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Low ACADM expression predicts 
poor prognosis and suppressive 
tumor microenvironment in clear 
cell renal cell carcinoma
Libin Zhou 1,2,6, Min Yin 1,2,6, Fei Guo 3, Zefeng Yu 4, Guobin Weng 5* & Huimin Long 1,2*

Clear cell renal cell carcinoma (ccRCC) represents a highly frequent renal cancer subtype. However, 
medium-chain acyl-CoA dehydrogenase (ACADM) encodes an important enzyme responsible for fatty 
acid β-oxidation (FAO) and its association with prognosis and immunity in cancers has rarely been 
reported. Therefore, the present work focused on exploring ACADM’s expression and role among 
ccRCC cases. We used multiple public databases and showed the hypo levels of ACADM protein and 
mRNA within ccRCC. Additionally, we found that ACADM down-regulation showed a remarkable 
relation to the advanced stage, high histological grade, as well as dismal prognostic outcome. As 
suggested by Kaplan–Meier curve analysis, cases showing low ACADM levels displayed shorter overall 
survival (OS) as well as disease-free survival (DFS). Moreover, according to univariate/multivariate 
Cox regression, ACADM-mRNA independently predicted the prognosis of ccRCC. In addition, this 
work conducted immunohistochemistry for validating ACADM protein expression and its prognostic 
role in ccRCC samples. KEGG and GO analyses revealed significantly enriched genes related to 
ACADM expression during fatty acid metabolism. The low-ACADM group with more regulatory 
T-cell infiltration showed higher expression of immune negative regulation genes and higher TIDE 
scores, which might contribute to poor response to immunotherapies. In conclusion, our results 
confirmed that downregulated ACADM predicted a poor prognosis for ccRCC and a poor response to 
immunotherapy. Our results provide important data for developing immunotherapy for ccRCC.

Renal cell carcinoma (RCC) is among the ten most frequent cancers, which occupies ≤ 3% of adult  cancers1. 
Among these, 16% displayed distant metastatic disease and exhibited a 5-year survival rate of only 11.6%2. Clear 
cell renal cell carcinoma (ccRCC) shows the highest morbidity among RCC pathological  subtypes3. The ccRCC 
is a metabolic disease, generally accompanied by the reprogramming of metabolisms, including glucose and 
lipid  metabolism4,5. Several cancer studies have shown that the changes in metabolic pathways control tumor 
energetics and  biosynthesis6. Notably, changes of fatty acid metabolism during carcinogenesis have been more 
and more explored for the functions in sustaining growth, satisfying energy demands, and offering metabolites 
in  anabolism7,8. Different from the lipogenic phenotype, the function of mitochondrial fatty acid β-oxidation 
(FAO) has not been well defined in cancer.

Current literature could not confirm whether it was the upregulation or downregulation of FAO that con-
tributed to tumorigenesis, which was attributed to the nature of tumor heterogeneity. Numerous malignancies 
reported the overexpression of FAO enzymes, which were responsible for the proliferation, survival, stemness, 
drug resistance, or metastasis. Blocking FAO could attenuate tumor growth in several tumor  models9. However, 
mitochondrial content in ccRCC showed inverse relation to tumor grade, suggesting that suppressing mito-
chondrial activity might be critical for ccRCC  development10. Furthermore, many enzymes responsible for FAO 
had reduced expression within high-grade tissues, indicating that acyl-CoAs were not oxidized within the RCC 
 tissue11. These findings highlighted that the downregulation of FAO was related to the tumorigenesis of ccRCC.
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The first step in catalyzing FAO in mitochondria involves medium-chain acyl-CoA dehydrogenase (ACADM) 
degrading medium-chain fatty acids. Medium-chain acyl-CoA dehydrogenase deficiency results from ACADM 
mutations, which represents a frequently seen hereditary metabolic diseases among the Caucasian  population12. 
This suggests that ACADM significantly affected metabolic disorders. Patients experiencing cardiovascular, 
nonalcoholic and metabolic fatty liver diseases have shown alteration in ACADM  expression13–16. To the best 
of our knowledge, ACADM knockdown enhances hepatocellular carcinoma (HCC)  proliferation17. Similarly, 
neuroblastoma patients with high ACADM expressions exhibit better overall survival (OS); the upregulation of 
ACADM and FAO by the tozasertib can suppress neuroblastoma  progression18. Nonetheless, ACADM remains 
unexplored in terms of its prognostic value as well as associated mechanism in ccRCC.

