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A dynamic prediction model 
of landslide displacement based 
on VMD–SSO–LSTM approach
Haiying Wang 1*, Yang Ao 1, Chenguang Wang 1, Yingzhi Zhang 2 & Xiaofeng Zhang 2

Addressing the limitations of existing landslide displacement prediction models in capturing the 
dynamic characteristics of data changes, this study introduces a novel dynamic displacement 
prediction model for landslides. The proposed method combines Variational Mode Decomposition 
(VMD) with Sparrow Search Optimization (SSO) and Long Short-Term Memory (LSTM) techniques to 
formulate a comprehensive VMD–SSO–LSTM model. Through the application of VMD, the method 
dissects cumulative displacement and rainfall data, thereby extracting distinct components such 
as trend, periodicity, and fluctuation components for displacement, as well as low-frequency and 
high-frequency components for rainfall. Furthermore, leveraging Gray Correlational Analysis, 
the interrelationships between the periodic component of displacement and the low-frequency 
component of rainfall, as well as the fluctuation component of displacement and the high-frequency 
component of rainfall, are established. Building upon this foundation, the SSO–LSTM model 
dynamically predicts the interrelated displacement components, synthesizing the predicted values 
of each component to generate real-time dynamic forecasts. Simulation results underscore the 
effectiveness of the proposed VMD–SSO–LSTM model, indicating root-mean-square error (RMSE) and 
mean absolute percentage error (MAPE) values of 1.2329 mm and 0.1624%, respectively, along with 
a goodness of fit  (R2) of 0.9969. In comparison to both back propagation (BP) prediction model and 
LSTM prediction model, the VMD–SSO–LSTM model exhibits heightened predictive accuracy.

Landslides rank among the most significant geological disasters, with their occurrence leading to profound 
destructive impacts on both the ecological environment and the lives and properties of communities. The predic-
tion of landslide deformation has consistently posed a challenging research  endeavor1. Rational construction of 
a predictive model for landslide displacement stands as a pivotal technology for achieving effective monitoring 
and early warning of landslide geological hazards. Timely alerts possess the potential to mitigate, or even avert, 
casualties and property losses, bearing notable theoretical and practical  significance2.

Landslide displacement curves generally manifest as non-stationary time series. Typically, historical data is 
employed for constructing geometric  models3 or employing gray  models4 to forecast landslide displacement, yet 
these methods tend to yield lower predictive accuracy. Some scholars have enhanced the predictive accuracy of 
landslide displacement through time series decomposition, utilizing different prediction methods based on the 
characteristics of decomposition  components5–13. Currently, two primary methods are employed for decompos-
ing cumulative landslide displacement time series. The first method involves mathematical techniques such as 
moving averages  method5,6 and exponential smoothing  method11, which facilitate the extraction of physically 
meaningful trend and periodic components from cumulative displacement. The second method involves decom-
posing cumulative displacement based on signal separation theory. For instance, Ma et al.12 used DB4 wavelet 
transform to decompose the displacement sequence into trend term displacement and periodic term displace-
ment, which effectively reduced the noise of the original data. However, wavelet analysis often faces challenges 
in determining appropriate wavelet bases. Shihabudheen et al.14 used empirical mode decomposition (EMD) to 
decompose the landslide displacement data into three IMFs and one residual, and then predicted the decomposed 
IMF/residual respectively. Finally, the cumulative displacement is obtained by summarizing the prediction results, 
which effectively improves the prediction accuracy. However, EMD decomposition encounters mode mixing 
issues when abrupt temporal changes are present in displacement signals. To address the mode mixing problem 
in EMD decomposition, Du et al.8 introduced a method that integrates EMD with white noise, termed Ensemble 
Empirical Mode Decomposition (EEMD). This approach tailor’s data decomposition according to the intrinsic 
time scale characteristics of monitoring data, making it suitable for trend extraction and decomposition. Niu 
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et al.9, utilizing EEMD, successfully decomposed Three Gorges reservoir landslide displacement into trend and 
periodic components, resulting in favorable predictive outcomes. Zhang et al.10 employed VMD to adaptively 
decompose landslide displacement time series signals, overcoming mode mixing issues observed in EMD. Nota-
bly, they achieved commendable predictive results for step-like landslide displacement. Additionally, Gao et al.13 
utilized VMD to decompose cumulative landslide displacement into trend and seasonal fluctuation sequences, 
enhancing the predictive accuracy of environmentally influenced landslide displacement.

