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Atmosphere particulate matter 
and respiratory diseases 
during COVID‑19 in Korea
Ji Young Hong 1,6, Taemo Bang 2,6, Sun Bean Kim 3,6, Minwoo Hong 4 & Jaehun Jung 4,5*

We aimed to examine the impact of COVID‑19 non‑pharmaceutical interventions (NPIs) on the 
relationship between air pollutants and hospital admissions for respiratory and non‑respiratory 
diseases in six metropolitan cities in South Korea. This study compared the associations between 
particulate matter  (PM10 and  PM2.5) and hospital admission for respiratory and non‑respiratory 
diseases before (2016–2019) and during (2020) the implementation of COVID‑19 NPIs by using 
distributed lag non‑linear models. In the Pre‑COVID‑19 period, the association between  PM10 and 
admission risk for asthma and COPD showed an inverted U‑shaped pattern. For  PM2.5, S‑shaped and 
inverted U‑shaped changes were observed in asthma and COPD, respectively. Extremely high and 
low levels of  PM10 and extremely low levels of  PM2.5 significantly decreased the risk of admission 
for asthma and COPD. In the Post‑COVID‑19 outbreak period, the overall cumulative relationship 
between  PM10 and  PM2.5 and respiratory diseases and the effects of extreme levels of  PM10 and  PM2.5 
on respiratory diseases were completely changed. For non‑respiratory diseases,  PM10 and  PM2.5 were 
statistically insignificant for admission risk during both periods. Our study may provide evidence 
that implementing NPIs and reducing  PM10 and  PM2.5 exposure during the COVID‑19 pandemic has 
contributed to reducing hospital admissions for environment‑based respiratory diseases.

The COVID-19 pandemic has caused major changes in public health  measures1. Governments worldwide 
responded by implementing a spectrum of control measures, ranging from stay-at-home orders to social dis-
tancing protocols and, in some instances, strict lockdowns, all aimed at curbing the transmission of the virus. 
Concurrently, non-pharmaceutical interventions (NPIs), such as hand hygiene and droplet precautions, were 
rigorously  enforced2.

The World Health Organization recognizes air pollution as a global environmental threat to human  health3. 
Numerous studies have demonstrated the association between air pollution and cardiovascular diseases, includ-
ing heart attacks, strokes, and irregular heart  rhythms4. Furthermore, ambient air pollution has been identified 
as a significant causative and exacerbating factor in various respiratory conditions, such as chronic obstructive 
pulmonary disease (COPD), asthma, and lung  cancer5,6. Notably, more than 25% of premature deaths associated 
with air pollution are estimated to be respiratory in  nature7.

The COVID-19 pandemic prompted unprecedented restrictions on travel and the suspension of industrial 
activities, resulting in a discernible improvement in air  quality8. Similarly, in Korea, the implementation of 
COVID-19 control measures demonstrated positive effects on air quality, subsequently preventing premature 
deaths and mitigating healthcare costs attributable to air  pollution9.

The decrease in hospital admissions for respiratory diseases during the COVID-19 pandemic has been 
reported to be an effect of  NPIs10. Within the spectrum of NPIs, filtering facemasks emerged not only as an 
effective measure in impeding the spread of novel respiratory viruses but also as a deterrent against the trans-
mission of particulate matters (PMs)11,12.

This study posits the hypothesis that NPIs during the COVID-19 pandemic may have altered the effects of 
air pollutants on several diseases. Specifically, we conjecture that the relationship between air pollution factors 
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and diseases may differ between the Pre-COVID-19 period (2016–2019) and the Post-COVID-19 outbreak 
period (2020). To scrutinize this hypothesis, we analyzed the incidence of hospital admission of several diseases 
according to  PM10 and  PM2.5 levels from 2016 to 2020.

Methods
Study design
The analysis encompassed six metropolitan cities in South Korea, namely Seoul, Incheon, Gwangju, Daejeon, 
Daegu, and Busan. Notably, in the case of Incheon, Ongjin-gun, and Ganghwa-gun were excluded due to geo-
graphical requirements. This city-centric approach, rather than a nationwide scope, was adopted to account for 
variations in air pollution sources and demographics associated with distinct geographical features of each city. 
The study employed a multivariate meta-analysis to consolidate results obtained from the analysis of each of 
the six major cities.