In this study, we used electronic databases, clinical samples and cells to determine ACADM expression levels. 
We also analyzed relation of ACADM with ccRCC patient prognosis. Next, this work explored the functional 
enrichment of ACADM, immune cell infiltration, and response to immunotherapy. Our findings demonstrated 
that ccRCC patients with downregulated ACADM levels displayed a poor prognosis and poor response to 
immunotherapy due to the infiltration of immunosuppressive cells.

Materials and methods
Data source
This work obtained the clinical and mRNA information of kidney renal clear cell carcinoma (KIRC) in The 
Cancer Genome Atlas (TCGA). Next, we used the GEO database to obtain more than 443 specimens, includ-
ing  GSE1564119,  GSE3689520,  GSE4669921,  GSE5300022, and  GSE5375723. Simultaneously, we selected another 
dataset, including 91 RCC and 45 non-carcinoma samples from the ICGC database.

Gene expression and survival analysis
This work utilized TIMER2.0 online tool for exploring differential ACADM-mRNA expression in non-carcinoma 
tissues compared with cancer samples in pan-cancers24. Next, the CPTAC (Clinical proteomic tumor analysis 
consortium) model in the UALCAN portal (http:// ualcan. path. uab. edu/ index. html) was used to evaluate the 
total ACADM protein among 12 types of  cancers25,26. The immunofluorescence staining images based on the 
Human Protein Atlas (HPA, www. prote inatl as. org) showed ACADM protein subcellular localization in A-431 
and U251  cells27. The “Survival Map” and “Survival Analysis” modules in the GEPIA2.0 database (http:// gepia2. 
cancer- pku. cn/# analy sis) were used to examine the association among the median expression of ACADM-mRNA 
and the OS and disease-free survival (DFS) rate in pan-cancer and single-cancer  types28.

Methylation analysis
The UALCAN online tool was applied to determine ACADM methylation in ccRCC 25. We loaded the methylation 
450 data of KIRC from the UCSC Xena (https:// xenab rowser. net/) and used it to research the CpG sites in the 
ACADM promoter. Furthermore, we used the SMART online tool (http:// www. bioin fo- zs. com/ smart app/) to 
analyze the association of the number of CpG sites between the ACADM promoter and ACADM-mRNA, along 
with determining the different levels of CpG sites between ccRCC and normal  samples29.

Cell culture
We purchased five cell lines (HK-2, ACHN, 786-O, 769-P, and Caki-1) from Procell Life Science &Technology 
Co., China and cultivated them within MEM or RPMI 1640 or McCoy’s 5A medium (Procell, Wuhan, China) 
with 10% fetal bovine serum (FBS) under a 5% 5%  CO2 environment and 37 °C.

Real-time quantitative PCR (qPCR)
The present work adopted Trizol reagent for isolating total RNA. Next, RT-PCR Master Mix (TOYOBO, Japan) 
was used to reverse transcribe RNA into cDNA, which was further analyzed through qPCR by an SYBR Premix 
ExTaq kit (TOYOBO, Japan). The ACADM forward primer was 5ʹ-GGA AGC AGA TAC CCC AGG AAT-3ʹ and 
reverse primer was 5ʹ-AGC TCC GTC ACC AAT TAA AACAT-3ʹ. The results were normalized using GAPDH, and 
the relative mRNA expression was calculated using the 2 − ΔΔCT method.

Western-bloting (WB) Assay
This work conducted WB assay in line with our previous  study30. For this, we electrophoresed proteins (50 µg) 
onto SDS-PAGE gel, followed by transfer onto PVDF membranes. Next, membranes were incubated with the 
ACADM (1:2000, Abcam, Britain, ab92461) or GAPDH (1:2000, Abcam, Britain, ab8245) antibodies and visual-
ized them using ECL (Coolaber, Beijing, China), with GAPDH being the endogenous control.

