followed by vortex agitation 
for 5 min and incubation at 70 °C for 1 h. After the preparation, 80 μL of methyl stearate in heptane was added 
as an internal standard (10 mg/L).

The data were collected using gas chromatography (Agilent Technologies, Palo Alto, CA, USA) coupled with 
a time-of-flight mass spectrometer (TOF–MS; Agilent Technologies 7250 GC/Q-TOF, Agilent Technologies, 
Palo Alto, CA, USA). Furthermore, 1 µL of the sample derivatives was injected into an HP-5MS column 
(30 m × 0.25 mm × 0.25 µm) (Agilent Technologies, USA) considering a split ratio of 30 and a continuous flow 
of 0.7 mL/min. The oven temperature varied from 60 (1 min) to 325 °C (10 min) at 10 °C/min. Mass spectra 
were registered at 70 eV in full-scan mode, with m/z values within the 50–600 range. The temperature of the 
transfer line connected to the detector, that of the source filament, and that of the quadrupole were maintained 
at 280 °C, 230 °C, and 150 °C, respectively.

Metabolomic analysis by LC–QTOF–MS
For this step, 200 µL of water was added to 100 µL of each sample, followed by vortex agitation at 986×g for 1 min. 
Finally, the samples were centrifuged at 27,800×g at 4 °C for 10 min. The samples were analyzed using a liquid 
chromatography (LC) system (Agilent Infinity 1260) coupled to a quadrupole TOF‒MS (QTOF‒MS) analyzer 
(Agilent 6545) with electrospray ionization (ESI; Agilent Jet Stream ESI source). To achieve this goal, 2 μL of 
sample was injected into a column (50 × 2.1 mm, 1.8 µm; ZORBAX Eclipse Plus C18; Agilent, USA) at 40 °C. 
Gradient elution consisted of 0.1% (v/v) formic acid in water (Mobile Phase A) and 0.1% (v/v) formic acid in 
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acetonitrile (Mobile Phase B) with a continuous flow of 0.5 mL/min. MS detection was conducted with positive 
and negative ion ESI and 100 to 1100 m/z full-scan  mode10. The QTOF instrument was operated in 4 GHz (high-
resolution) mode. Two reference masses were used throughout the analysis for mass correction: m/z 121.0509 
 (C5H4N4 + H), m/z 922.0098  (C18H18O6N3P3F24 + H)+ in positive ion mode and m/z 112.9856  (C2O2F3 +  NH4)−, 
m/z 1033.9881  (C18H18O6N3P3F24 + FA − H)− in negative ion mode. MS/MS data acquisition was conducted in 
data-dependent acquisition mode using a quality control sample at different collision energies: 20 and 40 eV.

Data treatment
To prepare the data for statistical analysis, we applied Pareto scaling and logarithmic transformation. The raw 
data obtained by LC–QTOF–MS were deconvoluted, aligned, and integrated using Agilent MassHunter Profinder 
B.10.0. software. This was followed by manual inspection to remove background noise and signals from the 
reagent blank and the column. For GC-QTOF-MS, the data were deconvoluted, aligned, and integrated using 
Agilent Unknowns Analysis B.10.0 software, MassProfiler Professional v15 software, and Agilent MassHunter 
Quantitative Analysis B.10.00 software, respectively.

For both LC and GC, the raw data obtained was normalized by the total area to reduce natural variability in 
metabolite concentrations in urine samples, facilitating a more accurate comparison of individual metabolite 
concentrations. Additionally, for GC data, normalizations based on the internal standard were performed to 
correct for inherent instrument variation throughout chromatographic analysis. Subsequently, we applied a 
filter based on characteristic presence and reproducibility, selecting only the characteristics present in 80% of 
the samples with a quality control coefficient of variation (CV, %) < 20% (or 30% for GC data).

Identification of metabolites
Metabolites obtained by LC were registered based on their monoisotopic mass, isotopic distribution, adduct 
formation, and molecular formula. To this end, online databases such as the Human Metabolome Database 
(http:// hmdb. ca), KEGG (http:// genome. jp/ keg), MassBank (https:// massb ank. eu/ MassB ank/), Lipid MAPS 
(http:// lipid maps. org), and METLIN (http:// metlin. scrip ps. edu) were searched using the CEU Mass Mediator 
tool (http:// ceuma ss. eps. uspceu. es/). Subsequently, the MS/MS spectra obtained were compared with MS-DIAL 
4.8 software to determine the identities of the metabolites (http:// prime. psc. riken. jp/ compms/ msdial/ main. 
html). For the GC data, the Fiehn GC–MS Metabolomics RTL Library was used, which considers coincidence 
in retention times, mass spectra, and retention indices considering fatty acid methyl ester (FAMES) to simplify 
metabolite  identification11. For LC and GC, metabolites were reported with a confidence level based on the 
Metabolomics Standards Initiative (MSI)  guidelines12, which determine five levels: Level 0, unambiguous 3D 
structure requiring isolation of pure compound; Level 1, matched with reference standard; Level 2, probable 
structure, corroborated by literature or database evidence; Level 3, putatively characterized compounds with 
matching molecular formula; and Level 5, metabolites only matching MS1 in online databases.

