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Hybrid cheetah particle swarm 
optimization based optimal 
hierarchical control of multiple 
microgrids
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Ebtisam Mostafa Mohamed Saied 1 & Hossam Abdel Hadi 1

The emergence of microgrids arises from the growing integration of Renewable Energy Resources 
(RES) and Energy Storage Systems (ESSs) into Distribution Networks (DNs). Effective integration, 
coordination, and control of Multiple Microgrids (MMGs) whereas navigating the complexities of 
energy transition within this context poses a significant challenge. The dynamic operation of MMGs 
is a challenge faced by the traditional distributed hierarchical control techniques. The application 
of Artificial Intelligence (AI) techniques is a promising way to improve the control and dynamic 
operation of MMGs in future smart DNs. In this paper, an innovative hybrid optimization technique 
that originates from Cheetah Optimization (CHO) and Particle Swarm Optimization (PSO) techniques 
is proposed, known as HYCHOPSO. Extensive benchmark testing validates HYCHOPSO’s superiority 
over CHO and PSO in terms of convergence performance. The objective for this hybridization stems 
from the complementary strengths of CHO and PSO. CHO demonstrates rapid convergence in 
local search spaces, while PSO excels in global exploration. By combining these techniques, the 
aim is to leverage their respective advantages and enhance the algorithm’s overall performance 
in addressing complex optimization problems. The contribution of this paper offering a unique 
approach to addressing optimization challenges in microgrid systems. Through a comprehensive 
comparative study, HYCHOPSO is evaluated against various metaheuristic optimization 
approaches, demonstrating superior performance, particularly in optimizing the design parameters 
of Proportional-Integral (PI) controllers for hierarchical control systems within microgrids. This 
contribution expands the repertoire of available optimization methodologies and offers practical 
solutions to critical challenges in microgrid optimization, enhancing the efficiency, reliability, and 
sustainability of microgrid operations. HYCHOPSO achieves its optimal score within fewer than 50 
iterations, unlike CHO, GWO, PSO, Hybrid-GWO-PSO, and SSIA-PSO, which stabilize after around 200 
iterations. Across various benchmark functions, HYCHOPSO consistently demonstrates the lowest 
mean values, attains scores closer to the optimal values of the benchmark functions, underscoring 
its robust convergence capabilities.the proposed HYCHOPSO algorithm, paired with a PI controller 
for distributed hierarchical control, minimizes errors and enhances system reliability during dynamic 
MMG operations. Using HYCHOPSO framework, an accurate power sharing, voltage/frequency 
stability, seamless grid-to-island transition, and smooth resynchronization are achieved. This 
enhances the real application’s reliability, flexibility, scalability and robustness.

Keywords  Cheetah optimization, Hierarchical control strategies, Hybrid optimization systems, Microgrids, 
Particle swarm optimization, Sustainable energy systems

Abbreviations
A, B, C2 and rHat	� Randomization numbers
Bti,j	� Turning coefficient
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c1 and c2	� Coefficients of optimization parameter which are usually between [0 2] 
each velocity update

D	� Dimension
Eid, Eiq	� Error signals in direct current and quadrature current
i	� Particle index
I_Bus_600V	� Output current on the utility
ILoad	� Load current
Iprime_BESS	� Current on the primary winding of the transformer connected through 

the battery energy storage system
Iprime_PV	� Current on the primary winding of the transformer connected through 

PV system
I-PV	� PV current
it	� Current iteration
Kpdf, Kidf, Kpdv, Kidv, Dfref, Dvref	� Drop control parameters
Kpf, and Kif	� Control parameter for pi control within active power for maintaining 

stable frequency with varying power
Kpv, and Kiv	� Control parameters for pi control within reactive power for maintain-

ing stable voltage with varying power
lb	� Lower boundary
Maxit	� Maximum number of iterations.
n	� Number of iterations [0, 1,…,n]
Pid, Piq	� Control signal of pi controller for direct current and quadrature cur-

rent error signals
Pout, and Qout	� Output active and reactive power
p
g
n	� Global best position
pin	� Local best position
r1, r2	� Random number
r̂−1
i,j ,∝

t
i,j	� Randomization parameter and step length for cheetah i

RoCoF, RoCoV	� Rates of change of frequency and voltage
t	� Current hunting time for cheetah
T	� Maximum hunting time for cheetah
ub	� Upper boundary
Vi
n	� Velocity of particle i at iteration n

Vdconv, Vqconv	� Output of the feedforward for direct and quadrature signals
vd_measured,Vq_measured	� Output of the feedforward compensation
V-PV, VDC	� PV output voltage and voltage on DC bus
W	� PSO inertia constant
Wmax,Wmin	� Maximum and minimum inertia damping
Xi
best ,X

i
n,X

i
b	� Prey’s position, Cheetah’s current position, and cheetah’s best position

Xt+1
i,j ,Xt

i,j	� Next and current position of cheetah (i = 1, 2,…,n)
Xi
n	� Position of particle i at iteration n