Patients and specimens
Tissue chips (HkidE180su02), including 150 ccRCC and 30 tumor-adjacent tissues, were provided by Shanghai 
Outdo Biotech Company. The patient surgery was conducted between February 2008 and March 2010, and 
the follow-up period was extended till August 2015, i.e., from 5.5 to 7.5 years. All the included patient samples 
had complete clinical characteristics and follow-up information. This study gained approval from the Ethics 
Committee of Shanghai Outdo Biotech Company (Ethics number: SHYJSCP-1510001). Informed consent was 
obtained from all participants.

http://ualcan.path.uab.edu/index.html
http://www.proteinatlas
http://gepia2.cancer-pku.cn/#analysis
http://gepia2.cancer-pku.cn/#analysis
https://xenabrowser.net/
http://www.bioinfo-zs.com/smartapp/
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Immunohistochemistry (IHC)
The immunostaining method was carried out in line with prior  description30. The tissue chip was subjected to 
overnight incubation using ACADM antibody (1:5000, Abcam, Britain, ab92461) under 4 °C. Staining intensitie 
were categorized into 0–3, indicating no, weak, moderate and strong staining, separately, while stained cancer 
cell percentage was rated as 1–4, indicting 0–25%, 25–50%, 50–75%, and ≥ 75%, separately. The eventual score 
was determined by their product.

Protein–protein interaction analysis
This study applied STRING database for analyzing potential binding proteins of  ACADM31, while the parameters 
were set as follows: evidence was set as the meaning of network edges, experiments as active interaction sources, 
median confidence as the minimum required interaction score, and 250 as the maximum number of interactors.

Functional enrichment analysis
The functional annotations of the intersected genes were determined using the Gene Ontology (GO) together 
with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis through clusterProfiler package, followed by 
visualization using ggplot2  package32.

Immune infiltration analysis
We detected 22 immune cells within TCGA-KIRC samples using CIBERSORT algorithm and also explored the 
correlation among them and determined the differences in their  levels33.

TISCH2 analysis
Tumor Immune Single-cell Hub 2 (TISCH2) is a scRNA-seq database that focuses on the tumor microenviron-
ment. It includes 190 databases and 6297320 cells from both tumor patients and healthy  donors34. We used the 
“Dataset” model to determine the ACADM expression in different cells at the single-cell level.

Immunotherapy sensitivity analysis
Based on ACADM expression, the Tumor Immune Dysfunction and Exclusion (TIDE) method was utilized for 
determining immunotherapy sensitivity in KIRC  patients35.

Statistical analysis
GraphPad Prism 7.0 and SPSS 23.0 were adopted for statistical analysis. Differences in continuous variables 
between two or multiple groups were calculated using Student’s t-test and ANOVA, respectively. Chi-square test 
was adopted to analyze differences in categorical variables. The Pearson’s or Spearman’s analysis was adopted for 
correlation analysis, while the impact of ACADM on survival and other clinical characteristics of ccRCC cases 
was identified by Cox regression and Kaplan–Meier analysis. P < 0.05 (two-sided) stood for statistical significance.

Ethics approval
This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by The 
Ethics Committee of Shanghai Outdo Biotech Company (Ethics number: SHYJSCP-1510001).

Results
Expression and survival analysis of ACADM in pan-cancer
We employed the “Gene_DE” module of the TIMER2.0 web tool for exploring ACADM-mRNA expression pat-
tern in pan-cancer. In comparison with adjacent non-carcinoma tissues, ACADM-mRNA expression decreased 
within BLCA (bladder urothelial carcinoma), BRCA (breast invasive carcinoma), CHOL (cholangiocarcinoma), 
COAD (colon adenocarcinoma), HNSC (head and neck squamous cell carcinoma), KICH (kidney chromo-
phobe), KIRP (kidney renal papillary cell carcinoma), KIRC (kidney renal clear cell carcinoma), LIHC (liver 
hepatocellular carcinoma), LUSC (lung squamous cell carcinoma), READ (rectum adenocarcinoma), STAD 
(stomach adenocarcinoma), THCA (thyroid carcinoma), UCEC (uterine corpus endometrial carcinoma) 
(P < 0.001), PCPG (pheochromocytoma and paraganglioma), and PRAD (prostate adenocarcinoma) (P < 0.01, 
Fig. 1A). Furthermore, according to the CPTAC dataset, the ACADM protein was downregulated in colon 
cancer, breast cancer, HNSC, clear cell RCC, pancreatic adenocarcinoma, and hepatocellular carcinoma but 
upregulated in lung carcinoma and UCEC (Fig. 1B, P < 0.001). Based on the immunofluorescence results from 
the HPA database, ACADM protein showed major localization within mitochondria of the A-431 and U251 cells 
(Fig. 1C). Besides, relation of ACADM-mRNA with prognosis pan-cancer was analyzed, which suggested that 
ACADM down-regulation predicted dismal OS in ESCA (P = 0.039) and KIRC (P < 0.001, Fig. 1D). However, 
in KIRC (P < 0.001) and READ (P = 0.016), it was associated with poor DFS (Fig. 1E). Additionally, LGG (brain 
lower grade glioma) with high ACADM expression exhibited both poor OS (P = 0.005) and DFS (P < 0.001).

