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Failure probability analysis of high 
fill levee considering multiple 
uncertainties and correlated failure 
modes
Ruirui Sun 1*, Yimingjiang Reheman 1, Xiaoling Wang 2, Kaixuan Fei 1, Jinjun Zhou 1 & 
Ding Jiao 1

Such complex causative factors in current failure probability models are represented by simply 
random uncertainty and completely independent or correlation of failure modes, which can often 
limit the model utility. In this study, we developed a methodology to construct failure probability 
models for high fill levees, incorporating the identification of uncertainties and an analysis of failure 
modes. Based on quantification of stochastic-grey-fuzzy uncertainties, probability analysis involved 
with overtopping, instability and seepage failure modes was implemented combined with probability 
and non-probability methods. Given that the interaction among failure modes typically exhibits 
nonlinear behavior, rather than linear correlation or complete independence, a simple methodology 
for the binary Copula function was established and implemented in MATLAB. This methodology 
was applied to the high fill segments of a long-distance water transfer project characterized by high 
population density. It shows that the failure probability of a single failure mode is overestimated when 
uncertainties are not considered, because of the randomness and fuzziness of some parameters and 
the greyness of information. Meanwhile, it is found that the magnitude of failure probability related 
to levee breach is overestimated without respect to failure modes correlation, especially when the 
probabilities of seepage and instability are both significant and closely aligned.

Keywords Long-distance water transfer project, Open channel levee, Failure probability model, Probabilistic 
and non-probabilistic approaches, Copula method, Natural and epistemic uncertainty

Long-distance water transfer projects are required to alleviate the contradiction between supply and demand 
for water resources in different regions, realize rational water resource  management1. Open channels, as critical 
components of these projects, particularly in areas with high fill levees, are subject to complex causative factors 
that introduce uncertainties and nonlinear correlations, significantly impacting the probability of failure. Con-
sequently, breaches in channel levees pose substantial risks to public security, especially in densely populated 
urban areas.

Several factors, including soil erosion and catastrophic floods, predispose levees to breaches. Risk analysis has 
emerged as an essential tool for enhancing the safety and management of open channel levees. The applicability 
of risk analysis in the water system was initially demonstrated by Yen and  Ang2, with subsequent widespread 
adoption in hydraulic  engineering3–5. Early studies concentrated on water quality and operational risks of water 
transfer projects, employing various assessment methods such as the drivers-pressures-state-impact-response 
model, fuzzy comprehensive evaluation, and coordinated development degree  model6. The improved failure mode 
and effect analysis method based on fuzzy inference system was utilized to the risk assessment of the Middle 
Route of the South-North Water Transfer  Project7.

Currently, the safety assessment of levees increasingly relies on failure probability models. Lendering et al.8 
proposed an approach to quantify the failure probability of flood control facilities, enhancing canal levees’ reli-
ability analysis. Similarly, Hathout et al.9 developed a model based on expert judgement to evaluate the failure 
probability of river levees. It is generally recognized that risk is intricately linked to uncertainty, risk assessments 
typically characterize inherent stochastic uncertainties through statistical probabilities.
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In the risk assessment, the inherently stochastic uncertainty from the system itself was usually characterized 
with statistical probability, that is, the failure  probability10. A unified framework incorporating both probabilistic 
and non-probabilistic methods has been established for representing uncertainties, embracing approaches like 
sampling-based methods, asymptotic reliability analysis, interval analysis, and fuzzy set  theory11,12. Given the 
diversity of problems encountered in uncertainty analysis, no single method suffices for all scenarios. Hence, 
integrating probabilistic and non-probabilistic methods offers a more comprehensive strategy for flood risk 
management in open channels with high fill areas.

Open channel safety and levee breach risk management depend on quantitative analyses fraught with sig-
nificant uncertainties. Recently, a considerable interest is focused on uncertainty analysis in hydrology, water 
quality and water resource  fields13,14. From the risk probability perspective, some researches were performed on 
single uncertainty analysis of operation risk for reservoirs with respect to hydraulic engineering. The stochastic 
uncertainty was primarily considered in risk assessment of water transfer projects. As the most widely used 
method to describe uncertainty, mathematical statistics method is developed from the initial direct integration 
method, Monte Carlo method to the first-order reliability method (FORM) and second-order reliability method, 
mean FORM, and JC method, etc.15.

While stochastic uncertainty has been a primary consideration, the complexities of water conservancy pro-
jects also introduce fuzzy and grey uncertainties. The operation of water conservancy engineering systems 
involves a variety of uncertainties, making the analysis and description of the relationship between uncertainty 
and risk challenging. Recently, increased attention has been given to compound uncertainty, which arises from 
the interaction of two or more uncertainties. The main sources of uncertainty are analyzed and determined as 
uncertain dam breach and flood routing  processes16. Based on fuzzy set theory, a new dam failure probability 
model was introduced combined with event tree  analysis17. Additionally, Oliver et al.18 established an efficient 
modelling framework to perform probabilistic description of dike-protected river system taking morphological 
variability and stochastic uncertainty into account. Moreover, a probabilistic risk assessment method addressing 
Grey-Stochastic-Fuzzy uncertainty was applied to a roller-compacted concrete dam, considering both the ran-
dom and grey attributes of parameters and the fuzziness of failure  criteria19, with fuzzy failure criteria examined 
through enhanced LHS sampling methods and grey uncertainty quantified via Bootstrap Grey Estimation theory. 
Recently, an important advance in assessing failure probability under epistemic and aleatory uncertainties is a 
series of works on extended polynomial chaos  expansions20,21. By focusing on the sensitivities to both aleatory 
and epistemic uncertainties, this approach offers valuable insights into the factors most influencing system 
performance and failure  probabilities22,23. The aforementioned researches underscore the growing focus on 
addressing both natural and epistemic uncertainties, beyond merely the inherent stochastic uncertainty, in the 
analysis of dam and river levee failure probabilities. However, identifying and quantifying the failure probability 
of high fill levees in long-distance water transfer projects remains challenging due to the complex causative factors 
related to hydrological and geotechnical variability, as well as operation conditions. In addition, the simplistic 
representation of failure modes as either completely independent or correlated in detailed failure probability 
models can restrict their effectiveness. Therefore, analyzing the correlation among failure modes is crucial for 
deriving an accurate estimate of failure probability.