Traditional utility has faced several challenges in recent decades. One of the most challenging issues represents 
in the vulnerability of traditional grid to single points of failure, such as equipment malfunctions, natural disasters 
and cyberattacks1, which can lead to widespread power outages. In addition, integrating large-scale Renewable 
Energy Sources (RESs) into the traditional grid poses technical challenges because of variable generation, inter-
mittency and the need for substantial grid upgrades2. Additionally, the conventional utility is heavily reliant on 
fossil fuel power plants, which contribute to the emission of carbon dioxide and the degradation of the environ-
ment. Moreover, the traditional utility model involves long-distance transmission and distribution of electricity, 
resulting in significant transmission losses3. Microgrids (MGs) are localized energy systems that can operate 
islanded or interconnected with the main power grid. They comprise several Distributed Energy Resources 
(DERs) such as synchronous generator based and RESs such as Photovoltaic systems (PVs), Wind Turbine 
systems (WTs), Energy Storage systems (ESs), and backup generators, along with control and monitoring mecha-
nisms. Microgrids provide reliable and sustainable electricity supply to specific areas, such as communities, 
campuses, military bases and industrial complexes. The concept of MGs has recently been introduced as a solu-
tion for centralized utility which has attracted the attentions of researchers4,5. Microgrid control strategies are 
essential for preserving the stability and dependability of MGs. The control strategies are required to regulate 
frequency levels and voltage, coordinate the operation of various components, and manage power flow. A review 
of recent developments in the control and optimization of MGs is elaborated, and the optimal operation of MGs 
is achieved by efficiently managing the production, storage, and consumption of electricity6. The authors ensure 
that energy resources are used in the most cost-effective and reliable manner, considering factors such as load 
demand, energy prices, and system constraints. The microgrid optimal operation with integrated power-to-gas 
technology is introduced7. Microgrid control strategies optimize the usage of RESs such as PVs and WTs, which 
are variable and intermittent, matching the generation with the load demand and grid conditions. Additionally, 
energy storage systems are managed to ensure efficient utilization of excess renewable energy and enable its 
availability during periods of low generation8. Hierarchical control of MGs refers to the management and coor-
dination of multiple interconnected microgrids within a larger system and the establishment of control structures 
and techniques at different levels to ensure reliable and efficient operation of the interconnected microgrids. 
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MGs can achieve improved efficiency, coordination, flexibility, and reliability by implementing hierarchical 
control strategies. It enables voltage and frequency regulation, system optimization, and effective management 
of power sharing, leading to optimal operation and integration of the interconnected MGs. The laboratory 
implementation of three-level hierarchical microgrid control is conducted and validated9. Artificial Intelligence 
(AI) approaches have been used in various aspects of hierarchical control in MGs, such as Particle Swarm Opti-
mization (PSO)10, Evolutionary Algorithms (EA)11, grey wolf Optimization (GWO)12, Genetic Algorithms (GA)13, 
and reinforcement learning14 to optimize the operation and decision-making processes in hierarchical control. 
These approaches enable finding optimal solutions that consider multiple objectives, such as cost minimization, 
load balancing, and emission reduction while considering system constraints and uncertainties. As a result of 
using AI approaches in the hierarchical control of MGs, decision-making abilities are improved, system perfor-
mance is increased, adaptive and intelligent control actions are made possible, and efficient resource management 
is promoted15–17. In the previous literature, the various primary control techniques for current and voltage regula-
tion, secondary control for voltage and current error correction, power sharing in microgrids and microgrid 
clusters, and tertiary control for power and energy management with a primary focus on minimal power loss 
and operational cost in a Direct Current (DC) microgrid system are studied18. A microgrid inverter control 
strategy based on dynamic feedforward compensation is proposed and tested19. Moreover, a mathematical model 
for an Improved Phase-Locked Loop (IPLL) for a microgrid integrated with PV system control is developed20. 
However, conventional hierarchical control of MGs has certain limitations. One of these limitations is uncertain-
ties and variability in RES generation, grid conditions, and load demand, rather than the scalability issue. Tra-
ditional hierarchical control techniques may struggle to handle many interconnected MGs. As the system grows 
in complexity and size, the traditional control structure becomes more challenging to manage. In addition, it 
might be unable to change in response to dynamic operational needs and system conditions. AI optimization 
techniques can be addressed to mitigate the limitations of traditional control structures. Therefore, PSO was 
conducted to review the cost optimization of MGs21. The optimal coordinate control of the DC microgrid based 
on the hybrid PSO-GWO algorithm is suggested and implemented22. The optimal energy management and bat-
tery sizing is applied for grid-connected MGs by using GWO algorithm23, whereas an Improved GWO (IGWO) 
algorithm is presented to shorten the time of the final result with the most precision24. Moreover, the improved 
algorithm is used for solving placement and sizing of electrical energy storage system in MGs. The IGWO is 
employed to dynamically optimize the rated power of Distributed Generation (DG) of the tertiary controller25. 
Salp Swarm Inspired Algorithm (SSIA) is used to improve the dynamic response and power quality of an islanded 
microgrid26. Droop control of DC microgrid is achieved by using a hybrid SSIA optimization with PSO27. The 
Liver Cancer Algorithm (LCA) is a newly developed bio-inspired optimization algorithm that models the growth 
and advancement of liver tumours. Employing an evolutionary search methodology, it imitates the takeover 
process of liver tumours within the organ. The LCA aims to optimize liver cancer-related processes by emulating 
tumour behaviour within the liver28. The efficiency of the LCA relies on the calibre of its parameters and design. 
In the absence of proper tuning or optimization, the algorithm’s efficacy may be compromised, thereby affecting 
its applicability in real-world scenarios. The Parrot Optimizer (PO) is a highly effective metaheuristic algorithm 
modelled after the foraging, nesting, communication, and aversion to stranger’s behaviours observed in parrots. 
Engineered to address a wide range of optimization challenges, it extends its applicability to include medical 
contexts29. LCA and PO are commonly classified as global search algorithms. Unlike local search algorithms, 
which focus on specific regions of the solution space, global search algorithms aim to explore the entire solution 
space comprehensively. By doing so, they can identify the optimal solution, even when it is not readily apparent 
and may exist in various parts of the search space. This broad search capability makes them particularly effective 
for tackling complex optimization problems. The Slime Mould Algorithm (SMA) draws inspiration from the 
foraging behaviour of slime Molds, employing swarm intelligence principles to optimize solutions. Mimicking 
the oscillatory behaviour observed in slime moulds, SMA utilizes heuristics informed by experiences within 
specific regions (or patches) to decide when to move on, mirroring the natural behaviour of these organisms30. 
The Moth Search Algorithm derives its inspiration from the behaviour of moths drawn to light sources,employing 
the principle of phototaxis to guide its optimization process31. Similarly, the Hunger Games Search algorithm 
takes inspiration from the survival of the fittest concept depicted in the Hunger Games series, employing com-
petitive selection processes to seek optimal solutions32. The Colony Predation Algorithm draws inspiration from 
the predatory dynamics within colonies, simulating interactions between predators and prey to refine solutions33. 
The Harris Hawks Optimization algorithm, inspired by the hunting patterns of Harris’s hawks, relies on coopera-
tive efforts and communication among agents to seek optimal solutions. As for the Rime Optimization Algorithm, 
while its inspiration may stem from rime ice formation34.

The salp swarm algorithm is used to improve the detection of Alzheimer’s disease35. More specifically, the 
study aims to enhance the performance of the fuzzy K-nearest neighbours’ algorithm in Alzheimer’s disease 
detection through optimization with the salp swarm algorithm. By employing advanced optimization methods 
in medical diagnostics, this investigation highlights the potential to enhance disease detection accuracy and 
efficiency, ultimately leading to improved patient outcomes. This algorithm is constrained by its vulnerability to 
local optima and reduced convergence accuracy during later iterations. An enhanced version of the Sine Cosine 
Algorithm (SCA) called the Hierarchical Multi-Leadership SCA (HMLSCA) is developed and tested to guide 
the optimization process along multiple paths36. The SCA might encounter challenges with low optimization 
searching accuracy, potentially hindering its efficiency in finding optimal solutions. This drawback could result 
in suboptimal outcomes, particularly in complex optimization scenarios37.

A modified particle swarm optimization algorithm tailored to address a batch-processing machine schedul-
ing problem characterized by arbitrary release times and non-identical job sizes is introduced38. Novel machine 
learning methodologies are applied for fault diagnosis and optimization39–41. Machine learning models are fre-
quently referred to as "black boxes," as they lack transparency regarding decision-making processes. This lack of 
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transparency can impede comprehension of the rationale behind outcomes, thereby complicating the validation 
or accurate interpretation of results.