Downregulation of ACADM within ccRCC 
Since we found a close association between ACADM and OS and DFS in ccRCC patients, we conducted further 
in-depth research on ccRCC. In the TCGA-KIRC database, ACADM-mRNA was found significantly downregu-
lated in ccRCC compared to normal controls (Fig. 2A,B). Similar results were also observed in five GEO and 
one ICGC dataset (Fig. 2C–H). DNA methylation, a common form of epigenetic regulation, can silence gene 
expression. Hence, we analyzed the ACADM promoter methylation levels to explore the potential mechanism 
underlying decreased ACADM expression in ccRCC. The UALCAN database showed a higher methylation level 
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Figure 1.  Expression and survival Analysis of ACADM in pan-cancer. (A) ACADM-mRNA in pan-cancer by 
TIMER2.0; (B) ACADM protein in pan-cancer by UALCAN; (C) The immunofluorescence images of ACADM 
protein, nucleus, endoplasmic reticulum (ER), microtubules and the incorporative images in A-431 and U251 
cell lines derived from the HPA database; (D) The relationship between ACADM and overall survival in pan-
cancer; (E) The relationship between ACADM and disease-free survival in pan-cancer. **P < 0.01, ***P < 0.001.
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of ACADM promoter in KIRC compared to normal samples (Fig. 2I). According to the methylation 450 data of 
KIRC obtained from the UCSC Xena, the levels of 11 CpG sites were analyzed (Fig. 2J). As shown in Fig. 2K,L, 
the SMART online tool showed a significant negative correlation between ACADM-mRNA of cg10523679 and 
cg03433033. Also, a significant difference was observed in the cg10523679 and cg03433033 levels between normal 
and tumor samples (Fig. 2M,N).

Relationships between ACADM-mRNA and clinical factors among ccRCC patients
We used 246 ccRCC patients having complete clinical data in TCGA-KIRC database for exploring relation of 
ACADM-mRNA with clinical factors. The ACADM-mRNA levels showed a significant association with the grade 
(P < 0.001), stage (P < 0.001), T (P = 0.004), N (P = 0.05), M stages (P = 0.014) and vital status (P < 0.001) but not 
with age (P = 0.725) or sex (P = 0.085, Table S1, Fig. 3A). Spearman’s analysis suggested that the ACADM-mRNA 

Figure 2.  ACADM mRNA and methylation levels in ccRCC samples. (A) ACADM mRNA expression level 539 
ccRCC samples and 72 adjacent normal samples from TCGA-KIRC database; (B) ACADM mRNA expression 
level in 72 paired ccRCC samples from TCGA-KIRC database; The different ACADM mRNA expression in 
GSE15641 (C), GSE36895 (D), GSE46699 (E), GSE53000 (F), GSE53757 (G), and ICGC (H); (I) ACADM 
methylation levels between ccRCC and normal samples; (J) The types and levels of CpG sites in ACADM 
promoter; The correlation between ACADM mRNA and cg10523679 (K) and cg03433033 (L). The different 
level of cg10523679 (M) and cg03433033 (N) between normal and tumor samples. ***P < 0.001.
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levels were negatively correlated to the grade (P < 0.001), stage (P < 0.001), T stage (P < 0.001), N stage (P = 0.011), 
M stage (P = 0.008) and vital status (P < 0.001, Table S2). Furthermore, we observed a significant differential 
ACADM expression among different sex (Fig. 3C), grade (Fig. 3D), stage (Fig. 3E), T stage (Fig. 3F), N stage 
(Fig. 3G), and M stage (Fig. 3H). However, no significant difference was observed in the age group (P = 0.79, 
Fig. 3B).

Prognostic value of ACADM-mRNA in ccRCC cases
For studying ACADM-mRNA expression’s value in predicting ccRCC prognosis, Kaplan–Meier curves and 
the TCGA-KIRC dataset were used. OS (Fig. 4A) and DFS (Fig. 4B) of ccRCC cases showing ACADM down-
regulation markedly shortened compared with those showing up-regulation (P < 0.001). Besides, differences 
were significant between up- and down-regulation groups in OS rate among the clinical subgroups, except for 
N1 (Fig. 4C–P).