Statistical analysis
We measured the quality of the system performance during analysis using SIMCA-P + 16.0 (Umetrics) 
software through principal component analysis (PCA). This multivariate approach enables the visualization 
of instrumental stability over time. Orthogonal partial least squares discriminant analysis (OPLS-DA) was 
subsequently conducted to model intergroup  differences13.

Metabolites with statistically significant differential expression between the SLE and LN groups were 
identified using univariate statistical analysis (UVA), nonparametric t tests (Mann–Whitney U test) and 
Benjamini–Hochberg false discovery rate corrections were applied using MATLAB. In addition, data normality 
was assessed using the Shapiro–Wilk test and the Lilliefors test based on the Kolmogorov–Smirnov test, and the 
relationship between variances was determined with Levene’s test. The significant metabolites selected had to 
fulfill at least one of the following criteria: UVA: p < 0.05 (In the event that Benjamini–Hochberg false discovery 
rate corrections are applied; it will be specified in Supplementary Table S1 with an asterisk (*)) or MVA: variable 
importance for projection (VIP) > 1.

Fisher’s least significant difference (LSD) test was used to compare the concentration means of each significant 
metabolite between both groups. Finally, the predictive power of the differentially abundant metabolites was 
assessed using receiver operating characteristic (ROC) analysis and estimating the area under the curve (AUC) 
with MetaboAnalyst 5.0.

The study refrained from conducting a statistical comparison between LN III (n = 6) and LN IV (n = 17) 
groups due to concerns arising from the substantial imbalance in sample sizes (Fig. 1). This disparity raised 
questions about the statistical robustness and reliability of potential findings. With the LN III group significantly 
smaller than the LN IV group, engaging in statistical analysis would compromise statistical power, impairing 
the capacity to detect genuine differences and elevating the risk of false-negative results. Moreover, the limited 
LN III sample size fails to adequately represent the inherent diversity within each Lupus Nephritis class. Conse-
quently, there is a challenge in capturing the true breadth of metabolic profiles within each group, introducing 
the potential for biased or skewed results. Additionally, the smaller LN III group increases the risk of overfitting 
statistical models to idiosyncrasies in the data, diminishing the overall robustness of any identified differences. 
Lastly, the findings may encounter difficulties in terms of external validation, which constitutes a future goal 
for this investigation.

http://hmdb.ca
http://genome.jp/keg
https://massbank.eu/MassBank/
http://lipidmaps.org
http://metlin.scripps.edu
http://ceumass.eps.uspceu.es/
http://prime.psc.riken.jp/compms/msdial/main.html
http://prime.psc.riken.jp/compms/msdial/main.html
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Ethics approval and consent to participate
This work was approved by the ethics committee of Simón Bolívar University (The project was formalized 
through Project Approval Record No. 00220 on May 24, 2019), and all subjects signed an informed consent 
prior to sample collection.

Results
Sociodemographic characteristics of the study population
We used untargeted metabolomics to identify urine metabolites in 17 individuals with SLE, 23 individuals with 
LN, and 10 clinically healthy controls paired by age and sex, using liquid and gas chromatography coupled with 
mass spectrometry following a workflow for urine samples (Fig. 2).

Table 1 summarizes the baseline clinical characteristics of the study groups. In addition, clinical data such 
as antinuclear antibody presence, arthralgia, alopecia, protein level of the complement system, creatinine, 
proteinuria, blood urea nitrogen, urea, and creatinuria were included. Of the 50 study participants, 92% were 
female. This gender represented 94% of the SLE group, 87% of the LN group, and 100% of the healthy controls. 
Patients with SLE and LN were generally positive for antinuclear antibodies and hypocomplementemia, and 
most of them had a history of arthralgia and alopecia. The average creatinine levels in patients with SLE were 
significantly greater than those in patients with LN.

Multivariate statistical analysis of metabolites
A data quality analysis was conducted before the statistical analysis of the differentially expressed metabolites. 
The quality control samples were pooled in PCA models to confirm the results and assess the performance of 
the analytical platforms used (Supplementary Fig. S1A–C), which suggested good stability and solid analytical 
performance of the platforms throughout the analysis. The control, SLE, and LN groups are illustrated in a PCA 
plot, which shows spontaneous biological separation between participants with no kidney involvement (controls 
and SLE) and patients with LN (LN III and LN IV). However, despite the trend toward separation, the data vari-
ability and intergroup overlap may suggest the influence of other biological factors (Fig. 3).

To improve the effects of sample classification, OPLS models were constructed to explore the differences 
between the SLE group and LN group (LN class III and IV). Figure 4 shows the score plots for each of these 
comparisons by LC–QTOF–MS in positive and negative ion modes, as well as GC–QTOF–MS. The models reflect 
adequate distinction between groups; however, when comparing patients with SLE, and patients with LN class III 
and class IV (Fig. 4A,B), data separation is better achieved with LC–QTOF–MS than with GC–QTOF-– (Fig. 4C). 
Additionally, each figure is accompanied by its corresponding loadings S-plot, offering visual insight into the 