The research gaps
The review of current literature on microgrid control methods and recent advancements in artificial intelligence 
(AI) optimization techniques has identified a gap in the application of bio-inspired optimization methods within 
hierarchical control systems for complex microgrid environments. While previous research extensively explored 
the use of AI algorithms, the integration of bio-inspired optimization techniques, especially those inspired by 
animal behaviours, remains largely unexplored in microgrid control systems.

The primary objectives of the proposed system are to ensure equitable power sharing and balance among 
multiple microgrids, maintain voltage and frequency stability by minimizing deviations, facilitate seamless transi-
tions between grid-connected and islanded modes while minimizing the associated time and disruptions, and 
achieve smooth resynchronization of microgrids following islanding events.

The conducted research aims to bridge this identified gap in the literature by exploring how the integration of 
bio-inspired optimization techniques, demonstrated by the proposed hybrid cheetah optimization and particle 
swarm optimization system (HYCHOPSO), can significantly enhance the efficiency and adaptability of hierarchi-
cal control systems within microgrid operations. Specifically, the focus is on optimizing PI controller parameters 
to meet key performance targets, including ensuring equitable power sharing among multiple microgrids, main-
taining voltage and frequency stability, enabling smooth transitions between grid-connected and islanded modes 
with minimal disruptions, and achieving seamless resynchronization of microgrids following islanding events.

The major contributions of this article can be summarized as follows:

•	 A new hybrid optimization system that merges the hunting strategy of CHO with the exploration property 
of PSO has been developed.

•	 A comparative study is performed to demonstrate the effectiveness of the proposed HYCHOPSO with various 
types of metaheuristic optimization approaches, including single as well as hybrid algorithms.

•	 The developed HYCHOPSO has been proposed to solve one of the most popular microgrid technical prob-
lems presented in the optimal design of PI controller parameters of hierarchical control systems.

The remainder of this paper is organized as follows: In Section "Proposed hybrid optimization system", the 
proposed hybrid optimization framework, encompassing mathematical models for PSO and CHO is developed. 
This section also provides the pseudocode for the novel HYCHOPSO, conducts rigorous testing against five other 
optimization systems, showcases the superior performance of the new hybrid system over the alternatives, and 
presents an in-depth analysis of the results, including the convergence curves derived from various benchmark 
testing functions. Section "Multiple microgrids control strategies" illustrates multiple microgrid control strategies, 
including conventional and hierarchical control techniques. The application of AI, especially the newly proposed 
optimization system for the hierarchical control of multiple microgrids, is demonstrated in section "Applica-
tion of HYCHOPSO on hierarchical controlfor multiple microgrid". Section "Simulation result and discussion" 
presents the results and discussion. Finally, section "Conclusion" presents the conclusion.

Proposed hybrid optimization system
A hybrid optimization system refers to a combination of different optimization algorithms or techniques such 
as p-metaheuristic, s-metaheuristic, machine learning, and mathematical programming that are integrated to 
improve algorithm efficiency, reduce search time, provide better quality solutions, improve effectiveness, provide 
accuracy, and solve complex optimization problems42–50. Exploration and exploitation are typically the two dif-
ferent phases of the process in metaheuristic optimization. These phases are essential for the search procedure 
to successfully navigate the solution space and locate superior solutions51. During the exploration phase, the 
metaheuristic algorithm focuses on exploring a global search of the solution space, agents travel in the search 
space, update the agent position, and update the best agent. The metaheuristic algorithm then moves on to the 
exploitation phase, where it focuses on refining and exploiting the promising solutions identified during explora-
tion. This phase performs solution evaluation, selection, mutation, crossover, and target update. In the proposed 
system, the exploration phase is represented by PSO, and the exploitation phase is represented by CHO.

Particle swarm optimization
PSO is a high-quality, human-based, global-based, and intelligence-based algorithm that finds a solution to the 
optimization problem52. One of the bio-inspired algorithms, PSO, is straightforward in its search for the best 
solution in the problem area. It differs from conventional optimization algorithms in that it doesn’t rely on the 
gradient or any differential forms of the goal; instead, it only needs the objective function. The mathematical 
equation of the PSO can be presented as the following Eqs. (1)–(3):

(1)Xi
n+1 = Xi

n + Vi
n+1

(2)Vi
n+1 = wVi

n + c1r1(pin − Xi
n)+ c2r2

(

p
g
n − Xi

n

)

(3)W = Wmax −
(
(Wmax −Wmin) ∗

(
1

Maxiter

))
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where r1, r2 are random number; i: particle index n: number of iterations [0,1]; Vi
n
 :V velocity of particle i at 

iteration n; Xi
n :X position of particle i at iteration n; c1 and c2: coefficients of optimization parameter which are 

usually between [0 2] each velocity update.; pin : local best position.; pgn : global best position;
W: PSO Inertia Constant.;Wmax,Wminarethemaximumandminimuminertiadamping.
The advantages of PSO are the capability to change the position of particles in a multidimensional search 

space. This unique advantage paves the way for employing PSO in tackling various engineering challenges such 
as voltage and frequency control on interconnected power systems, maximum energy harvesting of both solar as 
well as wind energy conversion systems, energy management of RESs and stabilizing of inverted pendulum53–69 
On the other hand, the most important disadvantage of PSO is that the regulation speed and direction of the 
particle are not exact. This method may not perform well in non-coordinate systems70.

Cheetah optimization
This optimization technique is motivated by the hunting strategy of cheetah71. Cheetahs generally use three 
strategies for hunting prey, which can be summarized as follow:

•	 Searching, Cheetahs need to search, including scanning or active search, in their territories (search space) 
or the surrounding area to find their prey.

•	 Sitting and waiting, after the prey is detected, but the situation is not proper, cheetahs may sit and wait for 
the prey to come nearer or for the position to be better.

•	 Attacking which has two essential steps:
•	 Rushing: When the cheetah decides to attack, they rush toward the prey with maximum speed.
•	 Capturing: The cheetah uses speed and flexibility to capture the prey by approaching the prey.

The mathematical equation of CHO can be presented by the following Eqs. (4)–(6):
In searching strategy:

In sit and wait strategy:

In the attack strategy:

where Xt+1
i,j ,Xt

i,j are the next and current position of cheetah (i = 1, 2,…,n), n is the population size in arrange-
ment (j = 1, 2,…,D), and D is the dimension; r̂−1

i,j ,∝
t
i,j are the randanization parameterand step length for cheetah i.

The step length higher than zero, in most cases, can set at 0.001*t/T where t is the current hunting time and 
T is the maximum length of hunting time. Cheetah optimization has the advantages of fast convergence, adap-
tive behaviour, simplicity and ease of implementation, and robustness. However, it has a limitation of lack of 
extensive research, limited exploration capability71. Therefore, recent research has moved toward hybridizing 
with another technique to obtain its advantages while avoiding its limitations.