The displacement prediction models for landslides can be categorized into two types: static prediction models 
and dynamic prediction models. Yan et al.15 added environmental monitoring variables such as the free slope 
gradient, slide surface slope gradient, and soil texture of the mountain mass to the construction of the static BP 
model, which significantly improved the accuracy and stability of the landslide warning model. Zhang et al.16 
used the improved WCA–BPNN model to study the landslide in Langshuwan, which better solved the shortcom-
ings of slow BP convergence, easy to fall into the local optimal solution and poor dynamic characteristics. Shang 
et al.11 utilized a static prediction model based on Hybrid Kernel Function Support Vector Machine Regression 
(SA-SVR) to forecast the periodic displacement of landslides. Balogun et al.17 fine-tuned the parameters of the 
SVR model through a variety of intelligent algorithms such as gray Wolf and cuckoo, effectively improving the 
accuracy and stability of the model prediction. Wang et al.18 proposed a Particle Swarm Optimization and Least 
Squares Support Vector Machine (PSO–LSSVM) static prediction model to predict the fluctuating displacement 
of landslides. However, these static models overlook the fact that landslide evolution is a complex dynamic system 
and they fail to extract relevant features from displacement time series. To address these limitations, scholars 
have turned to the use of LSTM, a dynamic prediction model that captures the time series characteristics of 
displacement, in landslide displacement prediction. Li et al.19 employed LSTM for the prediction of Xintan 
landslide, achieving improved accuracy in capturing the dynamic behavior of landslide displacement. Hamedi 
et al.20 selected 12 landslide influencing factors to construct a LSTM algorithm to make landslide susceptibility 
regionalization of Adabirson, Iran, and the prediction results had a small error and high precision. Tengtrairat 
et al.21 combined four static factors (land cover, soil properties, elevation and slope) and one dynamic factor 
(precipitation) to build Bi-LSTM algorithm to study landslides in Chiang Rai, Thailand, improving the algorithm 
model’s ability to capture dynamic characteristics of landslides. Wang et al.22 utilized Gray Correlation Degree 
to select influencing factors for Bazhimen landslide and built a CNN-LSTM model on this basis, effectively 
enhancing the model’s generalization capability and predictive accuracy. In the aforementioned studies, the 
predictive accuracy of LSTM models relies on the optimization and selection of model parameters. To enhance 
predictive accuracy, it is necessary to optimize the parameters of the LSTM model using parameter optimization 
algorithms. The Sparrow Search  Algorithm23, known for its high stability and strong global search capability, can 
rapidly identify optimal values. Employing SSA for optimizing LSTM’s hyper-parameters can effectively enhance 
the model’s predictive  accuracy24.

In summary, EMD can effectively decompose displacement into distinct feature components, but it is sus-
ceptible to mode mixing. The use of LSTM dynamic prediction model for displacement time series signals yields 
favorable predictive outcomes, yet determining model parameters poses challenges. Therefore, exploring effective 
decomposition of landslide displacement signals and optimizing parameters for the dynamic LSTM predic-
tion model holds crucial significance for enhancing predictive accuracy. This paper introduces an SSO–LSTM 
dynamic landslide displacement prediction model based on VMD. VMD is employed to decompose cumulative 
displacement and rainfall, followed by conducting Gray Correlation Analysis on the decomposed components. 
The correlated displacement components are then utilized as inputs for the dynamic prediction model. Lever-
aging the strengths of the SSO algorithm, characterized by high stability and strong global search capability, 
the SSO–LSTM model is constructed for dynamic landslide displacement prediction. This model forecasts the 
evolution trend of landslides, contributing to the improvement of landslide risk management practices.

Overview of the study area
Study area
The case study in this research focuses on landslide body HP21, which spans a total length of 643 m, with a slope 
height of 40.3 m and a slope gradient of 1:1. The geological and topographical survey of the landslide area reveals 
an uneven terrain and significant incision of the valleys. The plan view of the HP21 landslide body along with the 
layout of measurement sensors was shown in Fig. 1. The monitoring network for the landslide body comprises 
one rainfall sensor, 42 GNSS cumulative displacement sensors.