Figure 1.  OPLS-DA Models with logarithmic transformation and Pareto scaling for the metabolomic profile in 
urine samples from LN III (blue points) and LN IV (orange points). (A) Untargeted metabolomics through LC–
QTOF–MS (+):  R2: 0.208  R2Y: 0.881  Q2: 0.288 cv-ANOVA = 0.169. (B) Untargeted metabolomics through LC–
QTOF–MS (−):  R2: 0.376  R2Y: 0.943  Q2: 0.74. cv-ANOVA = 3.85e−08. (C) Untargeted metabolomics through 
GC–QTOF–/MS:  R2: 0.346  Q2: 0.197 cv-ANOVA = 0.386.
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metabolites contributing to the observed separation. These plots reveal that the separation is driven by a limited 
number of metabolites. The discrepancy between techniques was to be expected as each one has its own set of 
advantages and limitations. The differences in the physical and chemical properties of these techniques, such 
as differences in mobile phases, stationary phases, temperatures, and detectors, among other factors, can lead 
to variations in results even when analyzing the same samples. Combining these methods in a complementary 
manner can enhance the overall analytical capabilities and provide more comprehensive information about a 
sample´s metabolome. The discussion of this article was based on the combined results acquired through the 
use of both techniques. A combined strategy consisting of MVA with a VIP threshold > 1 and UVA with a sig-
nificance value (p value) < 0.05 was applied to identify specific distinctive metabolites. Overall, 50 metabolites 
that allowed for the distinction between the SLE and LN III/IV groups were identified. From a global perspec-
tive, LC–QTOF–MS identified a greater number of relevant metabolites, which belong to a greater number of 
compound groups, such as amino acids, bile acids, alcohols, carbohydrates, fatty acids, glycerophospholipids, 

Figure 2.  The workflow of urine biomarker discovery in SLE and lupus nephritis.

Table 1.  Demographic characteristics of patients with SLE and LN at the time of urine sample collection.

Characteristics SLE group NL group p-value

Sample number 17 23 –

Age 26.88 ± 4.96 32.13 ± 8.40 –

Sex (F:M) 16:1 19:4 –

Arthralgia (yes:no) 17:0 22:1 –

Alopecia (yes:no) 14:3 16:7 –

AntiDNA positive 17 23 –

ANAS positive 17 22 –

C4 (mg/dl) 7.99 ± 1.24 11.88 ± 13.74 0.188

C3 (mg/dl) 65.00 ± 15.76 58.65 ± 13.88 0.859

Mouth ulcers (yes:no) 0:17 8:15 –

SLICC 3.18 ± 1.24 2.74 ± 1.21 0.285

Creatinine (mg/dl) 1.96 ± 0.74 1.10 ± 0.62 0.001

Proteinuria (mg/dl) 0.77 ± 0.22 222.33 ± 64.58 0.000

BUN (mg/dl) – 33.10 ± 20.46 –

Urea (mg/dl) – 79.82 ± 40.23 –
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hydroxy acids, imidazoles, indoles, organic acids, organic disulfides, phenylpropanoids, prostaglandins, purines, 
and pteridines. However, GC–QTOF–MS could only identify statistically significant metabolites from the organic 
acid, amino acid, nucleoside, carboxylic acid, glycerolipid, and carbohydrate families (Supplementary Table S1 
and Table 2). Notably, the same metabolite was not significantly differentially expressed between the two methods.

Metabolic alterations in patients with systemic lupus erythematosus and lupus nephritis
Based on the above results, heatmaps were generated to observe metabolite behavior in the study groups (Fig. 5). 
Subsequently, Fisher’s LSD test was conducted, revealing significant differences between the two groups (SLE 
and LN) and leading to the identification of 42 metabolites with notable distinctions. Additionally, a metabolite 
set enrichment analysis (MSEA) was conducted to assess the relationship between the concentration of each 
metabolite and potential metabolic pathways. The metabolic pathways showing the highest differential expres-
sion between the LN group and the SLE group included primary bile acid biosynthesis, branched-chain amino 
acid (BCAA) synthesis and degradation, pantothenate and coenzyme A (CoA) biosynthesis, lysine degradation, 
and tryptophan metabolism (Fig. 6).

Identification of potential biomarkers
In this study, the relevant metabolites were tentatively assigned based on level 2 confidence, utilizing a combina-
tion of molecular formula determination through high-resolution mass spectrometry and MS/MS fragmentation 
patterns compared against existing databases and in-silico prediction tools. Further studies, including compari-
son with authentic standards and are necessary to confirm the annotations. The usefulness of discrepant metabo-
lites for LN prediction was assessed using receiver operating characteristic (ROC) analysis, and the performance 
of metabolites as possible LN biomarkers was estimated using area under the curve (AUC) values. The latter 
allowed for the identification of 18 metabolites with AUC values greater than 0.8 (Table 2). The metabolites with 
the highest ability to discriminate between patients with SLE and patients with and without kidney involvement 
were monopalmitin (AUC = 1, 95% IC 1–1), methyl-glutamic acid (AUC = 0.984, 95% IC 0.984–1), and glycolic 
acid (AUC = 0.943, 95% IC 0.85–1) (Fig. 7).

Correlations between urinary metabolite levels and kidney function indicators
Finally, a Pearson’s correlation analysis was conducted to determine the relationship between the clinical and 
demographic characteristics of patients with SLE and LN and between the monopalmitin, methyl-glutamic acid, 
and glycolic acid values (Table 3), the metabolites with the highest predictive power. No significant associations 
were found between the concentrations of these metabolites and variables of interest, such as age, complement 
concentration, systemic lupus international collaborating clinics (SLICC) score, creatinine level, or proteinuria.