Correlation analysis of failure modes is vital for developing failure probability models for channel levees in 
long-distance water transfer projects. There has been a notable increase in studies focusing on failure probability 
models in dam and levee engineering that consider specific failure modes during the operational phase. Failure 
mode correlation analysis has recently been applied to the study of failure probability in structural engineering. 
For example, as for bridge structure reliability analysis, Liu and  Fan24 presented the mixed copula models for 
time-independent reliability analysis of series, parallel, series–parallel, and parallel-series systems for two-com-
ponent systems and multi-component systems with multiple failure modes. Gong and  Frangopol25 applied Copula 
functions to describe the spatial correlation of corrosion growth associated with different girders to investigate 
the effect of spatial dependence of general corrosion on the reliability of steel girder systems under traffic loads. 
Furthermore, the correlation between slope failure modes has been accurately depicted using Pearson correla-
tion coefficients, and the upper and lower limits were narrow to effectively reflect the change of system failure 
probability, and correlation between soil cohesive strength and friction angle was represented though  Copulas26. 
Despite these advancements, understanding the nonlinear correlation among failure modes in high fill parts of 
open channel levees remains a significant challenge in failure probability analysis.

To sum up, the long-distance water transfer project levee’s failure probability model was established, taking 
into account the multiple uncertainty, to obtain the failure probability of the channel levee. And the uncertainty 
was quantified by combining both probabilistic and non-probabilistic methods. Furthermore, the Copula func-
tion was used to calculate the integrated failure probability of the levee by considering the correlation among 
different failure modes.

Methodology
In this paper, failure modes of channel levee with complex causative factors involved multiple uncertainties 
and nonlinear correlation was studied utilizing probability and non-probability methods, enabling a correlated 
analysis of failure probability in high fill parts. Initially, the identification of uncertainties related to these complex 
causative factors was carried out, distinguishing between natural and epistemic uncertainties. The development 
of a failure probability model incorporated the three primary failure modes: hydrological, seepage, and landslide 
instability, employing fuzzy mathematics and grey theory. Notably, the grey uncertainty associated with hydro-
logical risk was quantified using the Dempster-Shafer evidence theory, while a rising half trapezoidal distribution 
of fuzzy membership degree was utilized to address the fuzzy uncertainty in instability failure risk. Additionally, 
a simplified methodology employing the binary Copula function was devised and implemented in MATLAB 
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using the Gaussian Copula method, acknowledging the nonlinear interaction of failure modes, which contrasts 
with the linear correlation or complete independence typically assumed in traditional reliability analyses. As a 
case study, a high fill section of a long-distance water transfer project situated in a densely populated area was 
examined. The development of the failure probability analysis model for high fill levees is illustrated in Fig. 1.

Uncertainty identification related to complex causative factors of high fill levee
Actually, during the operation of the long-distance water transfer project, the integrity of the channel is inevitably 
compromised by a multitude of uncertain factors, attributable to extensive water conveyance lines and complex 
engineering designs. Breaches in levees can lead to severe consequences. Therefore, to mitigate losses and manage 
risks, it is crucial to conduct a comprehensive analysis of the various uncertainties involved in the risk assessment 
of high fill channel levee breaches. Although uncertainties emanate from numerous sources, it is essential to 
distinguish between two primary categories: natural uncertainty (includes stochastic and fuzzy uncertainty) and 
epistemic uncertainty (includes grey and unascertained uncertainty)27,28. Grey uncertainty arises from incomplete 
knowledge about the system, which, being an integrated entity with specific functions comprised of interrelated 
and interactive elements, cannot be fully understood due to this knowledge gap. Uncertainties often coexist and 
interact, complicating the identification and significance assessment of each  type29. Therefore, considering only 
one type of uncertainty in isolation is inadequate for addressing the multifaceted nature of uncertainty in risk 
assessments. To tackle the compounded uncertainty stemming from the interaction of multiple uncertainty 
types, a thorough identification and analysis of these uncertainties are imperative.

Conducting an uncertainty analysis for every potential variable would render risk assessments prohibitively 
time-consuming and inefficient. Thus, simplification and assumption are necessary to streamline the process. In 
practical engineering scenarios, uncertainties are frequently obscured by complexity. Specifically, in the opera-
tion of open channel high fill levee projects, uncertainties arise from variations in load effects, material strength 
resistance, and factors related to design and construction. Building on existing  research13,30–32 and considering 
the unique aspects of high fill channel projects, uncertainties during the operational phase of open channels have 
been categorized as presented in Table 1.