Data collection
Data for this study were derived from three databases. Hospital admission information for respiratory diseases 
(asthma, COPD, pneumonia, influenza) and non-respiratory (cancer, diabetic ketoacidosis, hyperosmolar hyper-
glycemic state (DKA/HHS), intracranial haemorrhage (ICH), myocardial infarction (MI)) diseases from 2016 
to 2020, categorized by metropolitan area, was sourced from the National Health Insurance Service (NHIS) 
customized research  database13. Table 1 presents the ICD-10 codes corresponding to the inclusion criteria for 
each disease. Air pollution source data, daily concentrations of  PM10 and  PM2.5 (μg/m3), were obtained from 
 AirKorea14.

Meteorological factor data were collected as covariates, utilizing daily information for each province from 
the Korea Meteorological Administration (KMA)15. The three databases were merged based on date and city, 
forming the dataset for analysis.

Statistical analysis
We performed a statistical analysis in two stages. First, distributed lag non-linear models (DLNMs) were fitted 
to the six metropolitan cities in South Korea to evaluate the non-linear relationship between hospital admissions 
and air pollution. In the second stage, the estimated coefficients and variance–covariance matrices from DLNMs 
were used for a multivariate meta-analysis.

Distributed lag non‑linear models
We used DLNMs to evaluate the health effects of air pollution:

where Yijt represents daily hospital admission cases on day t from the year 2016 to 2020, assuming a quasi-
Poisson distribution with E
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effects, where NS is a natural cubic spline determined by regression coefficients vector β ij to explain non-linear 
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covariates, with linear effects defined by a regression coefficients vector γ ij ; St is a Fourier vector modeling daily 
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terms for daily seasonality ( m = 365)16.

Challenges in fitting DLNMs include choosing a large number of hyperparameters and deciding which factors 
to include in the model as  covariates17. However, there is still no well-known unified optimization algorithm. To 
address this, we proposed an optimization algorithm for single pollutant DLNM in Table 2, based on best subset 
selection, one of the traditional variable selection methods in linear regression analysis. First, we considered five 
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Table 1.  ICD-10 code for inclusion criteria.

ICD-10 code Disease Total cases

J45 Asthma 86,141

C00-C09, C10-C43, C45-C97 Cancer 250,471

J43-44, J46-47 Chronic obstructive pulmonary disease 48,714

E100-101, E110-111, E120, E130-131, E140-141 Diabetic ketoacidosis or hyperosmolar hyperglycemic state 5562

J09-11 Influenza 101,072

I60-62 Intracranial haemorrhage 25,640

I21 Myocardial infarction 23,804

J12-18 Pneumonia 250,069
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meteorological factors as covariates: average temperature, average relative humidity, average wind speed, diurnal 
temperature range (DTR), and precipitation. Three hyperparameters were explored: 7 to 31 maximum lag days, 
and 2 to 5 degrees of freedom in both the predictor space ( dfp ) and the additional lag dimension ( dfl ). When 
optimizing the models, we used grid search and parallel processing. The optimization algorithm was applied to 
all models for each city, with an initial optimization in Seoul. Hyperparameters for the models in the remaining 
cities were set to match those in Seoul for subsequent multivariate meta-analysis.

Results of the analysis were summarized through visualizations based on the relative risk (RR), utilizing the 
median concentration of air pollutants in Seoul as the reference value. The software used for this analysis was R 
4.1.318, with the {dlnm} package for DLNM  fitting19, and {foreach}20, {parallel}, {doParallel}21, {furrr}22 packages 
for algorithm implementation. Visualization was achieved using {ggplot2}23 and {patchwork}24.

Multivariate meta‑analysis
Following the optimal DLNM fitting for each city, a fixed-effect multivariate meta-analysis was conducted. This 
involved combining results using estimated variance–covariance matrices and regression coefficients.

Reproducible tutorial
To facilitate the application of the proposed optimization algorithm, a reproducible tutorial has been made 
available on  GitHub25.