Figure 3.  PCA scatter plots for the dataset filtered by presence and reproducibility. (Green points: SLE group; 
Blue points: LN III; Orange points: LN IV; Gray points: HC). (A) Untargeted metabolomics through LC–
QTOF–MS (+):  R2 = 0.682.  Q2 = 0.341 with the first seven components. (B) Untargeted metabolomics through 
LC–QTOF–MS (−):  R2 = 0.687.  Q2 = 0.309 with first three components. and (C) untargeted metabolomics 
through GC–MS:  R2 = 0.721.  Q2 = 0.05 with first four components.
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Discussion
Metabolomics has shown considerable potential for identifying new molecules associated with the occurrence 
of several pathological disorders and even for classifying patients based on the degree to which a specific organ 
is affected. By leveraging the advantages of this technique, we explored the usefulness of metabolomics for 
identifying the metabolic profiles associated with kidney damage in urine samples from patients with SLE 
using LC–QTOF–MS and GC–QTOF–MS to identify small molecules that may contribute to the noninvasive 
diagnosis of LN.

In the context of a metabolomics study utilizing urine samples for SLE and LN the issue of normalization 
becomes particularly complex, especially in the presence of kidney damage associated with LN. Normalizing 
metabolite levels is a critical step to ensure accurate comparisons and interpretations, but when kidney function 
is compromised, as in LN, traditional normalization methods may face challenges. Correlating metabolite levels 
to creatinine, a commonly used approach, may not be sufficient in diseases like LN, where creatinine itself could 
be influenced by renal dysfunction, so an additional normalization strategy, useful MS signal was  applied14. In 
this study we found that even after normalization, there were many metabolites that increased or decreased 
between the SLE and LN groups, which suggests that the observed metabolomic changes may not solely result 
from kidney leakage. This could imply the presence of broader systemic metabolic alterations associated with 
the disease, extending beyond renal dysfunction.

Figure 4.  OPLS-DA models with logarithmic transformation and pareto scaling for the metabolomic profile 
in urine samples from SLE (green points) and LN (blue points) along with a loadings S-plot illustrating 
the metabolites significantly contributing to the variation between the compared groups. (A) Untargeted 
metabolomics through LC–QTOF–MS (+):  R2: 0.380  R2Y: 0.969  Q2: 0.853 cv-ANOVA = 5.39e−12. (B) 
Untargeted metabolomics through LC–QTOF–MS (−):  R2: 0.376  R2Y: 0.943  Q2: 0.74. cv-ANOVA = 3.85e−08. 
(C) Untargeted metabolomics through GC–QTOF–MS:  R2: 0.470  R2Y: 0.769  Q2: 0.358 cv-ANOVA = 0.0201.
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LC–QTOF–MS and GC–QTOF–MS allowed for the identification of 50 differentially expressed metabolites, 
revealing a statistically significant difference between the SLE and LN groups. The urine samples from patients 
with LN yielded higher concentrations of certain metabolite groups, such as amino acids, lipids, and organic 
acids. We also identified an relevant statistical increase in the levels of monopalmitin and glutamic acid, as well 
as a decrease of glycolic acid—that could help discriminate between patients with SLE with and without kidney 
involvement; these metabolites are proposed as potential biomarkers for LN diagnosis.

Monopalmitin is a monoacylglycerol and is the final product of the intestinal digestion of dietary fats. 
Intestinal cells transform monoacylglycerols into triacylglycerols (TAGs), which are subsequently transported to 
the liver. Ouyang, et al. reported that lipid metabolites were considerably increased in the serum of patients with 
SLE compared with healthy  individual15. In addition, Shin, et al. reported marked elevations in the concentrations 
of certain lipids, such as palmitoleic acid, oleic acid, and eicosanoic acid, in the plasma of patients with SLE 
compared with healthy  individuals16. Some studies have also proposed the lipid nephrotoxicity hypothesis, in 
which TAG and fatty acid deposits in renal tissue induce glomerular diseases, such as  LN17. In these cases, the 
inflammatory stress secondary to renal disease changes lipid homeostasis, thus increasing cholesterol absorption, 
decreasing cholesterol efflux, and changing cholesterol synthesis. Consequently, cholesterol accumulates in renal 
tissue and leads to renal  failure18. Other studies have also reported an increase in sterol regulatory element-
binding protein (SREBP) expression in patients with kidney damage, thus contributing to TAG and cholesterol 
accumulation and resulting in glomerulosclerosis and  proteinuria19. Our study showed a significant increase in 
lysophosphatidylethanolamine glycerophospholipid (18:4) levels in patients with LN compared with patients 
with SLE (fold change: 297), as did 3-oxo-4-pentenoic fatty acid levels (fold change: 15.02), which supports the 
idea that dyslipidemia contributes to kidney damage in patients with SLE.

A hyperlipidemic environment is associated with lipid peroxidation. Oxidized low-density lipoprotein 
(LDL) directly damages podocytes through chemokine ligand 16 (CXCL16) by inducing the production of 
reactive oxygen species (ROS). Thus, high CXCL16 and oxidized LDL levels have been reported in the renal 
tissue of patients with different glomerular  diseases20,21. Several studies have shown a close relationship between 
oxidative stress and inflammation and between oxidative stress and autoimmune responses in patients with SLE. 
These studies have emphasized that oxidized phospholipids and metabolites resulting from increased oxidative 
stress may act as antigenic epitopes in patients with SLE, thus enhancing excessive antibody production and 
significantly accelerating LN  progression22,23.