This study categorizes the failure types that can lead to breaches in filled channel levees as follows: hydrologi-
cal failures (encompassing flood overflow and overtopping), seepage failures, and instability failures. The hydro-
logical failures are attributed to the stochastic uncertainty of natural uncertainty and the grey uncertainty and 
unascertained uncertainty of epistemic uncertainty. The uncertainty that caused hydrological failure includes the 
stochastic uncertainty of natural uncertainty and the grey uncertainty and unascertained uncertainty of epistemic 
uncertainty. Similarly, seepage and instability failures stem from the fuzzy uncertainty of natural uncertainty and 
the unascertained uncertainty of epistemic uncertainty. Consequently, this paper explores the integrated failure 
probability of channel levees by analyzing these uncertainties and considering the influence of multiple factors.

Failure probability model of the high fill levee based on probabilistic and non-probabilistic 
approaches
The subjective uncertainty associated with levee breaches can be quantified using statistical theory, fuzzy math-
ematics, and grey system theory, as illustrated in Fig. 2. Statistical theory quantifies the risk of subjective uncer-
tainty as a probability distribution, assuming statistical significance. Fuzzy mathematics represents the concept of 
failure probability as fuzzy  probabilities33, while grey system theory focuses on describing and quantifying grey 

Figure 1.  Failure probability analysis model for high fill levees.
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uncertainty in failure modes through a stochastic probability approach. The probability of levee breach caused 
by hydrological failure can be described by the grey-stochastic failure probability. In contrast, the probability of 
a breach due to instability failure is determined using stochastic-fuzzy failure probability, and the probability 
related to seepage failure is calculated with stochastic failure probability.

Hydrological failure probability model considering grey‑stochastic uncertainty
The risk probability model for hydrological failure of levee is presented in Fig. 3a. The grey uncertainty risk 
probabilities can be described and quantified by grey system theory, particularly when the system encompasses 
numerous factors or state variables, as indicated by a vector XG = (XG1, XG2, . . . , XGn) representation. Thus, 
the system’s performance function g (XG) is determined by these factors, with the system’s failure probability 
defined accordingly. The following concept can be derived similarly, based on the system’s critical performance 
requirements.

Given the joint probability density function fXG1 ,XG2 ,...,XGn (XG1,XG2, ...,XGn) of the variables XG1,XG2, . . . ,XGn , 
the probability of failure state is expressed as,

(1)







[g(XG) = 0] → “Critical state”

[g(XG) > 0] → “Safe state”

[g(XG) < 0] → “Failure state”

Table 1.  Uncertainties in the high fill levees.

Types of uncertainty Including phenomena Closely related factors Uncertainty categorization

Hydrological uncertainty Distribution of rainstorm and annual 
rainfall, etc. Storm flood Stochastic uncertainty and grey uncertainty

Earthquake factors uncertainty Earthquake strength, intensity, source, 
action Seismic factors Grey uncertainty and unascertained 

uncertainty

Hydraulic uncertainty
Physical quantities that possess a property 
of uncertainty when calculating the hydrau-
lic load

Technology eigenvalues and model sim-
plification

Fuzzy uncertainty and unascertained 
uncertainty

Geotechnical uncertainty Geological structure, piping, seepage, settle-
ment and slope stability Technological factors Stochastic uncertainty and fuzzy uncer-

tainty

Structure and construction factors uncer-
tainty

Incorrect design, construction materials 
strength, and the relatively poor construc-
tion quality

Human factors Fuzzy uncertainty and unascertained 
uncertainty

Operations management factors uncertainty
The degree of engineering maintenance, 
improper operation and human negligence 
in the process of management

Human factors Fuzzy uncertainty and unascertained 
uncertainty

Figure 2.  Identification and quantification of uncertainties in high fill levees.
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The probability of channel overtopping failure, characterized by grey-stochastic analysis, is

More detailed information about the grey systems theory can be found in  reference34.

Instability failure probability model considering stochastic and fuzzy uncertainty
The instability of the channel slope is attributed to the sliding torque MS exceeding the anti-sliding torque MR . The 
failure probability of instability considers fluctuations in the water level H within the channel and the variability 

(2)RG =

∫

g(XG)<0

fXG (XG)dXG

(3)RG =
[

R∗, R∗
]

= P
{

g(XG) < 0
}

Figure 3.  Mathematical model of levee failure risk analysis. (a) hydrological failure (b) instability failure (c) 
seepage failure.
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of the soil’s physical and mechanical properties on the channel slope. Figure 3b depicts the risk probability model 
for levees’ instability failure. Given the complexity of directly solving the risk associated with channel slope insta-
bility, discrete numerical integration is commonly utilized. Initially, the section of the load probability density 
distribution curve h ≤ h2 is divided into N segments, and the subsequent equation is applied for resolution:

In this equation, h1 and h2 are the lowest and highest water level values (m) specified when the soil channel 
slope is unstable;�F0(hi) is the i segment of the water level frequency curve probability;N is the number of seg-
ments for calculating the water level frequency curve; FMs (hi) is the probability that the sliding torque surpasses 
the anti-sliding torque at a specified water level h ; FMs (hi) is the average probability value of i segment where 
the sliding torque exceeds the anti-sliding torque.