Ethics approval and consent to participate
This study was approved by the Institutional Review Board of the Gachon University Gil Medical Center, Incheon, 
South Korea (IRB No. GCIRB2021-149), and participants informed consent was waived by the ethics committee 
of Gachon University Gil Medical Center because the data involved routinely collected medical data that was 
processed anonymously at all stages. All study methods were carried out based on the Declaration of Helsinki.

AI statement
Generative AI was used for grammar and spelling, with no other applications.

Results
Summary statistics for patients and air pollutants
Table 1 provides the total number of admissions utilized in this analysis from 2016 to 2020. Substantial decreases 
in hospitalizations due to asthma and COPD were observed in the Pre-COVID-19 compared to Post-COVID-19 
outbreak period (Fig. 1A and B). Similarly, hospital admissions for pneumonia and influenza exhibited significant 
reductions, while those for other non-respiratory diseases such as cancer, DKA/HHS, ICH, and MI remained 
relatively consistent (Supplementary Fig. 1).

As shown in Fig. 1C, the average  PM10 and  PM2.5 in the six metropolitan cities decreased during the interven-
tion period. In contrast, meteorological factors, including average temperature, DTR, humidity, wind speed, and 
precipitation, did not show a significant difference between the Pre-COVID-19 and Post-COVID-19 outbreak 
periods (Fig. 1D).

Distributed lag non‑linear models
We used the overall picture to visualize the effects of air pollutant variables on different lag days. The 3D plot of 
RR showed that the lag structures of air pollutants and respiratory diseases differed between the Pre-COVID-19 
and Post-COVID-19 outbreak periods (Fig. 2, Supplementary Fig. 2).

The estimated associations represented on the RR scale are illustrated in Fig. 3 to investigate the expo-
sure–response analysis for admission rates of asthma and COPD with  PM10 and  PM2.5 before and after the 
COVID-19 pandemic over the entire lag period of 0–31 days. In the Pre-COVID-19 period,  PM10 demonstrated 

Table 2.  Optimization algorithm for single pollutant DLNM. DLNM distributed lag non-linear models.

Step Description

1 Y is a daily count data that originates from quasi-Poisson distribution. Depending on the type of outcome, it can be assumed as one 
of the exponential families of distributions

2
Consider 2k of DLNMs by best subset selection, where k is the number of covariates (e.g. meteorological factors) except the terms to 
describe seasonality, trend, holiday effects, etc. In other words, comparing the model performance by considering everything from 
the non-covariate single-exposure model to the full-covariates single-exposure model

3

Tune hyper-parameters of each 2k of DLNM based on QAIC (the AIC for quasi-Poisson)
• Maximum lag days: [ m1,m2, · · ·]
• Degrees of freedom in predictor space(dfp ): [ v1, v2, · · ·]
• Degrees of freedom in additional lag dimension(dfl ): [ l1, l2, · · ·]
Knots are equally spaced, and a natural cubic spline is selected as a basis function. To tune and optimize each 2k of DLNM, use one 
of the search methods (e.g. grid search, random search)

4
Among the 2k of DLNMs optimized in step 3, The model with the smallest QAIC value is selected as the best model. However, if 
there is a model with a QAIC difference of less than 2 from the optimal model with the smallest QAIC as follows:
�i = QAICi −QAICmin < 2
The simplest model is the best model by comparing the models, including the optimal one
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Figure 1.  Monthly asthma and chronic obstructive pulmonary disease (COPD) admissions and box plots of 
meteorological factors. The monthly (A) Asthma and (B) COPD admissions in metropolitan cities in South 
Korea from 2016 to 2020. The area following the dashed line indicates the Post-COVID-19 outbreak period. 
(C) Box plots of air pollution by metropolitan cities, South Korea, from 2016 to 2020. Box plots filled with white 
and sky-blue represent the Pre-COVID-19 period (2016–2019) and Post-COVID-19 outbreak period (2020), 
respectively. (D) Box plots of meteorological factors by metropolitan cities in South Korea from 2016 to 2020, 
where the diurnal temperature range (DTR) is defined as the difference between daily maximum and minimum 
temperature. Boxplots filled with white and sky-blue represent the Pre-COVID-19 period (2016–2019) and 
Post-COVID-19 outbreak period (2020), respectively.
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an inverted U pattern for both asthma and COPD (Fig. 3A,C). The RR of admission exhibited a decline on either 
side of the peak  PM10 level, approximately 40 μg/m3, with negative values. Conversely, during the Post-COVID-19 
outbreak period, both diseases displayed a positive RR at  PM10 concentrations ranging from 30–45 μg/m3 and 
35–43 μg/m3 for asthma and COPD, respectively (Fig. 3A,C).