Proposed hybrid system
Over the past few decades, many metaheuristic optimization techniques had been applied to deal with different 
engineering problems72–101.

In the realm of optimization strategies, a “hybrid optimization system” refers to the integration of various 
algorithms and techniques, including p-metaheuristics, s-metaheuristics, machine learning, and mathematical 
programming. This integration aims to enhance algorithmic efficiency, reduce search time, improve solution 
quality, increase effectiveness, ensure accuracy, and effectively address complex optimization problems.

The conventional metaheuristic optimization paradigm comprises two essential phases: exploration and 
exploitation, both crucial for efficiently navigating the solution space and discovering superior solutions. The 
exploration phase involves the metaheuristic algorithm conducting a comprehensive global search across the 
solution space. Agents iteratively traverse the search space, updating their positions, and refining the best agent. 

(4)Xt+1
i,j = Xt

i,j + r̂−1
i,j ∝

t
i,j

(5)Xt+1
i,j = Xt

i,j

(6)Xt+1
i,j = Xt

B,j +
⌣
r i,jB

t
i,j
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Subsequently, the algorithm transitions seamlessly into the exploitation phase, where it focuses on refining and 
exploiting promising solutions identified during the exploration phase. This phase encompasses critical activities 
such as solution evaluation, selection, mutation, crossover, and target updates.

In our proposed system, we assign the exploration phase to Particle Swarm Optimization (PSO), where the 
algorithm actively explores the extensive global solution space. Conversely, the exploitation phase is represented 
by Cuckoo Search-based Hybrid Optimization (CHO), which emphasizes refining and exploiting solutions 
identified during the preceding exploration phase.

Pseudocode of the new optimization technique HYCHOPSO
The randomization parameters are illustrated in Eqs. (7)–(10). In Eq. (10), c2 is modified from the existing one 
in the original Cheetah version. In Eq. (12), the modification of the existing one in the original PSO optimiza-
tion to update the leader’s follower step. The modified mathematical model for calculating the position of the 
leader is presented as follows:

where rHat , A, B, and C2 are randomization numbers; Xi
best ,X

i
n,X

i
b are the prey’s position, Cheetah’s current 

position, and cheetah’s best position.

(7)rHat = randn

(8)A = rand()

(9)B = rand()

(10)C2 = B− ( A−B
Maximumiteration )

(11)Vi
n+1 = wVi

n + c2 ∗ r1(Xi
best − Xi

n)

(12)Vi
n+1 = wVi

n + c2 ∗ r1(Xi
b − Xi

n)

(13)Xt+1
i,j = Xt

i,j +W ∗ rHat ∗ V
i
n+1
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Algorithm: the new proposed optimization technique HYCHOPSO

Comparative study between the proposed HYCHOPSO with alternative metaheuristics on 
benchmark functions
The hybrid HYCHOPSO algorithm is applied to twenty-three benchmark functions in this segment. The bench-
mark problems consist of three groups: unimodal, multimodal, and fixed-dimension multimodal functions. 
Convergence curves are the most common results in the single-objective optimization literature. Moreover, the 
mean and standard deviation values can be used as Performance Indicators (PIs) for the enhanced behaviour of 
HYCHOPSO compared with other alternative metaheuristics. The obtained results and convergence performance 
indicate that HYCHOPSO is more reliable. Figure 1 shows sample results for the convergence characteristics of 
HYCHOPSO, CHO, GWO, SSIA-PSO, PSO, and GWO-PSO during application to F3, F10, and F23.
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The analysis of different optimization systems with the novel HYCHOPSO is implemented under the same 
conditions to make a fair comparison, which depends on the following strategies:

•	 The optimization problem is clearly defined for different categories of unimodal, multimodal, and fixed-
dimension multimodal benchmark functions.

•	 Each optimization system is implemented separately, following their specific algorithmic details and 
parameter settings. i.e., setting the random seeds, the same initial conditions, stopping rules, and termination 
criteria.

•	 The best score obtained at systematic intervals (e.g., after each iteration or generation) is recorded during the 
optimization process, and this data is stored for each optimization system.

•	 Finally, the convergence curves are plotted for each optimization system using the stored data.

The maximum number of iterations was adjusted to 500 and the number of search agents was 6. The capability 
test for HYCHPSO, CHO, GWO, PSO, hybrid GWO-PSO, and SSIA-PSO has 6 runs per function. HYPCHOPSO 
illustrates its superiority in most benchmark functions over alternative optimization methods. The results 
obtained from the convergence performance showed that the proposed HYCHOPSO is more reliable. Table 1 
reports the average and standard deviation of the statistical results over 6 runs. Table 1 shows that HYCHOPSO 
has the best results in F1, F2, F3, F4, F5, F6, F7, F10, F13, F22, and F23. Based on previous results, HYCHOPSO 
has the best performance because it combines the advantages of both CHO and PSO.

Computational cost analysis of the HYCHOPSO algorithm
In this section, we will discuss both the time and space complexity aspects associated with HYCHOPSO. The 
analysis of time complexity will focus on evaluating the computational efficiency of HYCHOPSO in terms of 
its runtime performance. This examination aims to provide insights into the algorithm’s efficiency in handling 
various optimization tasks within acceptable time frames. Additionally, we will investigate the space complexity, 
considering the memory requirements of the algorithm during execution. This comprehensive analysis is 
intended to offer a transparent understanding of HYCHOPSO’s computational characteristics, allowing readers 
to assess its practical feasibility and performance compared to existing algorithms. We will ensure that this section 
is presented in a clear and organized manner, providing the necessary information for a thorough evaluation of 
the computational aspects of HYCHOPSO.

The results obtained from Fig. 1a reveal that for benchmark function F3, the HYCHOPSO algorithm achieves 
the fastest convergence speed, reaching its optimal score before 50 iterations, while CHO, GWO, and PSO 
show slower convergence, stabilizing around 105 after approximately 200 iterations. The GWO-PSO and SSIA-
PSO algorithms exhibit the slowest convergence speeds, with SSIA-PSO failing to stabilize within the displayed 
iterations. In Fig. 1b for Benchmark Function F10, the graph shows that HYCHOPSO, CHC, GWO, PSO, GWO-
PSO, and SSIA-PSO converge rapidly to the optimal solution, maintaining their best scores within the initial 
50 iterations throughout the 500 iterations. This indicates similar convergence speeds, enabling them to escape 
local minima and find global minima effectively. Turning to Fig. 1c for Benchmark Function F23, HYCHOPSO 
emerges as the top performer, converging quickly to a score above 0.4 within the first 50 iterations, showcasing 
its efficiency in finding near-optimal solutions. Conversely, GWO-PSO and SSIA-PSO exhibit poor performance, 
displaying minimal improvement and remaining near the bottom throughout 500 iterations, indicating challenges 
in optimizing effectively and being stuck in suboptimal solutions. The CHO, GWO, and PSO algorithms show 
moderate performance, with CHO displaying step-like progression, GWO slightly outperforming PSO by the 
end of iterations, and both exhibiting steady convergence compared to HYCHOPSO, GWO-PSO, and SSIA-
PSO. In conclusion, the obtained results and convergence performance show that HYCHOPSO is more reliable.