Assessing the soil’s physical and mechanical properties when estimating the probability of channel slope 
instability presents considerable uncertainty. Thus, a fuzzy failure probability model for channel levee failure is 
proposed, utilizing fuzzy event probability  theory35.

where ˜Zs represents the fuzzy event of channel slope instability, fs(z) = FMS (H) · f0(H),µ
˜Zs
(z) is the membership 

function of levee breakdown.
To address the fuzzy uncertainty in instability risk, an ascending semi-trapezoidal distribution is selected, 

with the membership function defined as follows.

The membership function of this fuzzy failure state ˜A is expressed as the distribution density function when 
the state variables Z follow a normal distribution, illustrated in Eq. (7).

The fuzzy failure probability is subsequently calculated as follows.

Seepage failure probability model under stochastic uncertainty
Seepage theory elucidates that seepage deformation (such as pipe surge or flow soil) occurs when the seepage 
gradient J surpasses the soil’s critical gradient jk . Moreover, this gradient is influenced by the channel’s water 
level, underscoring the necessity of a comprehensive consideration of hydrological risk.

The probability model for levee seepage failure is depicted in Fig. 3c. This model considers the impact on 
the structure to commence at a certain water level, reaching its maximum when the water level aligns with the 
levee’s height.

where f (H) is the probability density function of water level and FJ (H) =
∫∞

jk
f (J/H)dJ.

As the most widely used probabilistic methods, mathematical statistical methods, such as the direct integra-
tion method, Monte Carlo simulation (MCS) method, and structural reliability method etc., are commonly 
used to solve risk-rate models with stochastic  uncertainty11. MCS method is one of the common methods for 
predicting and estimating failure probability, and it does not need to consider the complex mechanism of influ-
ence between random variables. The MCS method’s main advantage is its high accuracy, especially for nonlinear, 
differentially distributed, correlated systems. As a result, the MCS method was used in this paper to solve the 
failure probability model.

Integrated failure probability based on the Copula function method
The occurrence of a levee breach in open channels within long-distance water transfer projects is the culmina-
tion of a complex interplay among multiple failure modes. This complexity is further amplified by the fact that 
individual risk factors are not entirely independent; instead, they exhibit mutual penetration and correlation. The 
Copula method provides a robust framework for analyzing the interrelationships between these failure modes.

(4)Pfs = p(Ms > MR) =

∫ h2

h1

FMS (H) · f0(H)dH =

N
∑

i=1

FMs (hi) ·�F0(hi)

(5)P( ˜Zs) =

∫

U
µ

˜Zs
(z)fs(z)dz

(6)µA(z) =







0, z < a

(z − a)/(b− a), a ≤ z ≤ b

1, z > b

(7)f (z) =
1

δ
√
2π

exp(−(z − µ)2/2δ2)

(8)

Pr = P(A) = f (z) =

∫ ∞

−∞

µA(z)f (z)dz

=

∫ b

∞

1

δ
√
2π

exp(−(z − µ)2/2δ2)dz +

∫ b

a

z − a

b− a
·

1

δ
√
2π

exp(−(z − µ)2/2δ2)dz

(9)Pfi=

∫ H2

H1

FJ (H)f (H) dH
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Copula theory was first proposed by Sklar, known as Sklar’s  theorem24. Sklar argued that any multivariate joint 
distribution can be written in terms of univariate marginal distribution functions and a copula which describes 
the dependence structure between the two variables.

Taking the binary Copula function as an example, let H(X,Y) be a two-dimensional distribution function with 
marginal distribution functions F(X) and G(Y) . Then there exists a copula C such that H(X,Y) = C(F(X),G(Y)) . 
Conversely, for any distribution functions F,G and any copula C , the function H(X,Y) defined above is a two-
dimensional distribution function with marginals F(X) and G(Y) . Furthermore, if F(X) and G(Y) are continu-
ous,C is unique.

The binary distribution function and its parameter ranges of Gaussian Copula function are summarized in 
Table 2.

Modes of levee failure can be viewed as a series relationship because no failure modes are permitted during 
channel operation. The boundary method, a prevalent approximation for the series model, assesses the correla-
tion of failure modes under two extreme conditions: complete correlation and complete independence. This 
method posits that the correlation among potential risk factors for channel levees lies between these extremes. 
Therefore, based on De Morgan’s  Law36, when PEj < 1 the general bound for Pt

In practical calculations of the integrated failure probability of channel levees, it is advisable to consider the 
upper limit of Eq. (10). In this paper, The Copula function was used to estimate the system’s failure probability 
because of its excellent performance in describing the correlation of multivariate variables, as well as its conveni-
ence in constructing the joint probability distribution function.

The general correlation influences projects failure probability by influencing the joint failure probability of 
two failure modes occurring concurrently. The performance function corresponding to each failure mode of the 
binary series model in the channel levee structure is assumed to be

Subsequently, the probability of simultaneous occurrence of the two failure modes in the binary series model 
is derived using the probability integral transformation, as illustrated below.

According to the above, Fg (0, 0) = C[Fg1(0), Fg2 (0)] complies with Sklar’s theorem. As a result, the failure 
probability of the binary series model can be calculated.

where Pfg1 , Pfg2 are the failure probabilities of the binary series model’s two failure modes in the channel levee 
structure, respectively; C is the binary Copula function. The establishment process of Copula Model is depicted 
in Fig. 4.