Furthermore, univariate/multivariate Cox analysis was conducted for determining if ACADM-mRNA inde-
pendently predicted TCGA-KIRC prognosis. The univariate analysis showed that low ACADM-mRNA expres-
sion significantly predicted dismal OS and DFS (HR 0.508; 95%CI 0.406–0.634, P < 0.001, Table S3), multivariate 
analysis suggested that ACADM (HR 0.550; 95%CI 0.428–0.706, P < 0.001) independently predicted OS and 
DFS of ccRCC cases (Table S3). Finally, the TCGA-KIRC database was used to establish a nomogram plot and 
a calibration plot, which predicted the OS probability in ccRCC patients (Fig. 5). Overall, these results implied 
that ACADM-mRNA independently predicted ccRCC prognosis.

ACADM protein expression within RCC cell and tissues
We examined ACADM protein expression within cells and clinical specimens. Relative to healthy kidney cells, 
ACADM protein (Fig. 6A) and mRNA (Fig. 6B) showed lower expression in RCC cell lines. Furthermore, the IHC 

Figure 3.  Relationships between ACADM expression and clinicopathological factors in ccRCC patients. (A) 
The heatmap of ACADM expression and clinicopathological factors; ACADM expression in different groups, 
age (B), sex (C), grade (D), stage (E), T stage (F), N stage (G), and M stage (H). *P < 0.05, **P < 0.01, ***P < 
0.001.
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staining of 150 ccRCC and 30 para-carcinoma specimens was performed and scored using a standard method. 
However, five ccRCC and one para-carcinoma tissues were off target. Compared to the 29 normal controls, 
ACADM protein was significantly downregulated in 145 ccRCC samples (P < 0.05, Fig. 6C). Also, it was signifi-
cantly downregulated in 28 paired ccRCC and para-carcinoma samples (P < 0.05, Fig. 6D). Representative IHC 
images are displayed in Fig. 6E. Based on our findings, ACADM protein level decreased within ccRCC tissues.

Next, we investigated relation of ACADM protein with clinical features within ccRCC by clustering 145 
ccRCC samples into ACADM up- and down-regulation groups based on mean ICH scores. Detailed clinical 
characteristics are shown in Table 1. According to our results, ACADM protein expression was markedly related 
to sex (P = 0.048), grade (P = 0.036), stage (P = 0.027), T stage (P = 0.039), and vital status (P = 0.007) but not to 
age (P = 0.126) and N stage (P = 0.457, Table 1). Furthermore, Spearman’s analysis revealed that ACADM protein 
levels were markedly negatively related to grade (P = 0.031), stage (P = 0.012), T stage (P = 0.009), and vital status 
(P = 0.009, Table S4). As revealed by Kaplan–Meier analysis, cases showing ACADM down-regulation exhibited 
poorer OS (Fig. 6F, P = 0.008). Subsequently, the univariate analysis showed that ACADM down-regulation pre-
dicted OS in ccRCC cases (HR 0.315; 95% CI 0.127–0.781, P = 0.013, Table S5). However, based on multivariate 
regression, ACADM protein did not independently predicted OS of ccRCC patients (Table S5).

Functional enrichment of ACADM
For investigating ACADM-related mechanism underlying cancer occurrence, ACADM-binding proteins and 
their correlated genes were screened for functional analysis. Consequently, the STRING database was used to 
screen a total of 217 ACADM-binding proteins while 1389 correlated genes was screened out according to the 
|correlation coefficient |> 0.5 and P < 0.05. Overall, 54 intersected genes were obtained (Table S6) and subjected to 

Figure 4.  Survival analysis of ACADM mRNA in TCGA-KIRC patients. (A) Overall survival analysis; (B) 
Progression free survival analysis; (C-P) The OS stratified by the clinical subgroups.
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GO and KEGG analysis. According to GO, genes in the biological progress (BP) were enriched into the carboxylic 
acid catabolic process, fatty acid beta-oxidation, fatty acid catabolic process, fatty acid oxidation, enoyl-CoA 
hydratase activity, and so on (Fig. 7A). These genes provided cellular components (CC) in the mitochondrial 
matrix, peroxisome, and microbody, with an important role in the molecular function (MF) of enoyl-CoA 
hydratase activity, NAD binding, and hydrolase activity (Fig. 7A). KEGG pathway analysis indicated enrichment 
in the degradation of valine, leucine, isoleucine, and fatty acids, as well as propanoate metabolism, fatty acid 
metabolism, and so on (Fig. 7B).