Data sources
The HP21 monitoring system was installed in October 2018 with a data collection frequency of 1 day per event. 
We collected 3 years of monitoring data on rainfall sensor (YL21) and displacement sensors (GNSS32 and 
GNSS28) from 2019 to 2021 for training and validating prediction models. GNSS32, located in the middle and 
lower part of the landslide, was selected for detailed analysis, while GNSS28, located in the upper right edge, 
was chosen for comparative analysis. The selected monitoring data are illustrated in Fig. 2. The data sets were 
divided into a ratio of 8:2, with monitoring data from January 5, 2019, to May 28, 2021, used as the training set, 
and monitoring data from May 29, 2021, to December 25, 2021, used as the testing set.

As depicted in Fig. 2, the precipitation influencing the landslide is primarily concentrated from June to Octo-
ber, with September experiencing the peak of rainfall intensity. With increasing rainfall, when the rainfall reaches 
a certain intensity, the cumulative displacement curve will produce an inflection point and then transition to 
another phase. Landslide displacement is accompanied by heavy rainfall in the three stages of rapid deformation, 
and the rapid deformation of landslide displacement lags slightly behind the heavy rainfall. The duration of this 
lag is typically intertwined with the characteristics of the precipitation, the internal permeability of the soil layers 
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within the landslide, and other contributing factors. In summary, precipitation appears to be the primary catalyst 
initiating the movement of the HP21 landslide body. Consequently, in the subsequent formulation of measure-
ment models, careful consideration must be given to understanding its effect on landslide body displacement.

Methodology
The proposed VMD–SSO–LSTM prediction method
The proposed VMD–SSO–LSTM dynamic landslide displacement prediction method consists of four main 
components: VMD signal decomposition, component correlation using Gray Correlation Analysis, SSO–LSTM 
prediction of correlated displacement signals, and synthesis of cumulative displacement. The detailed process 
is illustrated in Fig. 3.

VMD were adopted to decompose the time series of cumulative landslide displacement and rainfall. The 
decomposed displacement included trend, periodic, and fluctuation components. The decomposed rainfall 

Figure 1.  Plan view of the monitoring point layout for the HP21 landslide: GNSS displacement points: GNSS1 
to GNSS42. Rain gauge: YL21 (Name of software: ArcGIS 10.5, URL: https:// www. esri. com/ en- us/ arcgis/ about- 
arcgis/ overv iew).

Figure 2.  GNSS32 Cumulative displacement and weekly rainfall data.

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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included high-frequency and low-frequency components. Gray Correlation analysis is employed to establish 
associations between displacement and rainfall components by matching their correlation features. LSTM rolling 
prediction method is used to predict the trend component displacement sub-sequence. The SSO–LSTM model 
was used to predict the periodicity and fluctuation sub-sequences. Cumulative displacement synthesis involves 
combining predicted values of various displacement sub-sequences.

VMD decomposition of displacement and rainfall sequences
VMD is an adaptive and fully non-recursive method for mode variational and signal  processing25. The specific 
steps are as follows:

Step 1: Constructing the constrained variational problem.
Assuming that the original time series signal f is decomposed into k modal components uk(t) with bandwidth. 

The center frequency of each intrinsic Mode function (IMF) component is denoted as ωk. The constraint applied 
is that the sum of the all-modal components equals the original signal. Consequently, the constrained variational 
expression is as follows:

where {uk} = {u1, . . . , uk} represent all IMF components, {ωk} = {ω1, . . . ,ωk} signify the central frequency of 
each component. ∂t represents the partial derivative with respect to t, δ(t)represents the Dirac delta function, * 
represents the convolution.

Step 2: Transformation into an unconstrained variational problem.
Lagrange multipliers λ and quadratic penalty factors α are introduced to convert the constrained variational 

problem into an unconstrained variational problem. The extended Lagrangian expression is given by:

Step 3: Solving the saddle point of the Unconstrained Variational Model.
By utilizing the alternating direction method of multipliers (ADMM), the modal components and their central 

frequencies are iteratively updated to reach the saddle point of the unconstrained variational model. This yields 
the optimal solution to the constrained variational problem:
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Figure 3.  The VMD–SSO–LSTM dynamic prediction method for landslide displacement.
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where ω represents the central frequency of each component, ûn+1
k (ω) , f̂ (ω) , �̂(ω) corresponds to the Fourier 

transformation of un+1
k (t) , f(t), λ(t) respectively.