Results and discussion
A long-distance water transfer project main trunk channel starts from A province, the channel line passes through 
A, B and multiple provinces and cities. Notably, the channel section within city J is characterized by high fill, 
constituting a crucial segment of the project’s main canal. This section, spanning from design station IV32 + 200 
to IV44 + 100 in city J, lies above a densely populated area. The geographical elevation of this section gradually 
decreases from northwest to southeast, heightening the risk of levee breaches under atypical operational condi-
tions. Such breaches could release channel water, posing significant threats to the lives and properties of residents 
along its course. In this study, a typical open channel section in the above area was selected for the application 
of the probabilistic and non-probabilistic risk analysis model mentioned above. Typical Section IV38 + 600 is a 
high fill cross-section in city J with a levee crest height of 8.743 m, surrounded by critical infrastructure includ-
ing train stations, hospitals, and residential areas, thereby indicating a high population density. The engineering 
location and the geometric profile of a typical cross-section of the study area is illustrated in Fig. 5.

(10)max
1≤j≤m

(PEj ) ≤ Pt ≤

m
∑

j=1

PEj

(11)gi(X) = gi(X1,X2, ...Xn), i = 1, 2, 3....n

(12)
P[g1(X) ≤ 0, g2(X) ≤ 0] = P{Fg1 [g1(X)] ≤ Fg1(0), Fg2 [g2(X)] ≤ Fg2(0)}

= P[U1 ≤ Fg1(0),U2 ≤ Fg2(0)] = C[Fg1(0), Fg2(0)] = C(Pfg1 , Pfg2)

(13)

Pf = P[g1(X) ≤ 0 ∪ g2(X) ≤ 0]

= P[g1(X) ≤ 0)+ P(g2(X) ≤ 0] − P[g1(X) ≤ 0, g2(X) ≤ 0]

= Pfg1 + Pfg2 − C(Pfg1 , Pfg2)

Table 2.  Gaussian Copula function.

Copula function Binary distribution function Cθ (u, v) Parameter ranges Kendell’s rank correlation coefficient

Gaussian Copula φρ
(

φ−1(u),φ−1(v)
)

ρ ∈ (−1, 1) τ =
2 arcsin (ρ)

π
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Estimation of failure probability under multiple uncertainties
Grey‑stochastic probability of hydrological failure
Based on the water level design standards outlined in Table 3, it can be obtained that the 100-year design water 
level is 7.533 and the 300-year calibration water level is 8.176 m. When f (h) was used to represent the prob-
ability density function of inverse Gaussian distribution, and the f (7.533) = 0.01 and f (8.176) = 0.0033 can 
be obtained.

Figure 4.  Establishment of a Copula Model.

Figure 5.  Location of the open channel project and geometry of typical section (IV38 + 600).
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To solve the system of binary nonlinear equations derived from the aforementioned setup, the Newton itera-
tion method was applied, yielding the µ and � parameters of the inverse Gaussian distribution. The backwater 
level frequency curve of the channel was obtained as

The frequency curve of backwater level conforms to the distribution characteristics of backwater level. The 
probability of overflow and levee breach in the middle canal section of the study area had met the requirements 
and can be ignored by combining equation in Fig. 3a.

The measured data show that the elevation of the levee top follows a normal distribution. The parameters 
used to calculate wave run-up and wind backwater height are presented in Table 4. According to measured data 
and relevant standards, the Putian wind-wave  formula37 was introduced to calculate the mean value of wave 
run-up height µh and the wind backwater height e , and the results are shown in Table 5. The risk variables such 
as levee top elevation, wave run-up and wind backwater height are subject to grey uncertainty, classifying the 
channel levee system as a grey uncertainty system. The Dempster-Shafer  method38 was subsequently applied 
to transform each risk characteristic parameter calculated for the levee, as shown in Table 5, into grey interval 
data, as illustrated in Table 6.

The methodology for calculating the grey-stochastic risk probability of hydrological failure, as detailed in Sec-
tion “Hydrological failure probability model considering grey-stochastic uncertainty”, was employed. The failure 
impact factors were represented by vectors XG = (X1G , X2G , X3G) , with an assumption of mutual independence 
among all factors. The performance function g(XG) = g(X1G , X2G , X3G) of the channel’s safety state can be built.

The minimum value of the failure probability is 2.21× 10−8 , obtained from the XG∗ formed by 
(X1G∗, X

∗
2G , X

∗
3G) , and the maximum value of the failure probability is 1.27× 10−7 obtained from the X∗

G formed 
by (X∗

1G , X2G∗, X3G∗) . Therefore, the grey-stochastic failure probability RG of hydrological failure in the study 
channel segment is [2.21× 10−8, 1.27× 10−7] . When grey uncertainty is not taken into account, the hydrologi-
cal failure probability is 7.18309× 10−8 , within the interval range of the grey-stochastic failure probability. This 
approach, which incorporates both random and grey uncertainties, yields an interval value for the hydrological 
failure probability, offering a more comprehensive and accurate assessment of the uncertainty associated with 
failure modes.

Fuzzy‑stochastic probability of instability failure
The stability of levee slopes is significantly influenced by the variability in the soil’s physical–mechanical prop-
erties. The properties of levee materials in the examined channel section are detailed in Table 7. Generally, the 

(14)f (h) =

√

�

2πh3
e
−

�(h−µ)2

2µ2h

Table 3.  Channel water level design criteria.