Figure 5.  The nomogram and calibration plots. (A) A nomogram to predict the 1-, 3-, and 5-year overall 
survival probability of ccRCC patients; (B) A calibration plot of the nomogram. **P < 0.01, ***P < 0.001.

Figure 6.  The ACADM expression in RCC cells and ccRCC tissues. (A) The ACADM protein expression in 
RCC cells (the original blots/gels were presented in Supplementary Fig. 1); (B) ACADM-mRNA expression 
in RCC cell lines; (C) ACADM protein expression between 29 normal and 145 ccRCC tissues; (D) ACADM 
protein expression in 28 paired ccRCC and para-carcinoma samples; (E) The representative IHC staining images 
of ACADM protein; (F) Kaplan–Meier survival curves for overall survival of ACADM. **P < 0.01, ***P < 0.001, 
ns means no significance.
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Correlation of ACADM with immune infiltration in ccRCC 
To explore whether ACADM influenced immune cell infiltration, we used the CIBERSORT method. Spear-
man’s correlation analysis showed a negative relationship between ACADM expression and regulatory T cells 
(r =  − 0.364, P < 0.001), macrophages M0 (r =  − 0.292, P < 0.001), plasma cells (r =  − 0.144, P = 0.005), memory 
B cells (r =  − 0.136, P = 0.008), activated CD4 memory T cells (r =  − 0.132, P = 0.010), follicular helper T cells 

Table 1.  Association between ACADM protein and clinical characteristics of ccRCC patients in clinical 
samples.

Characteristic No.of cases (%)

ACADM 
expression

P-valueLow High

Age

 < 65 110 (75.9) 56 54
0.126

 ≥ 65 35 (24.1) 23 12

Sex

 Female 41 (28.3) 17 24
0.048

 Male 104 (71.7) 62 42

Grade

 G1 21 (14.5) 10 11

0.036
 G2 94 (64.8) 46 48

 G3 26 (17.9) 19 7

 G4 4 (2.8) 4 0

Stage

 Stage I 119 (82.1) 59 60

0.027
 Stage II 13 (9.0) 11 2

 Stage III 12 (8.3) 9 3

 Stage IV 1 (0.7) 0 1

T stage

 T1 119 (82.1) 59 60

0.039 T2 14(9.7) 11 3

 T3 12 (8.3) 9 3

N stage

 N0 142 (97.9) 78 64
0.457

 N1 3 (2.1) 1 2

Vital status

 Alive 118 (81.4) 58 60
0.007

 Dead 27 (18.6) 21 6

Figure 7.  Functional enrichment of ACADM. (A) GO analysis of ACADM-related genes; (B) KEGG analysis of 
ACADM-related genes.
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(r =  − 0.112, P = 0.029) but a positive relationship with resting dendritic cells (r = 0.317, P < 0.001), macrophages 
M1 (r = 0.232, P < 0.001), monocytes (r = 0.227, P < 0.001), macrophages M2 (r = 0.189, P < 0.001), eosinophils 
(r = 0.130, P = 0.011), and resting CD4 memory T cells (r = 0.106, P = 0.039, Fig. 8A). Various analyses suggested a 
significant increase of monocytes, macrophages M1, macrophages M2, resting dendritic cells, resting mast cells, 
and eosinophils in high-ACADM group, and a significant increase of plasma cells, activated CD4 memory T 
cells, follicular helper T cells, regulatory T cells (Tregs), and macrophages M0 in low-ACADM group (Fig. 8B). 
Furthermore, the KIRC_GSE159115 dataset from the TISCH online database was used to evaluate ACADM 
expression at the single-cell level. The results showed the malignant cells exhibited low ACADM expression 
when compared to the epithelial cells, which was consistent with the IHC results (Fig. 8C,D). Compared to other 
immune cells, mono/macro cells showed higher ACADM expression. In accordance with the Treg infiltration, 
FOXP3 (factor forkhead box protein P3, marker for Tregs) was more highly expressed in low-ACADM group 
than in high-ACADM group (Fig. 8E). These data indicated that the patients in low-ACADM group presented 
an immunosuppressive phenotype due to the infiltration of Treg cells. To confirm the immunosuppressive phe-
notype, common immune checkpoints and cytokines were further evaluated. The correlation analysis found 