For glutamic acid, glutaminase has been reported to promote Th17 cell proliferation and activation. The 
expression of this enzyme is regulated by the transcription factor cAMP-response element modulator (CREM), 
which is overexpressed in the T cells of patients with LSE and MRL/lpr mice prone to  SLE24. Additionally, 
inhibition of this enzyme improves SLE activity in LMR/lpr  mice25,26. Glutamate oxaloacetate transaminase 1 
(GOT1) also enhances Th17 cell differentiation, and its selective inhibition also significantly decreases Th17 
differentiation in murine T  cells27,28. In our study, we found higher glutamic acid levels in participants with LN 
than in participants with SLE with no kidney involvement (fold change = 4292.06). These findings are consistent 
with previous studies that related glutamine metabolism to kidney damage. However, in addition to its role 
in facilitating the inflammatory process, increased glutamate levels may be explained by the fact that patients 
with terminal renal disease have decreased bioactivity of insulin-like growth factor (IGF-1), whose activity 
significantly decreases urinary glutamate  levels26.

Table 2.  Comparison is between SLE and LN. List of metabolites with the best predictive power. AUC  area 
under the curve, Se sensitivity, Sp specificity.

Metabolite AUC Se (%) Sp (%)

Monopalmitin 1 100 100

Methyl-Glutamic Acid 1 100 100

Glycocholic Acid 0.947 90 90

5-O-(Indol-3-ylacetyl-myo-inositol)-galactoside 0.940 90 90

Indol-3-ylacetyl-myo-inositol-arabinoside 0.902 90 80

Pteridine 0.891 90 80

Methyladenine 0.883 80 80

Allantoin 0.880 80 100

Creatinine 0.853 80 80

Leucylproline 0.851 70 90

Nonanoylcarnitine 0.842 80 90

Benzoic acid 0.837 80 90

Pyroglutamic acid 0.829 80 80

Gluconic acid 0.826 80 70

Hydroxyanthranilic acid 0.819 80 80

Valine 0.812 90 70

Erucamide 0.800 70 90
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The third metabolite identified as a possible LN biomarker is glycolic acid, a secondary bile acid. Several 
studies have reported that high bile acid plasma levels are associated with chronic kidney disease (CKD) 
progression. However, decreased bile acid levels have been reported in urine samples from patients with CKD, 
similar to our  study20. The bile acid concentration in blood and urine depends on glomerular filtration performed 
through apical sodium-dependent bile acid transporters, multidrug resistance associated protein 2 (MRP2), and 
the organic solute transporters alpha and beta. The pathological changes observed in patients with CKD—such 
as mesangial and endothelial cell proliferation, glomerular sclerosis, renal interstitial fibrosis, and intrarenal 
vascular sclerosis—reduce glomerular filtration; thus, bile acid filtration tends to decrease in patients with renal 
 diseases29,30.

In our study, MSEA was conducted using the KEGG pathway database. This approach also allowed for 
the identification of the metabolic pathways associated with kidney damage progression in patients with SLE, 
which include primary bile acid biosynthesis, BCAA synthesis and catabolism, and tryptophan metabolism. 
Primary bile acid biosynthesis has been associated with the lipid profile alterations typically observed in patients 
with  SLE31,32. In this case, high cholesterol and glycosphingolipid levels in the T-cell membrane change the 
composition of signaling platforms, thus favoring proinflammatory  signaling19,33. Moreover, as discussed above, 
lipid metabolism alterations are associated with lipid nephrotoxicity and its role in LN  pathophysiology34. Certain 
bile acids, such as deoxycholic acid, glycolic acid, ursodeoxycholic acid, and arachidonic acid, are significantly 
correlated with patients’ systemic lupus erythematosus disease activity index (SLEDAI) score and have shown 
adequate power to predict disease  activity31.

In addition to their role in lipid metabolism, bile acids are signaling molecules that act through the activation 
of bile acid receptors. A study reported decreased levels of farnesoid X receptors (FXRs) in patients with SLE and 

Figure 5.  Heat map for the 59 metabolites identified by LC-QTOF-MS and GC/MS-QTOF using the KEGG 
database Comparison between the relevant metabolites identified in the LN versus SLE urine samples. On 
the top right is the colorimetric scale: if the color tends to dark red, then the metabolite’s concentration was 
increased; if the color tends to dark blue, then the metabolite’s concentration was decreased. The red and green 
boxes on the upper right correspond to the LN group (Lupus Nephritis; n = 17; red) and SLE group (systemic 
lupus erythematous; n = 16; green). On the left side of the heatmap is the clustering division. Results obtained by 
the cluster analysis performed with MetaboAnalyst 5.0.
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murine MRL/lpr models of lupus and hepatic failure. In this study, the use of chenodeoxycholic acid, an agonist 
of FXR, suppressed the expression of inflammatory cytokines such as TNF-α, interferon-gamma (IFN-γ), and 
interleukin 6 (IL-6) in  mice34. Another study revealed the modulatory effect of bile acids on intestinal immunity 
and showed that metabolites derived from lithocholic acid (LCA), 3-oxoLCA, and isoallolLCA can inhibit Th17 
differentiation by directly binding with the key transcription factor retinoid-related orphan receptor γt (RORγt). 
Moreover, these metabolites improve FOXP3 gene expression by producing mitochondrial ROS (mitoROS), 
which results in regulatory T-cell  expansion35,36.