Recurrence period (year) Flow  (m3/s) Elevation of water level (m)

Design 100–50 265 105.626–104.624

Calibration 300–200 320 106.269–105.255

Table 4.  Calculation parameters of wave run-up and wind backwater height.

Parameters v(m/s) F(m) ha(m) m K� Kv g(m/s2) K α

Values 2.9 100 7.0 2 0.85 1.1 9.81 3.6×10–6 0

Table 5.  Channel levee risk characterization parameters.

Levee top elevation (m) Wave run-up (m) Wind backwater height (m)

Range of values 8.593–8.893 0.34–0.55 0.00021–0.00023

Average value 8.743 0.48 0.00022

Mean square error 0.05 0.33 0.00001

Table 6.  Upper and lower grey expectation values of risk characteristics parameters.

Expected Value Levee top elevation (m) Wave run-up (m) Wind backwater height (m)

E∗G 9.18 0.504 0.0.00023

EG∗ 8.31 0.456 0.0.00021
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variability of the channel levee’s geometric parameters and the unit weight of its materials is very small and is 
treated here using constant values. The statistical characteristics of the soil shear index of the channel levee are 
shown in Table 8.

The simplified Bishop method calculated the risk of channel slope instability, described by the limit state 
equation as follows.

where Ci(kPa),ϕi(°) is the shear strength index of soil; Ui is pore pressure (kPa); Wi is the self-gravity of the soil 
strip (kN); bi is the width of soil strip (m); θi is the Angle between the tangent line of the midpoint at the bottom 
of the soil strip and the horizontal line (°). The procedure for solving risk of sliding instability is shown in Fig. 6.

(15)g(x) =
{

∑

[Cibi + (Wi − Uibi) tan ϕi] sec θi/(1+ tan ϕi tan θi)
}

−
∑

Wi sin θi

Table 7.  Physical and mechanical characteristics of study area soil.

Soil classification
Cohesive strength c
(kPa)

Angle of friction ϕ
(°)

Dry density γ
(kN/m3)

Saturation capacity γw
(kN/m3)

Heavy silt loam 36.0 19.5 1.78 2.03

Silty clay 32.0 22.6 1.68 1.99

Table 8.  Statistical characteristics of shear resistance index of study area soil.

Soil Parameters Mean value Standard deviation Distribution pattern

Heavy silt loam
Cohesive strength c  (kPa) 40.76471 9.680359 Normal distribution

Angle of friction ϕ(°) 24.17059 3.514301 Normal distribution

Figure 6.  Simplified Bishop’s law calculation flow chart.
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The infiltration line of channel levee seepage flow under water level conditions at all levels can be obtained 
by numerical simulation of channel levee seepage flow, with calculations performed at a channel water level of 
8.737 m, as shown in Fig. 7.

Using numerical simulations to obtain the levee’s infiltration line under different water levels, STAB software 
analyzed the search for the most critical sliding surface. The safety coefficient of the circular arc sliding surface 
was solved by Bishop method and obtain the location of the sliding surface with the lowest safety coefficient of 
Bishop method. The MCS method evaluated the risk of sliding instability, utilizing the most hazardous sliding 
arc identified by STAB software, as illustrated in Fig. 6. The stochastic-fuzzy risk of instability of the channel 
levee slope under each water level condition is shown in Fig. 8.

The fuzzy uncertainty in the risk of channel levee instability failure was addressed using the ascending semi-
trapezoidal distribution, and the membership degree of limit state g(x) was obtained at each water level in the 
channel. As observed in Fig. 8, the fuzzy-stochastic failure probability is minor compared to scenarios exclud-
ing fuzzy-stochastic uncertainty consideration. Both failure probabilities escalate with water levels, with their 
difference diminishing at higher levels. The reason for this phenomenon is that the higher the water level is, the 
greater the membership degree of g(x) < 0 is, which reveals the randomness and ambiguity of Ciφi.

In addition, the failure probability analysis across different water levels demonstrates a gradual increase in risk 
with rising water levels, albeit at a slow rate, indicating the channel slope instability risk’s insensitivity to water 
level variations. With a 2.2-m increase in water level, the failure probability doubles. At a channel water level of 
8.737 m, the probability of instability failure is merely 0.000325%. Without considering fuzzy-stochastic uncer-
tainties, the failure probability is 3.87× 10−5 , while the fuzzy-stochastic failure probability is Pfs = 1.71× 10−5 , 
underscoring the value of incorporating more detailed information into the analysis.

Stochastic probability of seepage failure
Based on the numerical simulation of seepage field, the anti-seepage measures failure took into consideration. 
The elevation of the overflow point under each water level condition was obtained, and the seepage slope under 
various water levels was calculated based on the numerical simulation of the seepage field. The outcomes of these 
calculations are summarized in Table 9.

Took the actual section size weakening and calculation simplification, calculation errors and other factors into 
considerations, J is uncertain. Assuming that J follows triangular distribution and the calculated J is reliable, the 
maximum value was estimated to be 1.2J , and the minimum value was estimated to be 0.4J.

A performance function for the seepage failure mode of the channel was developed, allowing for the calcula-
tion of the probability that the seepage gradient exceeds the critical gradient at specific water levels using the 
MCS method. The failure probability at each water level is shown in Fig. 9.