Similar to  PM10,  PM2.5 also showed distinctive effect on hospitalization for respiratory diseases before and 
after the COVID-19 pandemic. In asthma-related hospital admissions, a gradual S-shaped curve between 13 and 
26 μg/m3 characterized the Pre-COVID-19 period, with negative RR values observed in the range of 8–23 μg/

Figure 2.  Overall PM10 and PM2.5 effect on admissions of Asthma and Chronic obstructive pulmonary 
disease (COPD). Overall PM10 and PM2.5 effect on admissions of Asthma and COPD by 31 lag days in the 
Pre-COVID-19 and Post-COVID-19 outbreak period as 3D plots for multivariate meta-analyses. (A) and (B) 
represent the results for Asthma. (C) and (D) represent the results for COPD.

Figure 3.  Cumulative PM10 and PM2.5 effect on admissions of Asthma and Chronic obstructive pulmonary 
disease (COPD). Cumulative PM10 and PM2.5 effect of 31 lag days on admissions of Asthma and COPD as 
overall cumulative association plots for multivariate meta-analyses. (A) and (B) represent the results for Asthma, 
which are shown in a row in the Pre-COVID-19 and Post-COVID-19 outbreak period. (C) and (D) represent 
the results for COPD, which are shown in a row in the Pre-COVID-19 and Post-COVID-19 outbreak period.
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m3. Conversely, in the Post-COVID-19 outbreak period, the association of  PM2.5 showed a U pattern for asthma 
and was statistically insignificant. For COPD in the Pre-COVID-19 period, the association of  PM2.5 showed an 
inverted U pattern, with a negative RR below 23 μg/m3. In Post-COVID-19 outbreak period, a gradual S-shape 
curve between 14 and 30 μg/m3 was observed, with a positive RR below 8 μg/m3 (Fig. 3B,D).

Figure 4 shows the effect of extremely high and low levels of  PM10 and  PM2.5 on admissions for asthma and 
COPD at different lag times, up to 31 days. In the Pre-COVID-19 period, the protective effect of both high and 
low  PM10 on hospitalization due to asthma was significant for up to 14 days, While for COPD, effects gradually 
increased with longer lag days. However, in the Post-COVID-19 outbreak period, lag effects for high and low 
 PM10 were not significant. Extremely low  PM2.5 significantly decreased the risk of admission for both asthma and 
COPD during the Pre-COVID-19 period. The protective effect of  PM2.5 was significant until a minimal lag of 
20 days in both diseases and increased over time in COPD. In contrast, in the Post-COVID-19 outbreak period, 
extremely low and high  PM2.5 increased the risk of asthma and COPD. The deteriorated effect on COPD at 
extremely low levels was most pronounced at lag 0 days, and reduced at later lag times, while the effect increased 
over time at extremely high levels.

For pneumonia, the association of  PM2.5 showed an inverted U pattern with a negative RR below 23 μg/m3 
in the Pre-COVID-19 period but a U pattern in the Post-COVID-19 outbreak period (Supplementary Fig. 3B). 
The protective effect of  PM2.5 on pneumonia was most prominent at lag 0 days (Supplementary Fig. 4B).

As for influenza, in the Pre-COVID-19 period, the RR was highest at low extreme levels for  PM10 and  PM2.5, 
decreasing as concentrations increased (Supplementary Fig. 3C,D). Moreover, the effect of low and high  PM10 
and  PM2.5 on influenza was the largest at lag 0 days and statistically significant up to more than 20 days (Sup-
plementary Fig. 4C,D). However, in the Post − COVID-19 outbreak period, the confidence intervals (CI) of RR 
at all values were wide and statistically insignificant (Supplementary Fig. 3C,D).