The role of BCAAs in immunity is mediated through the phosphoinositide 3-kinase-protein kinase 
B-mammalian target of rapamycin (PI3K/AKT/mTOR) signaling  pathway37. Mammalian target of rapamycin 
(mTOR) activity is regulated by amino acid availability, energy levels, and growth factors. In mammalian 
cells, mTOR forms two different complexes: mTORC1 and mTORC2. mTORC1 detects various stress signals, 
including the accumulation of amino acids such as leucine, isoleucine, kynurenine, and glutamine. mTORC 
activity increases in Th17 cells and T cells that produce IL-4, leading to the proinflammatory profile observed in 
patients with SLE. mTOR is required for cell differentiation toward the Th17 subtype through the induction of 
hypoxia-inducible factor 1α (HIF1α), which enhances glycolysis in inflammatory cells during the pseudohypoxia 
that typically occurs in patients with  SLE38,39.

BCAA catabolism initially occurs through transamination by aminotransferases (BCAT) or decarboxyla-
tion by the branched-chain α-ketoacid dehydrogenase complex (BCKDC). Following these reactions, BCAA 
metabolites turn into acetyl-CoA and succinyl-CoA and participate in the tricarboxylic cycle (TCA cycle). In 
 CD4+ T cells, BCAT negatively regulates mTOR and glycolysis. Activated T cells from mice with branched-chain 
amino acid aminotransferase (BCATc) deficiency show an increase in mTORC1 activation compared with the 
T cells from control  mice39. In addition, another study reported that oral administration of ERG240, an analog 

Figure 6.  Metabolite set enrichment analysis using MetaboAnalyst 5.0. The size of the circles indicates the 
Enrichment Ratio, while the color represents the p-value, therefore, on the x-axis, higher value represents more 
significant associations between the metabolite set and the pathway.
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Figure 7.  ROC curves of the three metabolites with the best predictive value. (A) Monopalmitin; (B) 
glycocholic acid; and (C) N-methyl-glutamic Acid. AUC: the sensitivity and specificity are represented on the y 
and x axes, respectively. The area under the curve (AUC) shows in blue, with 95% confidence intervals (CI).

Table 3.  Analysis of Pearson correlations between the metabolites of interest and the clinical and demographic 
variables. The range of these correlation coefficients is from − 1 to + 1, and they measure the strength of the 
linear relationship between the variables. Values in bold and underlined are indicative of statistical significance. 
**0.05 Significant two sided.

(1) (2) (3) (4) (5) (6) (7) (8)

Age (1)

C4 (2) − 0.3436**

C3 (3) − 0.1032 0.1585

SLICC_ACR (4) 0.2585 − 0.0316 − 0.1167

Creatinine (5) − 0.1003 − 0.213 − 0.1822 − 0.1664

Proteinuria (6) 0.0008 0.0644 − 0.2599 − 0.0965 0.0021

N_methyl_glutamic Acid (7) 0.2505 − 0.2598 0.2351 − 0.2199 − 0.1836 − 0.0365

Monopalmitin (8) 0.1227 − 0.3606** 0.094 − 0.2465 − 0.0584 − 0.0205 0.3482**

Glycocholic acid − 0.2138 0.0424 0.0473 − 0.1102 0.3777** − 0.201 − 0.2674 − 0.4746**
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of leucine, selectively inhibited BCAT1 activity, thus reducing the severity of collagen-induced arthritis and 
extracapillary proliferative glomerulonephritis in  mice40.

To date, most of the amino acids analyzed in peripheral blood samples of patients with SLE, including 
gluconeogenic and ketogenic amino acids, have shown decreased levels. Ammonia is the catabolic product of 
amino groups; it can be converted to urea through the urea cycle and is subsequently excreted in the urine. A 
metabolomics study measured the metabolites associated with the urea cycle and revealed that both arginine, 
the immediate precursor of urea, and urea itself were increased in patients with SLE, thus suggesting increased 
activity in the urea  cycle41,42. The kidneys play a significant role in amino acid homeostasis. In studies conducted 
with kidneys from LMR/lpr mice with SLE, BCAA concentrations were altered, which may suggest decreased 
protein synthesis, increased protein degradation, or both. The kidney is a dynamic organ with various enzymatic 
machinery components for amino acid catabolism and/or oxidization, particularly in the ascending limb of 
the loop of Henle, which provides the necessary energy for active ion transportation. The observed alterations 
in amino acid levels may be linked to the regulation of gene transcription, cell cycle progression, and immune 
and inflammatory responses. In the context of LN, these metabolic shifts could be a response to the underlying 
pathology, potentially reflecting an attempt by the body to regulate various cellular processes in the face of 
immune system dysregulation and  inflammation43,44.

The LN samples analyzed in our study had higher amino acid levels than did the SLE samples. Patients with 
LN had higher concentrations of BCAAs and their metabolites, such as valine (SLE vs. LN: fold change = 5.81), 
hydroxyisoleucine (SLE vs. LN: fold change = 37.13), and aminoadipic acid (SLE vs. LN: fold change = 335). 
Therefore, the alteration of these metabolites and their metabolic pathways can be associated with renal disease 
progression in patients with SLE.