Step 4: Re-estimation of center frequency for each IMF.
ûn+1
k (ω) is the residual of f̂ (ω)−

∑

i �=k ûk(ω) after Wiener filtering. The center frequencies are re-estimated 
based on the centroid of the power spectra for each IMFs. The updates for ûn+1

k  using formula (3), and the updates 
for ωk, and �̂ are as follows:

Step 5: Iteration stopping criteria.
The iteration process for solving the central frequencies of each modal component is halted when the stopping 

condition is met, as defined by formula (6).

Gray correlation analysis of VMD decomposed IMFs
Gray Correlation Analysis is a method for quantitatively describing and comparing the development and chang-
ing trends a system. It involves analyzing and calculating numerical values of specified indicator series and several 
comparative series. The correlation closeness is determined based on similarity of their geometric shapes. The 
rainfall studied in this paper is an important factor affecting landslide displacement, but the data of landslide 
displacement cannot establish a direct mathematical relationship with rainfall. Therefore, the mathematical 
relationship between sub-displacement and sub-rainfall is obtained by grey correlation analysis of IMFs derived 
from the decomposition of cumulative displacement and rainfall, which can be used to improve the prediction 
accuracy of landslide displacement in subsequent studies.

SSO–LSTM landslide dynamic displacement prediction model
LSTM is composed of three main gate components including input gate, i, forgetting gate, f, and output gate, y, 
on the basis of RNN. The model solves the problem of gradient disappearance and gradient explosion in the long 
sequence training process of traditional RNN model. It has very good performance ability for forecasting long 
time series data. However, the prediction accuracy of the LSTM model is greatly affected by its hyper-parameters 
such as the number of hidden layer neurons (ht), the number of iterations (Et), and the learning rate (lt). These 
hyper-parameters are set in a value range interval. Traditional hyper-parameter adjustment methods often rely on 
experience and trial and error, which is difficult to ensure the model performance. The SSO algorithm compares 
the process of parameter optimization to that of sparrow population searching for food. It has fast convergence 
and strong optimization  ability23. Therefore, the SSO–LSTM landslide displacement dynamic prediction model 
is proposed in this paper, as shown in Fig. 4.

The SSO method are used to optimize the hyper-parameters of the LSTM model. With the global search 
capability of SSA algorithm, LSTM model can quickly and stably converge to the global optimal solution, thus 
significantly improving the performance and prediction accuracy of the model. The specific steps involved in 
SSO-optimized LSTM model solving process are outlined as follows:

Step 1: According the regions of the LSTM key hyper-parameters ht, Et, and lt, initialize the population and 
related parameters such as dimensionality of the problem (j), maximum number of iterations (T), population 
size (N), warning threshold (R2), and safety threshold (S). Randomly generate initial sparrow positions to form 
the initial population.

Step 2: The predicted value of the LSTM model and the root-mean-square value of the sample data set were 
selected to determine the fitness value of each sparrow, ranking them and selecting the best and worst sparrow 
individuals at present. A higher fitness value indicates a better solution at that position.

Step 3: Update the discoverers’ position
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where xi,j represents the sparrow’s position i in the j-th dimension, t indicates the current of iterations. a is a 
(0,1] random number. Q represents a random number with a positive distribution, L is a 1 × d matrix with all 1 
element. R2 and S represent the warning threshold and the safety threshold, respectively. When R < S, it indicates 
a state of safety, prompting the discoverer to continue the search. Conversely, when R2 ≥ S, signifying a state of 
danger, the population must promptly relocate to a secure area.

Step 4: Update the position of followers: For each sparrow, further update its position using information 
from the current position, the best position found so far, and potentially the worst position. Utilize a matrix of 
elements to adjust the direction of the position change.

where Xt
P and Xt

worst are the optimal position and the worst position in the t-th generation iteration respectively. 
A is a 1 × d matrix with the element values is − 1 or 1, A+ = A+(AA+)−1.

Step 5: Defining the sentries’ population and updating position through iterative optimizations. A subset 
of sentries, ranging from 10 to 20% of the population, is designated as having awareness of danger. The initial 
positions of the sentries are randomly generated. The formula for updating the positions of the sentries with 
awareness of danger is as follows:

where Xbest represents the current global optimal position. k, β depict the step control parameters, and k is a 
random number belonging to [− 1,1], while β is a random number with a positive-taira distribution obeying a 
mean of 0 and a variance of 1. fi, fw and fg indicate the current, the worst and best fitness values of the sentries, 
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respectively. When fi > fg, it indicates that the sentry is at the edge of the population and is vulnerable to harm. 
Conversely, when fi = fg, it indicates that the sentry is in the middle of the population and is aware of the danger 
and needs to get closer to the other sparrows. ε is the smallest constant, ε > 0.