Figure 8.  Correlation of ACADM with immune cells. (A) The correlation between ACADM expression 
and immune cells; (B) The different infiltration of immune cells between high- and low-ACADM expression 
groups; (C) The cell types in KIRC_GSE159115 dataset; (D) Distribution of ACADM in different cells in KIRC_
GSE159115 dataset; (E) FOXP3 expression in the high- and low-ACADM groups; (F) Correlation between 
the risk score and common immune checkpoints; (G) Expression levels of the common immune checkpoints 
between the high- and low-ACADM groups; (H) Expression of the cytokines between the high- and low-
ACADM groups; (I) The difference of TIDE score between high- and low-ACADM expression groups. *P < 
0.05, **P < 0.01, ***P < 0.001.
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that the ACADM expression had negative relationships with PDCD1, CTLA-4, LAG-3, and TIGIT, and positive 
relationships with CD274, HAVCR2 and IDO1 (Fig. 8F). The histogram also indicated that the expression levels 
of PDCD1, LAG-3, and TIGIT in low-ACADM group were significantly higher than those in high-ACADM 
group (Fig. 8G). Cytokines (TGF-β, IL-4, and IL-10) involved in the immunosuppressive process were also 
significantly upregulated in low-ACADM group except TGF-β2 (Fig. 8H). Finally, the TIDE method was used 
to evaluate ACADM’s effect on estimating immunotherapy response. Compared to high-ACADM group, low-
ACADM group showed higher TIDE scores, which implied that the patients in low-ACADM group had poor 
efficacy to the immunotherapy (P < 0.001, Fig. 8I). In summary, these results suggested that ACADM expression 
influenced immune cell infiltration and predicted the response to immunotherapy in ccRCC patients.

Discussion
The characteristic manifestations of ccRCC include increased cholesterol ester storage and adipogenesis with 
clear cytosol. The adipogenesis-related protein activity in ccRCC patients has demonstrated abnormalities in lipid 
 metabolism36,37. FAO, similar to the additional extensively studied metabolic pathways, is also related to cancer. 
It exhibits dysregulation within different human cancers and is related to different cancer occurrence aspects, 
including growth, survival, metastasis, stemness, and drug  resistance38. Numerous studies in cancer patients have 
shown decreased enzyme involvement in  FAO39,40. Therefore, the upregulation of FAO may suppress tumor cell 
growth while arresting their cell  cycle41,42. ACADM is upregulated during FAO, which breaks down fatty acids 
into acetyl-CoA in the mitochondria, thereby participating in the citric acid  cycle43. Several studies have revealed 
the important value of ACADM in the prognosis of different cancers. For example, high expression of ACADM in 
GBM was shown to impair mitochondrial function and glioblastoma growth in vitro and in vivo44. Also, in HCC 
with decreased ACADM expression, the modulation of β-oxidation resulted in enhanced cell  aggressiveness45. 
However, the ACADM expression and function in ccRCC remain unknown.

In this study, we observed decreased levels of ACADM-mRNA and protein in most types of tumors, which 
revealed that ACADM might serve as a tumor suppressor gene, which was probably involved in tumor develop-
ment. Furthermore, based on immunofluorescent staining, ACADM protein showed major location within mito-
chondrion of A-431 and U-251 cells, signifying its functional association with the β-oxidation of  mitochondria12. 
Next, GEPIA2.0 database was adopted for analyzing relationship of ACADM level with prognosis pan-cancer and 
found that while poor OS and DFS were shown by KIRC patients with low ACADM expression, LGG patients 
with high ACADM expression also showed poor OS and DFS, indicating the different mechanisms between 
KIRC and LGG. However, little research has been conducted on the function and mechanism of ACADM in 
KIRC. Hence, we focused on KIRC for further study.

The TGCA-KIRC and GEO datasets revealed downregulated ACADM-mRNA levels in ccRCC samples. 
According to our study, decreased ACADM might be attributed to DNA hypermethylation. Moreover, down-
regulated ACADM-mRNA was related to poor clinicopathological features, including higher grade, advanced 
stage, higher T stage, and distant metastasis. Based on univariate/multivariate Cox regression, ACADM-mRNA 
independently predicted OS and DFS. Consistently, our stratified analysis based on different clinical characteris-
tics also confirmed that cases showing ACADM down-regulation displayed remarkably dismal OS compared with 
those showing ACADM up-regulation, indicating that ACADM downregulation predicted dismal prognostic 
outcome. The nomogram, including age, M stage, and ACADM expression, signified an excellent clinical applica-
tion value in the estimation of ccRCC survival. Finally, we used cancer cell lines and clinical tissues to confirm the 
bioinformatics results of ACADM. Compared to HK-2 cells, both ACADM mRNA and protein expression was 
downregulated within RCC cell lines. Furthermore, immunohistochemical staining showed decreased ACADM 
protein levels in ccRCC samples. The Chi-square test showed that ACADM protein was strongly correlated to sex, 
grade, stage, T stage, and vital status, while Spearman’s analysis revealed that the ACADM protein showed nega-
tive relation to the grade, stage, and T stage. Both univariate/multivariate Cox regression implied that although 
ACADM level could predicted OS among ccRCC cases, it did not serve as an independent factor.