Figure 7.  Channel levee seepage infiltration line.

Figure 8.  Failure probability of instability under different water level.
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It is demonstrated in Fig. 9 that the seepage failure probability of this channel levee section is sensitive to the 
change of channel water level. Specifically, at a water level of 8.737 m, the seepage failure probability stands at 
0.00219, whereas at 6.6136 m, it reduces to merely 0.0000266. An increase of 2.2 m in the water level results in an 
82-fold increase in failure probability, with a more rapid escalation observed at higher water levels. The seepage 
failure probability, excluding stochastic uncertainty, is calculated as 0.00863. Add the failure probability at each 
water level to obtain the permeability failure probability value Pfi = 0.004333 . The result of failing to account 
for uncertainty is overestimated. Among them, the failure probability value at a water level of 8.737 m, which 
accounts for over half of the probability value. It is shown that if the levee was under long-term high water level 
operation, it will be more prone to levee breach caused by seepage damage.

As shown in Fig. 10, two structural failure probabilities are analyzed at different water levels, considering 
uncertainty. It is evident from Fig. 10 that failure probability demonstrates low sensitivity to water level changes 
at lower levels but significantly increases at higher levels. Notably, seepage failure exhibits greater sensitivity to 
water level alterations compared to instability failure.

In accordance with Eq. (10) and the aforementioned analysis, the integrated failure probability of levee breach-
ing can be obtained as 0.435%. The integrated failure probability mainly comes from the contribution of seepage 
failure, which is sensitive to water level changes. And this sensitivity increases as the water level gets higher. 
Although hydrological and instability failures contribute less to the overall failure probability, their influence 
grows with rising water levels. Therefore, closely monitoring water level changes, especially during the flood 
season, can substantially mitigate the risk of channel levee failure.

Table 9.  Calculation results of seepage point elevation and hydraulic gradient.

Water level (m) 5.636 6.136 6.636 7.000 7.136 7.636 8.237 8.737

Elevation of seepage point (m) 1.39 1.59 1.70 1.79 1.87 2.14 2.31 2.46

Maximum seepage gradient 0.29 0.38 0.44 0.40 0.37 0.46 0.50 0.55

Figure 9.  Failure probability of seepage under different water level.

Figure 10.  Structural failure probability at different water levels.
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Integrated failure probability considering correlated failure modes in levee breach event
It is recognized that there exist complicated correlations among different failure modes due to the shared uncer-
tain variables in the context of levee  breach39. For instance, both seepage failure and instability failure are related 
to soil strength parameters. Furthermore, according to the obtained failure probability in a certain failure mode 
of channel levee breach, seepage and instability failures contribute more significantly to the integrated failure 
probability than hydrological failure. Therefore, leveraging the Copula function model introduced in Section 
“Integrated failure probability based on the Copula function method”, the relationship between seepage and 
instability failures was modeled as a two-component series, with correlation analysis conducted using the joint 
probability density function.

The MATLAB was used in this section. Utilizing performance function sample data for the two failure 
modes obtained from previous calculations, the performance functions for instability and seepage failures were 
represented as Xand Y  . To identify an appropriate copula function, the non-parametric kernel density estima-
tion  method40 was employed to estimate the marginal probability density distributions for both failure modes 
(Fig. 11), followed by generating a binary frequency histogram (Fig. 12).

As shown in Fig. 12, the binary frequency histogram has a basic symmetric shape and tail, indicating that the 
joint probability density function will also have a basic symmetric shape and tail. Therefore, the binary normal 
(Gaussian) Copula function suitable for describing the correlation structure between seepage and instability 
failures.

In MATLAB, the copulafit function was used to estimate the correlation parameters in the Copula function. 
The estimated value of the correlation parameter in the function was obtained, ρ = 0.3821 . The Copula function 
of the two-component series model was obtained by substituting the calculated parameters into the Eq. (16).

Figure 11.  The empirical function and the kernel distribution estimation map.

Figure 12.  Frequency histogram of seepage and instability failure.
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where ϕ−1() is the inverse function of the one-dimensional standard normal distribution function, ρ represents 
the correlation parameters. The binary normal Copula density function and distribution function were calculated 
and as shown in Fig. 13.

The Kendall’s and Spearman’s rank correlation coefficients for the Gaussian Copula function were calculated. 
Meanwhile the Pearson correlation coefficient, Kendall’s and Spearman’s rank correlation coefficient of the origi-
nal data were calculated, and the results are shown in Table 10.

It can be seen that the values of the Gaussian Copula function’s parameters have small error values when 
compared to the parameters of sample data. Thus, the Gaussian Copula function better reflects the relationship 
between instability and seepage failure of channel levee.

The magnitude of the squared Euclidean distance between the binary normal Copula function and the empiri-
cal Copula function is calculated using the MATLAB distribution to assess the model’s merit. The squared Euclid-
ean distance d2 reflects the fitting accuracy of the original sample data by the binary Copula function, and the 
smaller the value is, the better the fitting result will  be41. The computational analysis yielded a numerical result 
of d2 = 0.2762 , indicating that the chosen binary normal Copula function model can better fit the correlation 
structure of the original data.

The Patton Copula toolbox was applied to calculate C(Pfg1 , Pfg2) = 1.196× 10−5 . Based on the Copula func-
tion, the correlation between instability failure and seepage failure was analyzed and the integrated failure prob-
ability 4.3351× 10−3 was obtained according to Eq. (13).

