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Alkyl ammonium hydrogen sulfate 
immobilized on  Fe3O4@SiO2 
nanoparticles: a highly efficient 
catalyst for the multi‑component 
preparation of novel tetrazolo 
[1,5‑a]pyrimidine‑6‑carboxamide 
derivatives
Mehdi Khalaj 1*, Seyed Mahmoud Musavi 1 & Majid Ghashang 2

In this, a three‑component reaction for the preparation of novel tetrazolo[1,5‑a]pyrimidine‑6‑
carboxamide derivatives from N,N′‑(sulfonylbis(1,4‑phenylene))bis(3‑oxobutanamide), aldehydes and 
1H‑tetrazol‑5‑amine is reported. The application of  Fe3O4@SiO2‑(PP)(HSO4)2 (A) as a catalyst afforded 
the desired products (a1–a18) in high yields in DMF as solvent as well as under solvent‑free conditions.

Keywords Tetrazolo[1,5-a]pyrimidine, Fe3O4@SiO2, Heterogeneous solid catalyst, Magnetic separation, 
Multi-component reaction

Fused poly-heterocyclic systems have long been considered essential cores in the synthesis of drugs and natural 
products. The wide potential applications of fused heterocycles; especially in drug discovery, have encouraged 
chemists to synthesize  them1. On the other hand, any compound with a tetrazole unit is a suitable candidate for 
interesting pharmaceutical applications. Many compounds bearing a tetrazole moiety are known as xanthine 
 oxidase2, antitubercular  agents3, antimicrobial  agents4, and antinociceptive active  compounds5.

According to literature reports, fused heterocycles bearing a tetrazole core are potent compounds; especially in the 
field of synthetic drugs, and various methods are developed for the incorporation of tetrazoles into fused heterocycles. 
Some of such effective synthetic routes include C–H carbonylative annulation of N,1-diaryl-1H-tetrazol-5-amines6, 
Ugi 4-component  reaction7, diazotization of 1-benzyloxy-5-aminotetrazoles and 1-phenethyl-5-aminotetrazoles8, 
three-component reaction of 4-chloro-3-formylcoumarins, sodium azide, alkyl/aryl  acetonitriles9, [3 + 2]cycliza-
tion of azidotrimethylsilane with quinoxalin-2(1H)-ones10, and so-on. Additionally, there is a simple procedure 
comprised of the multi-component reaction of active methylene compounds such as acetoacetic esters, diverse 
aldehydes, and 5-amino tetrazole, which is promoted by acid/base catalysts. The targeted products, which are a 
series of tetrazolopyrimidines, are known for their biological potentials as analgesic  materials11, antimicrobial and 
antioxidant  compounds12, anticancer  agents13, and antitumor  materials14. Different reports on the synthesis of tetra-
zolopyrimidines using (1,2,3-triazolium-N-butyl sulfonic acid phosphotungstate)15, HMTA-BAIL@MIL-101(Cr)16, 
 Fe2O3@SiO2-(CH2)3NHC(O)(CH2)2PPh2

17, nano-Fe3O4@SiO2-NH-gallic  acid18, and Mg–Al LDHs cross-linked poly 
triazine-urea-sulfonamide organic–inorganic hybrids have been  published19. (MNCs) are believed to be effective 
alternatives for various toxic liquid acids and expensive solid catalysts. MNCs could be considered green catalysts 
as they can be recovered by a magnet and reused several times. Accordingly, a wide range of catalytic reactions have 
been reported in the literature including multi-component preparation of indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine-
2,4,6(3H)-trione derivatives using nano  Fe2O3@SiO2-SO3H20, synthesis of 3-(9-methyl-9H-carbazol-3-yl)-2-arylthi-
azolidin-4-one derivatives using  NiFe2O4@SiO2 grafted alkyl sulfonic  acid21, preparation of 14-aryl-14H-dibenzo[a,j]
xanthene derivatives using  Fe3O4@SiO2 functionalized sulfonic  acid22, preparation of chromeno[4,3-d]pyrido[1,2-a]
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pyrimidine derivatives using  NiFe2O4@SiO2 grafted di(3-propylsulfonic acid)  nanoparticles23, synthesis of anticancer 
 drugs24, Heck and Suzuki reactions catalyzed by palladium nanoparticles stabilized on the amino acids-functionalized 
 Fe3O4

25, reduction of organic pollutants by  Fe3O4@CMC-Cu nano-catalyst26, and so-on.
Today, the main challenge in the use of catalytic systems is their ability to be recycled or not. In the absence 

of easy and practical recycling of catalysts, various environmental problems are created, which require a high 
cost to solve. Connecting functional groups such as –SO3H, –COOH, –NH, etc. to magnetic cores, in addition to 
creating heterogeneous catalytic systems, increases the possibility of easy and low-cost recycling and minimizes 
catalyst losses and, as a result, environmental problems. In addition, the easy recycling of the catalyst leads to a 
reduction in the production cost of the products. The main challenge in using magnetic particles is the very low 
potential of these particles in connecting to different groups and atoms. To solve this problem, magnetic particles 
are usually coated with polymer or silica layers, and core–shell structures like  Fe3O4@SiO2 are created. The new 
structures have a high binding ability and at the same time increase the stability of the magnetic particles. Thus, 
the development of new magnetically separable catalysts is a great demand for synthetic  chemists27–34.