Additionally, bioinformatic analyses were performed for exploring ACADM’s bioactivity in modulating 
ccRCC. According to GO and KEGG analyses based on the related genes, ACADM showed strong relation to 
fatty acid metabolism, such as fatty acid β-oxidation as well as fatty acid degradation. CcRCC is aggressive cancer 
arising from the proximal tubular  epithelium6. Single-cell analysis showed that epithelial cells displayed high 
expression of ACADM. This indicated that normal kidney epithelium, while developing into ccRCC, underwent 
adipogenic transdifferentiation due to the downregulation of ACADM. Lipid metabolism contributes to meta-
bolic reprogramming and unbridled cell growth in ccRCC 46. Interestingly, a prior work reported that elevating 
HIF expression by reducing FAO added a new layer of benefit to ccRCC  tumors47, where the decreased expression 
of ACADM might have delayed β-oxidation causing fatty acid accumulation, which induced fatty acid metabolic 
reprogramming and tumor  deterioration6.

Renal cell carcinoma is one of the most immune-infiltrated  tumors48. Since the infiltration of immune cells 
within tumor microenvironment has an important effect on the regulation of cancer development, tumor immune 
cell percentage within cancer may have also influenced the disease biology, the prognosis and the response to 
immunotherapy in ccRCC  patients49,50. Moreover, FAO can be reprogrammed within cancer-associated immune 
as well as additional host cells, thus facilitating immunosuppression and tumor-promoting  microenvironment38. 
So, we used CIBERSORT method to analyze immune cell infiltration between high- and low-ACADM groups 
according to TCGA-KIRC data. The results showed that Tregs showed negative relation to ACADM and were 
at higher levels in low-ACADM group than high-ACADM group. Tregs characterized by the expression of the 
master transcription factor FOXP3 suppress anticancer immunity, thereby hindering protective immunosur-
veillance of tumors and hampering effective antitumor immune responses in tumor-bearing hosts, constitute 
a current research hotspot in the  field51. Elevated Treg cells within the tumor microenvironment have been 
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observed in ccRCC patients and correlated with disease progression and poor  prognosis52. In our study, the 
FOXP3 expression and Tregs were high in low-ACADM group, implying that ACADM might influence the Tregs 
infiltration in the tumor microenvironment and the prognosis of ccRCC patients. Tregs can suppress immune 
activation by secreting immune-suppressive cytokines (IL-10, IL-35, and TGF-β) or expressing coinhibitory 
molecules such as CTLA-4, PD-1, LAG-3, and  TIGIT53. Cytokines (IL-4, IL-10, IL-13, TGF-β1, and TGF-β3) and 
checkpoints (PDCD1, LAG-3, and TIGIT) involved in immune suppression were highly expressed in the low-
ACADM group, which were attributed to the infiltration of Tregs. We further studied the relationship between 
the ACADM expression and the response to immunotherapy by the TIDE algorithm. Notably, the TIDE score 
in the low-ACADM group was higher than that in the high-ACADM group, which indicating an undesirable 
immunotherapy response because of the greater amounts of Tregs. These results imply that the expression level 
of ACADM has the potential to predict infiltrating immune cells in ccRCC, which might be beneficial for the 
immunotherapy.

Although our research has revealed the ACADM expression level and its potential role in immune infiltration 
and prognosis of KIRC, the work has several limitations. First, the proportions of immune cells in KIRC were 
mainly based on online data. Second, further intensive analysis on ACADM-related biological mechanisms is 
required in the future, which needs rigorous wet lab experiments.

To sum up, the present work demonstrates ACADM’s role in predicting ccRCC prognosis, suppressive 
immune microenvironment, and immunotherapy sensitivity. Our findings may offer some vital clues for the 
development of novel therapies for ccRCC.
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cgi? acc= GSE53 757) and ICGC database (https:// dcc. icgc. org/). The code and related datasets used in the overall 
bioinformatic analyses are available on the Github (https:// github. com/ zlburo/ ACADM_ 2023). All additional 
information generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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