Finally, multiple mechanisms underlying the role of tryptophan in lupus progression have been proposed. 
Several studies have described biased metabolism of tryptophan toward the kynurenine pathway in patients 
with SLE, which is reflected by low tryptophan concentrations and high kynurenine levels in the serum of these 
 patients45. Prior studies have shown that exogenous kynurenine enhances Th1 polarization of  CD4+ T cells and 
reduces Treg cell polarization of cytotoxic T cells, thus suggesting that kynurenine promotes proinflammatory 
T-cell phenotypes. Moreover, kynurenine induces the activation of mTOR in human T  cells46, contributing to 
the high level of mTOR activation typically observed in the  CD4+ T cells of patients with SLE. In  CD4+ T cells, 
active gene hypomethylation in the mTOR pathway increases the expression and activation of proinflammatory 
cytokines such as IFNγ and IL-1747, which are key for SLE pathophysiology. Studies conducted with mice have 
proven the efficacy of mTOR inhibition by rapamycin for treating LN in children. mTOR inhibition by rapamycin 
reduces STAT3 activation in effector T cells, as well as the migration of IL-17-producing T cells in inflamed 
kidneys, thus eliminating chronic inflammatory  processes48.

Moreover, several tryptophan-derived metabolites, including indole-3-aldehyde, indol-3-acetic acid, 
3-metilindole, tryptamine, and indoxyl sulfate, are ligands for aryl hydrocarbon receptors (AhRs). AhR signaling 
modulates many essential cell processes, such as cell cycle progression, apoptosis, and cell proliferation, by 
regulating P53, FasR, Bcl-2, and kinases of the cell cycle. AhR activation increases the regulation of genes 
encoding cytokines, such as IL-10, which regulate immune  tolerance35,45. In patients with SLE, exposure to 
indoxyl sulfate, a metabolite of tryptophan degradation, increases AhR activity in the periglomerular region 
and in the proximal and distal renal tubules, causing renal fibrosis characterized by podocyte injury, progressive 
glomerular damage, and a proinflammatory phenotype associated with  LN39.

The metabolic pathway of tryptophan and its particular relationship with LN have also been studied. In a 
metabolomics study conducted with urine samples to identify possible metabolites associated with membranous 
LNs, the picolinic acid–tryptophan ratio had considerable potential for LN diagnosis and classification. 
Therefore, the metabolites of this pathway are currently being considered potential alternative biomarkers for 
the noninvasive diagnosis of  LN49. Our study showed a significant difference in the hydroxyanthranilic acid levels 
between samples from patients with LES and patients with LN (fold change = 0.66). Hydroxyanthranilic acid is 
produced by the metabolism of tryptophan through the kynurenine pathway, revealing the role of this pathway 
in LN occurrence. Several studies have reported high levels of hydroxyanthranilic acid in the plasma of patients 
with CKD. However, its renal excretion is limited under disease conditions; thus, its urinary concentration tends 
to decrease in patients with glomerular disease, as this study  showed50.

Despite these findings, few studies have identified metabolic changes between SLE patients and LN patients. 
A study published by Guleria et al., which used 1H magnetic resonance spectroscopy, reported that patients with 
LN had higher serum lipid (LDL/very LDL) and creatinine levels and lower acetate levels than patients with  SLE51. 
In general, studies aimed at determining the metabolomics profile of patients with SLE and LN based on urine 
samples are scarce. Although urine is an excellent option for identifying biomarkers of LN because it emerges 
directly from the affected renal tissue and is the most accurate biological fluid reflecting kidney  dynamics4,52, a 
few studies have been conducted so far using this biofluid. In two of these studies, performed by Guleria et al.51, 
and Ganguly et al.53, a significant reduction in serum or urine levels of citrate was observed, when compared to 
healthy controls. In general, the behaviour of citrate in urine and serum is similar since it passes freely through 
the glomerulus, 60% of it being reabsorbed in the proximal tubule. Citrate is a tricarboxylic acid synthetized in 
the mitochondria that plays a key role in the TCA—therefore, it is reasonable to expect that when immune cells 
are activated and their energetic metabolism shifts, its levels in serum decrease, as the oxidative phosphorylation 
 diminishes53. Acetate also showed significant changes in these two studies. Acetate is a product of the oxidation 
of fatty acids, and it was reported to be elevated in the serum samples of LN patients, compared to HC, which 
support the theory of disturbed lipid metabolism in LN  patients43,51. Ganguly et al.53 observed higher acetate 
levels in LN, which exhibited a decreasing trend after treatment, possibly indicating tubular repair. Fatty acid 
oxidation primarily occurs in the mitochondria and peroxisomes of nephron tubules, especially the proximal 
tubules. Furthermore, toxins damaging the proximal tubules may lead to increased acetate excretion in urine, 
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potentially explaining the differential behavior of acetate in serum and urine. Thanks to these study it has been 
demonstrated that factors such as the renal processes of filtration, reabsorption, and secretion of biomarkers, 
as well as the activity of active transporters in the kidneys can impact the levels of specific biomarkers in urine 
samples compared to serum or plasma. The behavior of these transporters may reflect changes in metabolic 
pathways or disruptions in kidney function, thereby establishing urine biomarkers as valuable indicators in 
metabolomics, especially for kidney related diseases.