Step 6: Determine whether it finds the best fitness fg or reaches the maximum number of iterations. If so, the 
optimized parameters are obtained. If it is, proceed to Step 2.

Step 7: The optimal hyper-parameters value of ht, Et, and lt are obtained and the LSTM model is reconstructed 
with the optimal parameters.

Results
VMD decomposition and reconstruction
The Augmented Dickey Fuller (ADF) test is a traditional approach to examining whether a time series is station-
ary. This paper employs the ADF test to ascertain if the time series derived from VMD has undergone excessive 
decomposition, and consequently, to determine the number of mode decomposition, K. Table 1 shows the ADF 
test values for the different IMFs under different values of K.

Upon analyzing the computational results from Table 1, it is discerned that, when K = 6, the ADF test values 
for IMF3 exhibit a marked reduction compared to those of IMF2. Hence, it is postulated that a phenomenon of 
excessive decomposition commences in VMD. Consequently, the optimal decomposition count is determined 
to be K = 5. A penalty parameter, α, is set at 2000 based on empirical wisdom and a convergence termination 
criterion, ε, is set at  10−7. The resulting cumulative displacement of the VMD decomposition’s IMFs are shown 
in Fig. 5a.

It is evident that the IMF1 and IMF2 show a slow upward trend, and have minimal fluctuations. Therefore, 
the IMF1 and IMF2 are combined to obtain the trend displacement component, as shown in Fig. 5b. The IMF3 
fluctuates slightly and is close to the periodic rainfall trend. Therefore, IMF3 is used as the periodic displacement 
component, as shown in Fig. 5c. The IMF4 and IMF5 are relatively small with strong fluctuation. Therefore, the 
two sets are reconstructed to obtain the fluctuation displacement component, as shown in Fig. 5d.

Due to the delayed impact of precipitation on landslide displacement, we have chosen to compile a reposi-
tory of rainfall factors, comprising the rainfall of the current week, the rainfall of the previous week, and the 
accumulated rainfall of the previous 2 weeks. During the rainy season, rainfall exhibits distinct periodicity and 
 randomness26. Through VMD decomposition, the rainfall factor is disintegrated into high-frequency and low-
frequency components, as shown in Fig. 6.

Gray correlation analysis
The results of gray correlation analysis for the reconstructed components of landslide displacement and the 
graded components of rainfall are presented in Table 2. Based on the selection criterion of a gray correlation 
ri ≥ 0.7, it can be seen that: (1) The correlation between the trend component displacement and the rainfall factor 
is relatively low, indicating that the trend component displacement is mainly influenced by intrinsic factors of 
landslide movement and is independent of rainfall. (2) The correlation between the periodic component displace-
ment and the rainfall low-frequency component is approximately 0.92, Therefore, the rainfall low-frequency 
component serves as a characteristic factor for predicting the periodic displacement component. (3) The cor-
relation between the fluctuation component displacement and the high-frequency component of rainfall is 
much higher than the selection criterion of 0.7. Hence, high frequency components serve as a discriminator for 
predicting fluctuating displacement components.

Prediction results and comparison
The sample data sets of trend components, period components, and fluctuation components were used to sepa-
rately train and test the proposed SSO–LSTM model, the traditional LSTM model, and the traditional BP model. 
The testing results were compared to the actual monitoring values to validate the superiority of the proposed 
SSO–LSTM prediction model. Evaluation metrics including Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE) and Goodness of Fit  (R2) were employed to assess the accuracy of the three models. 
Smaller RMSE and MAPE values indicated lower prediction errors and stronger prediction abilities. The  R2 value, 
ranging from 0 to 1, signifies the model’s goodness of fit, with values closer to 1 indicating better fit and closer 
to 0 indicating weaker predictive power.