In view of the correlation calculation of failure modes for long-distance water transfer projects, scholars 
adopted the approximate reconstruction method of system safety margin equation to find the correlation 
between failure modes of water transfer project  systems42. First, a linearized model of the safety margin equa-
tion G11,G12,G13 corresponding to the three failure modes was obtained. Then, the equivalent failure boundary 
G
(1)
1e  of G11 and G12 is obtained through equivalence. Finally, by equating G(1)

1e  and G13,the correlation between 
the three failure modes was obtained.

In order to verify the rationality of the correlation results presented in this paper, we equivalent the safety 
margin equations linearized models G12 and G13 of the safety margin equations of the instability failure and the 
seepage failure using the equivalence method in the literature. The correlation between instability and seepage 
failure of this project was obtained as ρG12G13 = 0.3791 . The correlation coefficient calculated based on Copula 
function in this paper is close to the correlation coefficient of the literature. The rationality of this method is 
illustrated.

The integrated failure probability, determined via the Copula function, presents a more accurate assessment 
than the boundary method, enhancing decision-making for the project’s long-term stability. Considering the 

(16)C(u, v) =

∫ ϕ−1(u)

−∞

∫ ϕ−1(v)

−∞

1

2π
√

1− ρ2
exp

[

−
x2 − 2ρxy + y2

2(1− ρ2)

]

dxdy

Figure 13.  Gaussian Copula density function and distribution function ( ρ = 0.3821).

Table 10.  Comparison of copula function parameters.

Correlation parameters ρ Kendall’s rank correlation coefficient Spearman’s rank correlation coefficient

Gaussian Copula 0.3821 0.2496 0.3671

Sample Data 0.3807 0.2373 0.3512

Relative error 0.0014 0.0123 0.0109
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project’s significance and the emphasis on minimizing hydrological and instability failures during design and 
construction, the seepage failure probability emerges as a critical concern in long-term operations. In the long-
term operation of the channel, the failure probability of seepage is relatively large. Therefore, the failure prob-
ability of seepage is much larger than the probability of instability failure and hydrologic failure. As a result, the 
integrated failure probability considering correlation is small. Assuming that the probability of seepage failure 
and instability failure values are both large, the calculated integrated failure probability considering the failure 
modes correlation is more obvious and has more decision reference value.

Conclusions
The risk assessment of an open channel is critical to the safe operation of a long-distance water transfer project. 
And its operation system is complicated, and there are numerous uncertainties in the process. Presently, risk 
analyses have primarily focused on stochastic uncertainties within hydraulic engineering systems, often over-
looking the integral aspects of fuzzy and grey uncertainties involved in the project. The grey, stochastic and fuzzy 
uncertainties are three inseparable uncertainty factors that influence channel levee safety and exist objectively 
in high fill levee construction. In addition, the failure mode correlation analysis is an important component of 
the failure probability of channel levee in long-distance water transfer projects. To that end, it is imperative to 
account for grey, stochastic, and fuzzy uncertainties, as well as the interrelations among failure modes, in high fill 
levee analyses. This study has quantified uncertainty through a combination of probabilistic and non-probabilistic 
methods, establishing a failure probability model for long-distance water transfer project levees that considers 
multiple uncertainties. The correlation among failure modes was explored, enhancing the traditional risk analysis 
framework beyond the limitations of linear correlation and complete independence. From this research, several 
key conclusions have been drawn:

The methodology employed in this research considers not only engineering random uncertainty, but also 
fuzzy uncertainty and grey uncertainty, allowing the risks in the engineering operation to be considered 
comprehensively. The result of ignoring uncertainty is overestimated, compared with risk analysis consider-
ing multiple uncertainties, because of the randomness and fuzziness of some parameters and the greyness 
of information.
The study reveals that the failure modes of channel levees are notably sensitive to changes in water level, sug-
gesting that active monitoring and management of water levels during peak flood seasons can significantly 
mitigate the risk of levee breaches.
Based on the Copula function, the correlation between instability failure and seepage failure was analyzed 
and the integrated failure probability 4.3351× 10−3 was obtained. The relationship between instability and 
seepage failure of channel levee are better reflected by Copula function. The traditional approach, which fails 
to consider the correlation between failure modes, often overestimates the risk associated with levee breaches, 
particularly when the probabilities of seepage and instability failures are substantial and closely aligned. The 
integrated failure probability derived from this analysis is vital for the safety monitoring of long-distance 
water transfer projects.

The method proposed in this study makes up for the failure to consider the greyness, randomness and fuzzi-
ness in the risk analysis of the high fill levee. Due to the similarity of structural engineering analysis principles, 
the analysis method proposed is not limited to the failure probability analysis of high fill levee, but can also be 
used for the other structural engineering projects. However, the probability distribution of stochastic variables 
is determined by engineering experience because of insufficient data and there is no uniform standard for the 
selection of fuzzy failure criteria. In the correlation analysis, only the correlation between instability and seepage 
failure was calculated due to the high probability of landslide and osmotic instability. Further study is devoted 
to developing simplified methodology considering the influence of time, and conducting a more in-depth sen-
sitivity analysis, providing more scientific and reasonable decision information for long-term stable operation 
of long-distance water transfer project.

Data availability
All associated data have been presented in the manuscript which are available from the corresponding author 
on reasonable request.
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