In understanding results from metabolomics studies of diseases like SLE and LN, it’s crucial to remember that 
factors beyond the disease itself can significantly impact the levels of metabolites. Medications commonly used 
for these conditions, such as glucocorticoids and immunosuppressants, are a major group of these influencing 
factors. Glucocorticoids, which are almost always used for disease control, can unfortunately bring unintended 
consequences, and it has been demonstrated how they affect metabolism, including imbalances in glucose, 
lipids, and  proteins41.

In an experiment performed by Malkawi et al54, where rats were treated with Dexamethasone at a dose of 
2.5 mg/kg twice a week for 14 weeks, it was demonstrated that the serum metabolome was characterized by 
a decrease in phenylalanine, lysine, and arginine, while levels of tyrosine, hydroxyproline, and acylcarnitines 
were increased. These changes suggest that Dexamethaose may affect processes like the production of glucose 
from non-carbohydrates, the breakdown of proteins, and the breakdown of fat tissue. A similar study was 
performed in healthy volunteers, where a single 4-mg dose of dexamethasone caused major changes in over 150 
plasma metabolites, characterized by an increase of blood sugar, lactate, mannose, and some amino acids, and a 
decrease in of cholesterol and fatty  acids55. Interestingly, in another study performed with patients with Cushing’s 
syndrome or adrenocortical adenomas with or without hypercortisolism that were compared with hormonally 
normal controls, those with high cortisol had lower levels of certain fats and amino acids, but higher levels of 
polyamines. This suggests that some of the metabolic changes in SLE might be caused by the body’s own natural 
steroids, while others might not be as affected by these  hormones56.

Additionally, a study found no clear link between taking glucocorticoids and changes in the blood related to 
oxidative stress, production of glutathione and specific inflammatory pathways. This includes substances like 
MDA, glutathione itself, leukotriene B4, and gamma-glutamyltransferase 1 (GGT1)41,42.

Unlike other immunosuppressant medications used for SLE, hydroxychloroquine (HCQ) seems to have a 
beneficial effect on cholesterol and blood  sugar41. Studies have shown that HCQ induces the decrease of low 
density lipoprotein, triglycerides, and very low-density  lipoprotein57,58. On the other hand, medications like 
cyclosporine and tacrolimus have been reported to worsen cholesterol and blood sugar  levels59. These negative 
effects are dose-dependent, meaning the higher the dose, the worse the impact, and can eventually lead to 
hyperglycemia and  hyperlipidemia60. Thankfully, azathioprine and cyclophosphamide, other SLE medications, 
seem to have no influence in the metabolome of SLE  patients41.

Since medications can affect the results of metabolic studies in SLE and LN patients, it’s crucial to consider 
their influence before drawing conclusions. To get a clearer picture of how lupus itself affects metabolism, future 
studies should ideally involve patients who haven’t received any medications yet (drug-naive, new-onset SLE). 
Additionally, studying metabolism in mice with lupus might provide valuable insights in this area. In our study, 
due to the limitations in the data regarding medications used by SLE and LN patients, including the specific 
medications, dosages, and treatment durations, it is not possible to definitively determine or precisely estimate 
the impact of these treatments on the observed metabolic changes. However, this important consideration will 
be factored into the design of future research to ensure a more accurate understanding of the metabolic effects 
of SLE and LN independent of medication influence. Because of the complex pathophysiology of SLE and the 
difficulty in reaching an adequate diagnosis, metabolomics may be a good alternative approach for identifying 
new noninvasive biomarkers. However, multiple confounding factors may arise in metabolomics studies, which 
results in study limitations. We believe that factors such as participants’ concomitant medications, eating habits, 
alcohol use, smoking, and consumption of other substances cause the heterogeneity of the data collected during 
analysis. Therefore, in our upcoming studies, we aimed to control for these confounding factors and expand 
the sample size, including newly diagnosed patients, to compare subgroups based on clinical data, including 
the SLEDAI score, sex, and treatment. Moreover, validating the metabolites with the highest predictive power 
through targeted metabolomics utilizing standardized references, will be highly valuable for confirming our 
findings and proposing these metabolites as potential biomarkers for LN diagnosis.

Implications for clinical practice
This research successfully identified promising markers for diagnosing lupus nephritis. These markers are 
particularly valuable for personalized medicine because ideally, they could be detected through simple urine 
tests. Urine is especially attractive for research due to its ease of collection, making it a treasure trove of potential 
information for future studies. Analyzing the unique chemical fingerprints found in urine is a novel and exciting 
approach compared to traditional methods. As our understanding of these metabolites and how they connect 
to health and medications expands, they could become powerful tools for developing personalized treatments 
for lupus nephritis patients. Ultimately, validating these potential markers, and identifying the best ones, could 
revolutionize how we diagnose and treat lupus related kidney diseases. By using painless urine tests and enabling 
personalized treatment plans, this research paves the way for improved patient comfort and overall quality of care.

Data availability
Our raw data will be deposited in the Metabolights database (https:// www. ebi. ac. uk/ metab oligh ts/) and will be 
made available once it has been uploaded.

https://www.ebi.ac.uk/metabolights/
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