In non-respiratory diseases, for most parts of  PM10 and  PM2.5 concentration ranges, the values were statisti-
cally insignificant, with the 95% CI overlapping the RR of 1 both before and after the COVID-19 pandemic. An 
exception was noted for  PM10 concentrations ranging from 27 to 40 μg/m3, showing an incremental effect on the 
RR of admission for cancer (Supplementary Fig. 3). In addition, lag effects for both periods were insignificant 
across all non-respiratory diseases (Supplementary Fig. 4).

Discussion
During the COVID-19 epidemic, numerous countries reported a substantial decrease in admissions for respira-
tory diseases, including COPD and  asthma10,26,27. In this study, we sought to interpret this phenomenon from 
the perspective of air pollution, applying DLNMs to explore the relationship between air pollution and hospital 
admissions for several diseases before and after the COVID-19 pandemic.

The effects of air pollutants on various diseases have been widely  reported4,28. Prior studies have reported 
associations with exacerbation of respiratory diseases, emergency department visits, and hospital  admissions29. 

Figure 4.  Extreme effect of PM10 and PM2.5 on admissions of Asthma and Chronic obstructive pulmonary 
disease (COPD). Extreme effect of PM10 and PM2.5 on admissions of Asthma and COPD as high-low effect plots 
for multivariate meta-analyses. High effect and low effect mean a 90th quantile value versus the median value 
of each PM in Seoul and a 10th quantile value versus the median value of each PM in Seoul, respectively. The 
dot means the point estimator of the relative risk, and the bar means the 95% interval. If the confidence interval 
is greater than 1, the dot has a red colour, and if it is less than 1, it has a blue colour. (A) and (B) represent the 
results for Asthma, which are shown in a row in the Pre-COVID-19 and Post-COVID-19 outbreak period. (C) 
and (D) represent the results for COPD, which are shown in a row in the Pre-COVID-19 and Post-COVID-19 
outbreak period.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10074  | https://doi.org/10.1038/s41598-024-59643-x

www.nature.com/scientificreports/

PM induces inflammation and lung damage through mechanisms such as impairing antimicrobial activity and 
mucociliary  transport30,31. Additionally, PM induces lung injury by producing reactive oxygen species, leading 
to oxidative stress and tissue  damage32. Consistent with previous  studies33–35, our data revealed a relationship 
between hospitalization rates for respiratory diseases and  PM10 and  PM2.5 in the Pre-COVID-19 period. COPD 
exacerbation cases from the Korean nationwide database showed an inverted U-shaped pattern for  PM10 and 
 PM2.5

33. Similarly, a study from China evaluating the association between asthma hospitalizations and  PM10 and 
 PM2.5 showed a non-linear pattern similar to  ours34. Huh et al. reported the incidence of pneumonia increased 
up to approximately 20 μg/m3 of  PM2.5, showing an inverted U  relationship35.

Conflicting results exist in the literature regarding  influenza36,37. While Toczylowski reported an exponential 
relationship between cumulative  PM2.5 pollution and the incidence of influenza-like illnesses (ILI)37, our results, 
akin to Wang et al.38, indicated that slightly low concentrations of PM2.5 were more associated with contaminant-
related influenza. This may be attributed to behavioral factors and heightened healthcare awareness during 
poor air quality, leading people to adopt protective measures, including face masks, potentially mitigating the 
association between influenza hospitalization and PM concentration. Air pollutants, especially  PM10 and  PM2.5, 
increase the incidence of ILI and induce greater healthcare utilization for acute lower respiratory  infections36. 
Airborne pollution particles provide condensation nuclei for virus-droplet  attachment39. As face masks are being 
worn at all times during the COVID-19 pandemic, the association between influenza hospitalization and PM 
concentration has disappeared.