The results presented in Table 1 provide a detailed analysis of the performance metrics for the HYCHOPSO 
algorithm compared to alternative algorithms across various benchmark functions (F1–F23). The values reported 
include both standard deviation and average (mean) for each testing function. Lower mean scores in functions 
F1, F2, F3, F4, F5, F6, F7, F10, F13, F22, and F23 indicate superior algorithm performance, with HYCHOPSO 
consistently exhibiting the lowest mean values compared to other algorithms. This signifies that, on average, 
HYCHOPSO achieves scores closer to the optimal values of the benchmark functions, indicating its robust con-
vergence capabilities. Additionally, lower standard deviation values in most benchmark functions suggest more 
consistent and predictable results, reinforcing HYCHOPSO’s stability and reliability across diverse optimization 
scenarios. Overall, the combination of low mean values and standard deviation values in Table 1 indicates that 
HYCHOPSO consistently outperforms alternative algorithms in terms of convergence speed and reliability across 
a wide range of benchmark functions. In summation, the observed convergence patterns in graphical representa-
tions substantiate the quantitative metrics presented in Table 1, collectively affirming that HYCHOPSO exhibits 
superior convergence speed and reliability compared to alternative algorithms across the specified benchmark 
functions.

Multiple microgrids control strategies
Conventional control
Voltage stability, frequency regulation, load frequency control and error minimization, power sharing, optimal 
power flow, and energy management are the key control and operational features of the traditional control 
architecture. Voltage stability is crucial for maintaining steady voltage levels within acceptable limits, achieved 
through mechanisms such as voltage regulators and reactive power compensation devices. Frequency regulation 
ensures the system frequency remains at its nominal value, typically 50 Hz or 60 Hz, through Automatic 
Generation Control (AGC) and governor control systems. LFC, a subset of frequency regulation, focuses on 
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adjusting generation to match load demand in real-time, essential for system stability. Error minimization involves 
reducing deviations between desired setpoints and actual parameters, optimizing performance using control 
strategies like PID controllers and Model Predictive Control (MPC). Power sharing ensures equitable distribution 
of power among generators or Distributed Energy Resources (DERs) within the microgrid, facilitated by control 
algorithms such as droop control and consensus-based control. OPF addresses the optimal operating conditions 
of the power system, optimizing generation dispatch while satisfying constraints like voltage and power flow 
limits. Energy management encompasses planning, scheduling, and control of energy resources to meet demand 
efficiently, utilizing real-time data and advanced control algorithms within Energy Management Systems (EMS). 
These key control and operational features synergize to ensure the reliable, efficient, and sustainable operation 
of microgrids, especially in integrating renewable energy sources and accommodating dynamic changes in 
generation and demand. By effectively managing voltage, frequency, power flow, and energy resources, microgrid 
operators can optimize system performance and enhance grid resilience. Reference92 introduced a comparison to 
summarize the control and operational features of conventional control architecture. In the conventional control, 
maintaining the voltage, and frequency within limits are implemented by the Automatic Voltage Regulation 
(AVR), and turbine governor. However, these techniques are not suitable for penetration of RES such as PVs 
and ESs. Therefore, research tends to focus on alternative control techniques to mitigate the problems that occur 
with penetration RES on microgrid.

Figure 1.   Convergence curves for testing benchmark functions (a) F3, (b) F10, (c) f23.
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Hierarchical control strategy of microgrid
The hierarchical control architecture comprises multiple layers, each serving distinct functions to ensure the 
stable and efficient operation of microgrids. The hierarchical control’s primary layer is used to make the system 
stable and damped by emulating the physical behaviour of the system which can be realized by adding a virtual 
impedance control loop through droop control. The primary hierarchical layer uses local controllers to achieve 
complex control. Therefore, this layer has a real-time response or is very fast. An enhanced master to slave con-
trol is also proposed for precise load sharing through parallel standalone AC microgrids93. One of the primary 
layer’s local controller possible challenges is the coordination control of the master-to-slave controllers itself.

In contrast, the secondary layer of hierarchical control focuses on compensating for and managing voltage 
and frequency deviations induced at the primary layer. This layer plays a crucial role in ensuring system stabil-
ity by addressing fluctuations in voltage and frequency100. Moreover, it facilitates synchronization for seamless 
connection and disconnection from the main grid, enhancing operational flexibility and effectiveness.

At the apex of the hierarchical control architecture is the tertiary control layer, responsible for overseeing 
energy management and optimizing power flow between the microgrid and the main grid. This layer orches-
trates the efficient utilization of energy resources and facilitates optimal power exchange between the microgrid 
and external sources. By coordinating energy flows and optimizing power dispatch, the tertiary control layer 
maximizes the overall efficiency and reliability of microgrid operation, contributing to enhanced grid resilience 
and sustainability.

Phase locked loop (PLL) for PV inverter control
The ability of a PV system to successfully synchronize its output with the grid ensures effective power transmis-
sion and adherence to grid standards is achieved with a PLL control. PLL is a popular control mechanism used for 
grid synchronization, frequency tracking, phase control, and voltage regulation100. The voltage and the frequency 
of the utility signals is an input for the frequency detector which measures the frequency of the signal, then the 
phase of the grid signal compared with the output phase of the PV system by phase detector. The frequency 
variance is converted into a corresponding voltage signal by the Frequency Voltage Converter (FVC). The phase 
difference between the utility signal and the output of the PV system is converted into a frequency deviation 
signal by the Phase-to-Frequency Converter (PFC). The Low Pass Filter (LPF) removes high frequency noise 
while keeping the desirable low frequency components when filtering the output signals of FVC and PFC. The 
Voltage Controlled Oscillator (VCO) generates an oscillating signal related to the frequency controlled by LPF. 
The grid synchronization unit collects signals from VCO, LPS and sends these signals to inverter control which 
minimizes the deviation between the grid signal and the output of the PV array.

Current regulator with feedforward control for PV inverter control
A current regulator with feedforward compensation can be employed in a microgrid to manage the output cur-
rent of an inverter linked to a renewable energy source such as solar or wind and deliver the electricity to the 
grid. The input of PI controller is the error signals which is the subtraction of the measured direct or quadrature 
current from the reference values as shown in Eqs. (14) and (15). Then this error signal used as an input for PI 
controller for generating control signal Pid, and Piq which is shown in Eqs. (15) and (16).

where Eid, Eiq are the error signals in direct current and quadrature current; Pid, Piq are the control signal of 
pi controller for direct current and quadrature current error signals.