Table 1.  ADF test values for IMFs under different K values. Significant values are in bold.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

IMF1 − 5.826 − 6.157 − 4.048 − 2.805 − 1.073 − 3.738

IMF2 − 5.932 − 6.102 − 5.091 − 3.142 − 2.642 − 3.371

IMF3 − 6.656 − 4.838 − 4.035 − 8.873 − 8.393

IMF4 − 4.375 − 3.252 − 5.323 − 4.643

IMF5 − 2.535 − 5.354 − 6.353

IMF6 − 5.265 − 5.239

IMF7 − 5.197
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Model parameter setting
The hyper-parameters of the proposed SSO–LSTM model, including the number of neurons in the first hidden 
layer (ht1), the number of neurons in the second hidden layer(ht2), the number of iterations (it), and the learning 
rate (lt), were set to [1,100], [1,100], [1,500], and [0.001,0.01], respectively. For the traditional LSTM model, the 
parameters ht1, ht2, it, and lt, were set to 100, 100, 500 and 0.01,  respectively24. The parameters of the traditional 
BP model, including the maximum iteration times, the learning rate, and the convergence error were set as 500, 
0.01, and 0.01,  respectively16.

Results analysis of trend component displacement
The displacement of the trend component is mainly influenced by geological factors within the landslide. To 
predict trend component displacement, a rolling prediction method is employed: the trend component displace-
ment from the previous 4 weeks is used as input to predict the trend displacement for the next week. Figure 7a 
illustrates the prediction results of trend component displacement. The displacement change of the trend term 
appears relatively stable, and the prediction results of the three models better reflect the movement trend of 
the monitoring curve without significant fluctuation. However, the prediction curve of the SSO–LSTM model 
is closer to the actual value curve, indicating a superior prediction effect. Table 3 provides a clear comparison, 
showing that the error values predicted by the LSTM model and BP model are similar, while the error values 
predicted by the SSO–LSTM model are slightly lower.

Results analysis of periodic component displacement
Based on the analysis above, the displacement of the periodic component is primarily influenced by rainfall. The 
input variables for the SSO–LSTM model consist of the low frequency component of accumulated rainfall in the 

Figure 5.  (a) The VMD decomposition of landslides cumulative displacement, (b) the reconstructed trend 
component displacement (IMF1 + IMF2), (c) the periodic component displacement (IMF3) and (d) the 
reconstructed fluctuation component displacement (IMF4 + IMF5).
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current week, the previous week and the previous 2 weeks, along with the periodic displacement component dur-
ing the same time period. The output value is the landslide displacement for the following week. The prediction 
results and comparison of periodic component displacement are presented in Fig. 7b and Table 3. The findings 
are as follows: (1) Both the traditional LSTM and the proposed SSO–LSTM models demonstrate a good abil-
ity to track the periodic displacement components. The traditional BP model initially tracks the displacement 
change trend well, but after July 2021, its prediction accuracy gradually deteriorates, with the prediction curve 

Figure 6.  The rainfall VMD decomposition of (a) the current week, (b) the previous week and (c) the previous 
2 weeks.

Table 2.  Gray correlation analysis results of landslide displacement components and rainfall components. 
Significant values are in bold.

Gray correlation ri

Landslide displacement VMD component

Trend component Periodic component Fluctuation component

Rainfall of the current week
Low-frequency 0.652 0.931 0.681

High-frequency 0.589 0.685 0.941

Rainfall of the previous week
Low-frequency 0.682 0.921 0.679

High-frequency 0.597 0.671 0.859

Accumulated rainfall of the previous 2 weeks
Low-frequency 0.645 0.928 0.712

High-frequency 0.608 0.645 0.933
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fluctuating sharply around the monitoring curve. (2) The Mean Absolute Percentage Error (MAPE) value of the 
SSO–LSTM model is obviously smaller than the other two models, and the prediction effect is better.

Results analysis fluctuation component displacement
The fluctuation displacement is primarily affected by external random factors such as non-seasonal rainfall. When 
high frequency rainfall is combined to predict the fluctuation displacement component, SSO–LSTM input vari-
ables include the high frequency component of accumulated rainfall in the current week, the previous week and 
the previous 2 weeks, and the fluctuation displacement component of the same period. The prediction results 

Figure 7.  GNSS32 Prediction results of (a) the trend component displacement, (b) the periodic component 
displacement, (c) the fluctuation component displacement, and (d) the cumulative displacement.

Table 3.  GNSS32 error analysis of displacement component prediction results.