Importantly, our results unveiled a considerable shift, as depicted in Figs. 3 and 4, in the relationship between 
hospitalization rates for respiratory diseases and  PM10 as well as  PM2.5 during the COVID-19 pandemic compared 
to Pre-COVID-19 period. Two unique phenomena related to the COVID-19 pandemic could explain these find-
ings. Firstly, mitigation measures, such as travel restrictions and discontinuation of nonessential social gatherings, 
likely reduced exposure to ambient environmental triggers, including pollutants and  PMs40. The introduction of 
respiratory precautions, such as wearing facemasks, could have contributed to decreasing PM permeation and 
reducing the risk of respiratory  diseases11,12. Guan et al. showed that real facemasks attenuate pollution-induced 
effects on airway  inflammation41. The ability of the respiratory system to remove contaminants from inhaled 
air depends on the type of filter or absorbent materials, respiratory type, and facial  fitting42. Certified masks, 
including N95 and N99, exhibited high performance in particle penetration (filtration efficiencies > 98%) but 
demonstrated limited effectiveness in the removal of gaseous reactive oxygen  species43. This observation sub-
stantiates our findings, indicating that, unlike PMs, the effects of  NO2,  SO2, and  O3 on the hospitalization rate 
for respiratory diseases did not exhibit distinctive variations before and after the COVID-19 pandemic.

Secondly, a significant disruption in seasonal respiratory viruses during the COVID-19 pandemic may explain 
the substantial reduction in hospitalization due to respiratory diseases compared to non-respiratory diseases. 
Our results are consistent with previous studies indicating a drastic reduction in influenza and other seasonal 
respiratory viruses during the COVID-19  pandemic44. In alignment with existing  research8,9,  PM10 and  PM2.5 
concentrations significantly decreased in six Korean cities during the Post-COVID-19 outbreak period. This sup-
ports the notion that reduced PM, coupled with mitigation measures, and the competitive capabilities of severe 
acute respiratory syndrome coronavirus-2, may have contributed to diminishing seasonal respiratory viruses. 
These viruses are recognized as the primary triggers for acute exacerbations of COPD and asthma during the 
COVID-19 pandemic.

Despite these insights, it is important to note that our study predominantly focused on meteorological fac-
tors as covariates in the analysis of the relationship between air pollution and respiratory diseases. However, 
an extensive literature review reveals a notable absence of explicit mention or detailed discussion concerning 
the inclusion of other potential covariates such as socioeconomic factors, population density, or public health 
 interventions45,46. This research gap is critical as these elements could significantly affect the study  outcomes47. 
The omission of these additional covariates in numerous analyses highlights a potential area for further research. 
Socioeconomic factors, population density, and public health interventions, acknowledged as influential determi-
nants of health outcomes, may alter the impact of air pollution, underscoring the need for a more comprehensive 
approach in subsequent studies.

Our study has some limitations. First, we used single-exposure DLNMs. Due to multicollinearity between 
 PM10 and  PM2.5, both variables could not be simultaneously integrated into the regression analysis. Second, as 
the post-COVID-19 outbreak period lasted only 1 year, Cis were widely estimated in the analysis. The availability 
of data from 2021 and beyond from the Health Insurance Agency could facilitate more stable CI estimation. 
Third, evaluating the proper performance of NPIs, including correct facial mask usage, poses challenges. Lastly, 
factors related to healthcare-seeking behaviors could not be considered. The focus on meteorological factors as 
covariates leaves room for future studies to explore additional factors, including healthcare system adaptations 
and population immunity, which could further refine our understanding of the observed patterns.

In conclusion, our study reveals a dynamic shift in the impact of  PM10 and  PM2.5 on the risk of admission 
for respiratory diseases during the COVID-19 outbreak. The observed changes underscore the effectiveness of 
NPIs, such as the use of facial respirators and adherence to social distancing, in mitigating air pollutant-related 
respiratory diseases. These in mitigating for local authorities, offering a reference point to formulate protective 
measures and inform the development of public health policies.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. To encourage the easy use of our proposed optimization algorithm, we provided 
a reproducible tutorial on  GitHub25. For more detailed instructions on the tutorial, please refer to the webpage.
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