The feedforward compensation signals are Vd_measured and Vq_measured. The output of the feedforward 
compensation is shown in Eqs. (18) and (19). The output from the current regulator with feedforward compen-
sation is shown in Eqs. (20) and (21).

(14)Eid = idref − idmeaured

(15)Eiq = iqref − iqmeaured

(16)Pid = Kp ∗ Eid + Ki ∗
∫
Eid ∗ dt

(17)Piq = Kp ∗ Eiq + Ki ∗
∫

Eiq ∗ dt

(18)
Vdfeedforward = Vdmeasure + idref ∗ Rtot

+iqref ∗ Ltot

(19)
Vqfeedforward = Vqmeasure + iqref ∗ Rtot

−idref ∗ Ltot

(20)
Vdconv = Vdmeasure + id ∗ Rtot − iq ∗ Ltot

+
did
dt ∗

Ltot
Wbase
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Vdfeedforward, Vqfeedforward are the output of feedforward compensation for direct current signal and 
quadrature current signal; Vdconv, Vqconv are the output of the feedforward for direct and quadrature signals; 
Rtot, Ltot,wbase are total resistance, total inductance and base angular frequency.

(21)
Vqconv = Vdmeasure + id ∗ Ltot − iq ∗ Rtot

+
diq
dt ∗

Ltot
Wbase

Table 1.   Comparative statistical analysis for various meta-heuristics during application to benchmark 
functions. Significant values given in bold.

Testing function HYCHOPSO CHO GWO PSO Hybrid-GWO-PSO SSIA-PSO

F1
Standard 1.77E−07 5.89E+03 9.03E+04 5.69E+02 6.18E+04 4.97E+04

Average 2.01E−07 1.28E+04 9.01E+04 2.50E+03 6.18E+04 5.80E+04

F2
Standard 1.32E+01 27.01627 1.16E+09 23.79372 4.01E+03 3.11E+06

Average 2.84E+02 1.82E+12 3.41E+09 4.93E+07 4.01E+03 3.11E+06

F3
Standard 9.34E+03 1.52E+04 1.52E+05 2.27E+04 8.23E+04 6.79E+04

Average 9.47E+03 1.21E+04 1.58E+05 2.77E+04 1.05E+05 7.66E+04

F4
Standard 7.46E+00 72.96569 96.62468 29.37893 98.39876 78.86015

Average 3.8527 74.1908 96.4314 34.0721 98.4008 81.7905

F5
Standard 4.41E+03 1.46E+06 2.34E+08 2.27E+05 3.94E+08 1.68E+08

Average 1.77E+03 3.44E+07 2.34E+08 4.01E+06 3.94E+08 1.76E+08

F6
Standard 7.83E−07 1.20E−04 8.12E+04 185.8541 5.05E+04 4.82E+04

Average 8.64E−07 0.7463 8.10E+04 1.94E+03 5.05E+04 5.45E+04

F7
Standard 1.48E−01 2.90E+00 1.29E+02 1.75E−01 2.03E+02 4.85E+01

Average 1.30E−01 9.13E−01 1.29E+02 1.67E+00 2.03E+02 6.43E+01

F8
Standard − 7.48E+03 − 9.17E+03 − 3.59E+03 − 7.10E+03 − 4.51E+03 − 3542.93

Average − 1.05E+04 − 1.01E+04 − 3.50E+03 − 6.54E+03 − 4.47E+03 − 3.41E+03

F9
Standard 1.06E+02 7.68E+01 4.73E+02 1.08E+02 4.62E+02 3.82E+02

Average 7.45E+02 6.50E+01 4.72E+02 1.49E+02 4.78E+02 3.95E+02

F10
Standard 2.93E−14 14.2E+00 2.00E+01 7.73E+00 2.01E+01 2.02E+01

Average 2.93E−14 7.12E+00 1.99E+01 7.55E+00 2.01E+01 2.02E+01

F11
Standard 5.32E−01 2.04E−01 7.71E+02 5.61E+00 5.52E+02 4.37E+02

Average 5.20E+00 1.61E−01 7.69E+02 2.01E+01 5.52E+02 4.52E+02

F12
Standard 2.25E−03 2.11E−04 1.03E+09 6.01E+00 5.89E+08 2.69E+08

Average 2.10E−03 3.92E−04 1.03E+09 3.65E+06 5.90E+08 2.97E+08

F13
Standard 2.86E+00 6.27E+00 1.70E+09 2.76E+02 1.53E+09 6.76E+08

Average 3.89E−01 7.28E+00 1.70E+09 4.86E+06 1.53E+09 7.15E+08

F14
Standard 9.98E−01 9.98E−01 1.93E+01 9.98E−01 2.02E+00 1.11E+01

Average 9.98E−01 9.98E−01 4.00E+01 2.28E+00 3.52E+00 1.44E+01

F15
Standard 2.59E−03 9.66E−04 2.26E−02 6.92E−04 2.13E−03 1.35E−02

Average 1.90E−03 8.58E−04 4.19E−02 5.80E−04 7.00E−03 1.88E−02

F16
Standard − 1.03E+00 − 1.03E+00 − 1.03E+00 − 1.03E+00 − 1.02E+00 − 7.8E−01

Average − 1.03E+00 − 1.03E+00 − 8.97E−01 − 1.03E+00 − 1.01E+00 1.34E+00

F17
Standard 3.98E−01 3.98E−01 1.02E+00 3.98E−01 3.98E−01 5.67E−01

Average 3.98E−01 3.98E−01 1.15E+00 4.35E−01 4.37E−01 7.10E−01

F18
Standard 3.00E+00 3.00E+00 3.91E+00 9.18E+01 3.21E+00 1.01E+01

Average 3.00E+00 3.00E+00 5.87E+00 9.33E+01 4.33E+00 2.79E+01

F19
Standard 7.48E+00 7.48E+00 7.55E+00 7.55E+01 7.55E+00 2.43E−04

Average 1.57E−07 1.90E−07 1.51E−07 1.51E−07 1.51E−07 4.87E−07

F20
Standard 2.73E−07 6.46E−07 5.53E−08 1.44E−06 5.88E−07 3.21E−05

Average 2.10E−05 1.88E−07 1.24E−07 5.79E−05 7.89E−07 2.87E−04

F21
Standard 1.57E−01 1.62E−01 1.52E−01 0.161823 1.62E−01 2.04E−01

Average 1.57E−01 1.58E−01 1.62E−01 1.63E−01 1.62E−01 2.18E−01

F22
Standard 1.53E−01 1.73E−01 1.62E−01 1.62E−01 1.73E−01 1.98E−01

Average 1.53E−01 1.73E−01 1.63E−01 1.62E−01 1.73E−01 2.05E−01

F23
Standard 1.57E−01 1.82E−01 1.62E−01 1.73E−01 1.62E−01 1.99E−01

Average 1.57E−01 1.82E−01 1.63E−01 0.1734 1.62E−01 2.12E−01
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Droop control with PLL control technique
Droop control is a common control method for microgrid systems. It enables power sharing and voltage/fre-
quency regulation among DERs. In a droop control, each DER adapted its power output based on local measure-
ments and reference values. Equations (22), and (23) show the droop control for frequency and voltage which 
are related to active and reactive power.