SSO–LSTM LSTM BP

RMSE (mm) MAPE (%) R2 RMSE (mm) MAPE (%) R2 RMSE (mm) MAPE (%) R2

Trend component 0.9551 0.2633 0.9951 4.4169 0.7743 0.9723 4.7336 0.7684 0.9678

Periodic component 1.6993 6.4212 0.9975 4.9844 14.8993 0.9787 5.4181 19.2305 0.9748

Fluctuation compo-
nent 0.1952 5.2254 0.9968 0.5206 13.5734 0.9977 1.0573 20.6493 0.9063

Cumulative displace-
ment 1.2329 0.1624 0.9969 8.4887 1.141 0.9811 10.6634 1.4839 0.9656
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of fluctuation component displacement are shown in Fig. 7c and summarized in Table 3. Key observations are 
as follows: (1) The displacement monitoring curve fluctuates sharply from June to October 2021, leading to a 
sharp decline in the predictive ability of the BP mode. As the model’s error adjustment ability deteriorates, the 
loss of detailed information results in the largest prediction error in September 2021. Although the prediction 
curves of the LSTM model and SSO–LSTM model fluctuate around the fluctuation displacement monitoring 
curve, they capture the overall motion trend of the fluctuation term displacement. (2) The  R2 value predicted 
by the BP model, which exhibits high volatility, is only 0.9063, indicating poor fitting. In contrast, the  R2 value 
predicted by the LSTM model and the SSO–LSTM model is close to 1, indicating that those two LSTM models are 
more suitable for the predicting of the displacement curve with obvious dynamic characteristics. The proposed 
SSO–LSTM model achieves an RSEM value of 0.1952 and MAPE value of 5.2254, indicating the smallest error 
in predicted values and the best prediction effect for the dynamic prediction model.

Results analysis of landslide cumulative displacement
The cumulative displacement was obtained by combining the three predicted displacement components, as 
depicted in Fig. 7d and summarized in Table 3. The prediction graph reveals the inadequacy tracking ability of the 
BP model, and its poor adaptability to the wave displacement trend when external disturbance increase. In con-
trast, among the three models, the prediction curve of the proposed SSO–LSTM model fits the monitoring curve 
most well. As shown in Table 4, compared with the LSTM model, the RMSE and MAPE values of the proposed 
SSO–LSTM dynamic prediction model decreased by 85.48% and 85.77%, respectively. Compared with the BP 
model, the RMSE and MAPE values of the SSO–LSTM model were reduced by 88.44% and 88.26%, respectively.

Analysis of the impact of signal VMD decomposition and reconstruction on prediction accuracy
To assess the impact of Variational Mode Decomposition (VMD) decomposition and reconstruction on predic-
tion accuracy, we conducted a comparative analysis of the three models using the original cumulative displace-
ment data set without VMD processing, as shown in Fig. 8. The prediction errors were compared with those 
obtained using VMD processing, as summarized in Table 4.

Figure 8 illustrates that the prediction curves of the three models can generally track the movement trend of 
the monitoring curve, but their adjustment ability is limited. The deviation between the prediction curve and 
the monitoring curve gradually increases as the prediction time progresses, with the error peaking at the end 
of the prediction period. Table 4 revealed that the incorporation of VMD decomposition and reconstruction 
significantly improved the prediction accuracy of the SSO–LSTM model. Specifically, the RMSE and MAPE 
values were reduced by 34.51% and 78.56%, respectively, compared to the model without VMD processing. This 

Table 4.  Comparison of GNSS32 prediction errors between with and without VMD processing.

SSO–LSTM LSTM BP

RMSE (mm) MAPE (%) R2 RMSE (mm) MAPE (%) R2 RMSE (mm) MAPE (%) R2

With VMD 1.2329 0.1624 0.9969 8.4887 1.141 0.9811 10.6634 1.4839 0.9656

Without VMD 1.8827 0.9574 0.9685 12.8554 1.7408 0.9567 16.1454 2.0027 0.9317

Figure 8.  Comparison of GNSS32 prediction results using the original cumulative displacement without VMD 
processing.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9203  | https://doi.org/10.1038/s41598-024-59517-2

www.nature.com/scientificreports/

improvement can be attributed to the ability of VMD to effectively extract the underlying components of the sig-
nal, thereby reducing noise and improving the model’s ability to capture the true underlying patterns in the data.

Overall, our findings suggest that the incorporation of VMD decomposition and reconstruction can enhance 
the prediction accuracy of landslide displacement models, particularly when using deep learning models such 
as SSO–LSTM.

Discussions
Discussion on considering external rainfall factors
The displacement curve of the HP21 landslide exhibits a stepped-upward change, with rapid deformation stages 
coinciding with heavy rainfall. During periods of low or no rainfall, landslide displacement and deformation are 
minimal. This indicates that both internal evolution and external rainfall factors influence landslide displacement 
and deformation, which is consistent with findings from Refs.27,28. Therefore, incorporating external rainfall as a 
key input parameter in the prediction model construction improves the model’s ability to track abrupt landslide 
displacement. Compared to direct prediction of landslide displacement, the model’s predicted values align more 
closely with measured values. The root means square error (RMSE), mean absolute percentage error (MAPE), and 
goodness of fit  (R2) for the predicted cumulative displacement were 1.2329, 0.1624%, and 0.9969, respectively.

Discussion on ADF test of VMD
The traditional VMD method typically sets the mode number, K, to 3 to decompose landslide cumulative 
 displacement10. However, this approach often leads to suboptimal decomposition results, with the Intrinsic 
Mode Function (IMF) sequence containing multiple displacement information. In this study, the Augmented 
Dickey–Fuller (ADF) test was employed to determine the optimal number of VMD decomposition layers, result-
ing in 5 IMF components. Subsequently, based on the fluctuation characteristics and smoothness of each IMF 
component, the trend term displacement, periodic term displacement, and fluctuation term displacement—each 
with clear physical significance—were reconstructed. The predictions for the three displacement components 
were combined to obtain the predicted accumulated displacement. Compared to prediction results without VMD 
processing, the cumulative displacement prediction exhibiting a more stable movement trend and improved 
anti-interference ability in prediction.

Discussion on the applicability the proposed VMD–SSO–LSTM model
The LSTM model can utilize and retain historical information, leveraging its capability to extract correlation 
information from past and future time series data, thereby enhancing displacement prediction accuracy. Com-
pared to the static BP model, the dynamic LSTM model demonstrates higher prediction accuracy on the same 
training set. The SSO algorithm’s adaptive iterative search for LSTM model hyper-parameters ensures rapid and 
stable convergence to the global optimal solution in the multidimensional hyper-parameter space, significantly 
enhancing model performance.

The trained VMD–SSO–LSTM model was employed to forecast the monitoring data of GNSS28 monitoring 
points for a 3-month period, with error analysis conducted on the prediction results, as shown in Table 5. the 
RSEM, MAPE, and  R2 values of are 1.5969, 0.4266%, and 0.9971, respectively. The prediction results indicate that 
the VMD–SSO–LSTM model exhibits good predictive performance when forecasting short-term monitoring 
data, demonstrating high applicability and strong stability.

Discussion on considering stochastic factors
In the realm of displacement prediction research, constrained by current monitoring methods, this study solely 
contemplates the impact of rainfall and the inherent evolution stage of landslides on the stochastic displacement 
component. The study overlooks the influence of stochastic factors such as artificial loads. Nevertheless, stochas-
tic displacement embodies a comprehensive reflection of natural environmental variations, rendering precise 
prediction of stochastic displacement imperative for landslides triggered by external environmental changes.

Conclusions
Aiming at the complex nonlinear system of landslide, a dynamic prediction model of landslide displacement 
based on VMD–SSO–LSTM is proposed, and the model is analyzed and verified by the actual monitoring data of 
active landslide. The following conclusions are obtained: (1) The VMD method can effectively reduce interfering 
data in landslide cumulative displacement time series signals. By decomposing the signals and reconstructing 
the components, displacement components with clear physical meaning can be obtained, which better explain 
the changes in landslide displacement. (2) The LSTM model can accurately memorize and predict the historical 
information of monitoring points. The sparrow search algorithm can efficiently, stably, and adaptively find the 
optimal hyperparameters of the LSTM model. Finally, a prediction model is developed to improve the accuracy 

Table 5.  Comparison of GNSS28 prediction results by using a 3-month VMD processing data set.

Model type RMSE (mm) MAPE (%) R2

SSO–LSTM 1.5969 0.4266 0.9971

LSTM 4.9171 1.3495 0.9725

BP 8.0727 1.8074 0.9258
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of dynamic prediction of landslide displacements. (3) The prediction results of GNSS32 and GNSS28 monitoring 
points show that compared with the traditional LSTM model and BP model, the proposed VMD–SSO–LSTM 
model has good accuracy.

To further enhance the prediction performance of the model, it is recommended to incorporate additional 
parameters closely linked to landslide stability, such as soil sliding resistance. Moreover, converting the landslide 
displacement prediction results into the probability of landslide occurrence can further enhance decision-making 
capabilities.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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