The rate of change of frequency (RoCoF) and voltage (RoCoV) are also taken into consideration in the control 
system for ensuring stability as shown in Eqs. (24),  and (25).

where Pout, and Qout are the output active and reactive power; Kpf, and Kif are the control parameter for pi con-
trol within active power for maintain stable frequency with varying power; Kpv, and Kiv are the control parameter 
for pi control within reactive power for maintain stable voltage with varying power; RoCoF, RoCo V are the 
rates of change of frequency and voltage. Kpdf, Kidf, Kpdv, Kidv, Dfref, Dvref are the drop control parameters.

The precise values of the controllers’ gains (Kpdf, Kidf, Kpdv, Kidv, Dfref, Dvref) can provide system stability 
based on the system requirement. For ensuring the synchronization between the microgrid and utility, a PLL 
control technique is used based on the calculation of theta from Eq. (26).

where θout: Output phase angle of the PLL controller; KPpll: Proportional gain of the PLL controller; KIpll: Integral 
gain of the PLL controller; Fpll: Output frequency of the PLL; Fref: Reference frequency.

The output frequency can be calculated from Eq. (27).

where Fout: Output frequency of the system; FPLL: Output frequency of the PLL; Fref: Reference frequency.

Application of HYCHOPSO on hierarchical controlfor multiple microgrid
The proposed HYCHOPSO technique has demonstrated its effectiveness as an optimization tool, so it will be 
utilized to determine the best control parameters that achieve minimum error. Figure 2 illustrates the flowchart 
for the application steps of the proposed HYCHOPSO for tuning the PI controller parameters for the hierarchi-
cal control of multiple microgrids. The simulation model consists of PV plants, Battery Energy Storage System 
(BESS), and distribution system as shown in Fig. 3. Minimization of the controller’s error is the objective func-
tion of the optimization technique. The Integral of Absolute Error (IAE), Integral of Square Error (ISE), integral 
of time absolute error (ITAE), and Integral of Time Square Error (ITSE) are the four types of error benchmark 
objective functions98. The application of ITAE is the most appropriate for comparing the performance of PI 
controller with different optimization system27. The parameters of the test system are summarized in Table 2102. 
The HYCHOPSO for primary and secondary control levels on microgrid is coded using MATLAB/SIMULINK 
environment (Release: 2021a). The HYCHPSO well-tuned controllers are installed with multiple microgrids for 
effective hierarchical control for controlling the frequency and voltage, current regulation and ensuring power-
sharing between multi-sources as well as.

Simulation result and discussion
Microgrids are operated in grid connected mode under 650 W/m2 fixed irradiation for photovoltaic array which 
is connected to BESS and 120 kV grid equivalent. Microgrids are operated in grid connected mode for 1 s 
then converted to islanded mode for 4 s and then connected again to grid through a resynchronization unit. 
The microgrid’s response to different operating scenarios, including grid-following and grid-forming modes, 
is investigated. Figure 4 illustrates a detailed curve analysis on key parameters such as PV active power, BESS 
active and reactive power, active power at the Point of Common Coupling (PCC) and load active power. Figure 5 
shows the output frequency of PLL with optimizing PI control parameters by using new proposed technique 
(HYCHOPSO), and with tuned PI control parameters technique102.

The observed behaviour from curves in Fig. 4 during load changes and system mode transitions provides 
valuable insights into the microgrid’s stability using HYCHPSO-based control strategies. The response of active 
BESS curve illustrates that when the microgrids operate in a grid connected mode the BESS didn’t share with 
the PV active power to cover the load active power. But when the microgrids transition occurs, and the micro-
grids operated in islanded mode, the BESS shares with PV plant active power. This behaviour aligns with load 
variations and highlights the BESS’s ability to provide additional power during peak demand. The BESS reactive 

(22)Pout = Kpf ∗
(
FPLL − Fref

)
+ Kif ∗

∫
(FPLL − Fref )dt

(23)Qout = KpV ∗
(
Vout − Vref

)
+ KiV ∗

∫ (
Vout − Vref

)
dt

(24)
Pout = Pout + Kpdf ∗

(
DFref − RoCoF

)

+Kidf ∗
∫ (

Dfref − RoCoF
)
dt

(25)
Qout = Qout + Kpdf ∗

(
VFref − RoCoV

)

+Kidf ∗
∫ (

DVref − RoCoV
)
dt

(26)
θout = θout + KPppl ∗

(
Fpll − Fref

)

+Kipll ∗
∫ (

Fpll − Fref
)

(27)Fout = FPLL + Fref
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power injected after 1 min when microgrids operate at islanded mode to ensure improving voltage stability and 
indicate the system’s response to grid voltage variations and its ability to provide reactive power.

From Fig. 5, the frequency response curve tuned using the HYCHOPSO algorithm depicts an initial low-
frequency fluctuation of around 49.75 Hz. This is followed by a gradual increase, ultimately reaching 50 Hz with 
a lower level of ripple compared to the reference-tuned curve. The curve’s response demonstrates the capability 
of the HYCHOPSO technique to achieve frequency stabilization through dynamic adjustments of PI param-
eters. The curve associated with the PLL tuned using the traditional technique exhibits initial fluctuations, with 
the frequency oscillating around 50.095 Hz102. Over time, the fluctuations are damped, eventually stabilizing 
at 50 Hz with minimal ripple. The technique’s effectiveness is evident in achieving stable frequency despite the 
initial fluctuations. So, the system controlled with HYCHOPSO make seamless transition from grid connected 
to islanded mode, and smooth resynchronization to the grid.

The output signal from current regulator Vd, Vq by using HYCHOPSO for minimizing the error signal as 
described in mathematical Eqs. (14)–(21). The output voltage of the current regulator with feedforward regula-
tion controlled by pi controller tuned with HYCHOPSO make the output voltage nearly constant during the 
period between islanded from utility till reconnection again more than these curves tuned with the traditional 
technique102. This occurred by reducing the error signals in id, and iq and producing control signals pid, and piq 
as shown in Fig. 6. Figure 7 shows the output of the VDC regulator id controlled with pi controller turned with 
HYCHOPSO versus the traditional technique102. The generation reference voltage is based on the output signals 
from the current regulator, and the output signal id results from VDC voltage regulator.

The analysis for curves in Fig. 6 illustrates that the output curve and testing methodologies showcase the dif-
ferences between the HYCHOPSO and the traditional technique tuning techniques102. These differences reflect 
that each technique is employed to minimize error signals and achieve stable current regulation.

The id output signal curve of the PV VDC regulator tuned using HYCHOPSO demonstrates remarkable 
performance. The transient fluctuations are minimized swiftly, leading to a stable and accurate id output signal 
around the reference value. This indicates that the novel technique has the capability of achieving precise and 
rapid regulation. While the curve outlined using the traditional technique eventually stabilizes, the transient 
behaviour suggests a comparatively slower response102. This may lead to extended regulation settling times and 
potentially less accurate regulation during dynamic condition. The comparative analysis underscores the impact 
of the tuning technique on the PV VDC regulator’s performance. The HYCHOPSO-tuned curve showcases a 
more rapid and accurate regulation process compared to the traditional technique tuned curve102. Figure 8 
illustrates the output of the droop control technique controlled by HYCHOPSO. The droop control operates at 
a slower time scale and is responsible for achieving higher-level objectives such as voltage and frequency regula-
tion, and it is used for confirming resynchronization.

The analysis of frequency curves shown in Fig. 8 illustrates the microgrid frequency during both grid-fol-
lowing and grid-forming modes. Figure 8 shows how droop control maintains frequency stability and tackles 
any deviations during transitions of the microgrid. The phase difference curve depicts the angular displacement 
between the grid and microgrid voltages. The phase angle remains at zero during grid-connected conditions 
and deviates during islanded microgrid operation. The curve illustrates that the droop control maintains voltage 
within acceptable limits during various modes while highlighting any variations during transitions. The curve 
analysis provides insights into how droop control affects. The very short Total Demand Distortion (TDD) was 
calculated according to IEEE519-2014 standardization and its value is 1.1% which is acceptable for 600 V-bus103.

Conclusion
This study introduces a robust hybrid optimization algorithm namely HYCHOPSO that combines CHO and PSO. 
Its performance is evaluated on twenty-three benchmark problems and compared to seven other metaheuristic 
algorithms. The results demonstrate its effectiveness in PI controller tuning and hierarchical control for paralleled 
DGs. The presented study reveals valuable insights into microgrid stability using HYCHOPSO-based control 
strategies. It is observed that BESS efficiently shares power with the PV system during islanded mode, enhancing 
power availability during peak demand. Furthermore, the HYCHOPSO-tuned current regulator demonstrates 
superior performance in maintaining voltage stability compared to the technique, by minimizing error signals 
and producing stable current regulation. Additionally, droop control plays a crucial role in maintaining frequency 
stability during mode transitions and voltage limits during various operational modes. These findings highlight 
the effectiveness of HYCHOPSO in optimizing microgrid control, ensuring stable and reliable operation. The 
research outcomes present compelling evidence supporting the utilization of the HYCHOPSO algorithm for 
microgrid control, substantiated by quantitative data and insightful analyses. HYCHOPSO demonstrates its 
effectiveness in facilitating efficient power sharing between the photovoltaic (PV) system and the Battery Energy 
Storage System (BESS). The resynchronization unit ensures a seamless transition, stabilizing the active load power 
at 780 kW. Notably, the active power at the Point of Common Coupling (PCC) for Load increases to 184 kW 
after 5.055 min, highlighting the algorithm’s ability to respond adeptly to mode transitions. The frequency 
response analysis underscores HYCHOPSO’s precision, with the frequency stabilizing at 50 Hz with minimal 
ripple. Comparative analysis with a reference tuning method underscores HYCHOPSO’s superior performance in 
mode transitions and stable frequency control. Examination of the PV VDC regulator accentuates HYCHOPSO’s 
capability to achieve rapid and accurate regulation, evident in the swift minimization of transient fluctuations 
crucial for stability during dynamic conditions. addressing irradiance variations, HYCHOPSO demonstrates its 
adaptability in regulating the output of the PV array. The system’s response to changing environmental conditions 
underscores its adaptability and responsiveness. Quantitatively, the very short Total Demand Distortion (TDD) 
calculated according to IEEE519-2014 standardization is 1.1%, well within acceptable limits for a 600 V-bus. 
The numerical values, including stable active load power at 780 kW, precise frequency stabilization at 50 Hz, 
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and minimal TDD, reinforce HYCHOPSO’s efficacy in achieving reliable, stable, and efficient microgrid per-
formance. Overall, the research advocates for the widespread adoption of HYCHOPSO for microgrid control, 
offering advanced capabilities in power sharing, frequency stabilization, and dynamic response to environmental 
variations.

Figure 2.   The flowchart of application HYCHOPSO for PI control parameter tuning used with Hierarchical 
control of multiple microgrid.
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Figure 3.   Configuration of simulation model with PV panel, BESS, and utility.

Table 2.   Test System Parameters [102].

Parameters Value

PV system

 PV nominal DC power 1 MW

 PV nominal Voltage 1000 V

 Inverter nominal frequency 50 Hz

 Transformer 1 nominal primary voltage 600 V

 Transformer T1 nominal Secondary voltage 480 V

 PV filter L = 0.34 H, R = 0.00034 Ω, C = 0.01152 F

 PV DC filter L = 1*10–3 H, R = 5*10–3 Ω, C = 200*10–6 F

BESS system

 BESS nominal DC power 1 MW

 BESS nominal voltage 922 V

 BESS voltage limits Vmax = 1050 V, Vmin = 750 V

 Transformer T2 nominal primary voltage 600 V

 Transformer T2 nominal secondary voltage 442 V

 BESS filter L = 0.026H, R = 0.026*10–2 Ω, C = 0.00976 F

 BESS initial state of charge (SoC) 70%

Figure 4.   The active load power, active PV power, Active BESS power, Active power at PCC, and reactive BESS 
power.
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Future work
Subsequent studies may delve into enhancing the HYCHOPSO algorithm, aiming to refine power sharing, fre-
quency stabilization, and dynamic response under various environmental conditions for improved efficiency. 
Exploring the scalability of HYCHOPSO for larger microgrid systems and its adaptability to diverse grid con-
figurations holds promise for practical applications. Additionally, integrating machine learning techniques into 
the optimization process and investigating the fusion of HYCHOPSO with advanced control strategies could 
unlock opportunities for elevating microgrid performance and resilience. Furthermore, studying the challenges 
and limitation of the HYCHOPSO within real time implementation.

Figure 5.   Comparing frequency signal for PLL with HYCHOPSO versus with tunning pi parameters [95].

Figure 6.   The output of current regulator controlled with HYCHOPSO versus the output controlled [102].

Figure 7.   the output id signal from PVVDC regulator tuned with pi control optimized by HYCHOPSO.
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