In this study and the continuation of our  research35–44, we intend to use a magnetic nano-catalyst for the three-
component condensation of N,N′-(sulfonylbis(1,4-phenylene))bis(3-oxobutanamide), 1H-tetrazol-5-amine, and 
aromatic aldehydes for the synthesis of tetrazolo[1,5-a]pyrimidine-6-carboxamide derivatives. To achieve this 
aim, in this work  Fe3O4@SiO2-(PP)(HSO4)2 (A) as an efficient magnetic hybrid nano-catalyst was prepared, 
characterized by FT-IR, XRD, FE-SEM, EDX, TGA-DTA, and VSM techniques, and was used for the catalytic 
synthesis of tetrazolo[1,5-a]pyrimidine-6-carboxamide derivatives.

Materials and methods
The complete procedures, material characterization, and instruments can be found in the supplementary data 
file attached to this paper.

Fe3O4 and  Fe3O4@SiO2 nanoparticles were prepared according to our previous  work22,27

General procedure
Method 1 In a 50 mL balloon equipped with a condenser, N,N’-(sulfonylbis(1,4-phenylene))bis(3-oxobutana-
mide) (1 mmol), 1H-tetrazol-5-amine (2 mmol), and benzaldehyde (2 mmol), and A (0.025g, 0.05 mmol  H+) 
were mixed in DMF (20 mL) and the mixture was mechanically stirred at 100 °C under ultrasonic irradiation 
for the time depicted in Table 2. After the reaction was completed (TLC following), the solvent was evaporated 
under reduced pressure and the solid was recrystallized from ethanol to afford the desired products.

Method 2 a mixture of N,N′-(sulfonylbis(1,4-phenylene))bis(3-oxobutanamide) (1 mmol), 1H-tetrazol-
5-amine (2 mmol), and benzaldehyde ( 2 mmol), and A (0.025g, 0.05 mmol  H+) was heated at 100 °C under 
ultrasonic irradiation for the time depicted in Table 2. After the reaction was completed (TLC following), the 
was cooled and recrystallized from ethanol to afford the desired products.

Scaleup procedure
Different experiments were performed by increasing the scale of starting materials up to 20 × and 30 ×. All experi-
ments proceeded successfully and the desired product was achieved in high yields. (20 ×: method 1: 3.5 h, 85%, 
method 2: 2.9 h, 88%; 30 ×: method 1: 4 h, 87%, method 2: 3 h, 84%).

Selected spectral data
N,N’-(Sulfonylbis(1,4-phenylene))bis(5-methyl-7-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carbox-
amide) (Scheme 1, Product a1): 1H NMR (400 MHz, DMSO-d6): δ = 2.38 (s, 6H,  CH3), 6.66 (s, 2H), 7.25 (t, 
J = 7.8 Hz, 4H), 7.28–33 (m, 6H), 7.38 (d, J = 8.0 Hz, 4H), 7.68 (d, J = 8.0 Hz, 4H), 8.97 (s, 2H), 10.12 (s, 2H) ppm; 
13C NMR (100 MHz, DMSO-d6): δ = 19.7, 60.3, 97.7, 120.3, 124.8, 127.6, 128.1, 128.9, 130.8, 134.1, 135.7, 147.8, 
151.2, 159.7 ppm; Elemental analysis: Found: C, 59.58; H, 4.23; N, 23.07; S, 4.44%;  C36H30N12O4S; requires: C, 
59.50; H, 4.16; N, 23.13; S, 4.41%.

N,N′-(Sulfonylbis(1,4-phenylene))bis(5-methyl-7-(p-tolyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-car-
boxamide) (Scheme 1, Product a2): 1H NMR (400 MHz, DMSO-d6): δ = 2.26 (s, 6H,  CH3), 2.36 (s, 6H,  CH3), 
6.59 (s, 2H), 7.06 (d, J = 7.8 Hz, 4H), 7.17 (d, J = 7.8 Hz, 4H), 7.38 (d, J = 8.0 Hz, 4H), 7.66 (d, J = 8.0 Hz, 4H), 8.78 
(s, 2H), 10.18 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 19.9, 21.1, 59.3, 98.6, 120.7, 124.8, 126.7, 127.9, 
130.8, 134.4, 135.8, 136.9, 148.1, 151.3, 160.3 ppm; Elemental analysis: Found: C, 60.35; H, 4.49; N, 22.28; S, 
4.23%;  C38H34N12O4S; requires: C, 60.47; H, 4.54; N, 22.27; S, 4.25%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(4-methoxyphenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrim-
idine-6-carboxamide) (Scheme 1, Product a3): 1H NMR (400 MHz, DMSO-d6): δ = 2.37 (s, 6H,  CH3), 3.82 (s, 
6H,  OCH3), 6.47 (s, 2H), 6.94 (d, J = 7.8 Hz, 4H), 7.03 (d, J = 7.8 Hz, 4H), 7.38 (d, J = 8.0 Hz, 4H), 7.66 (d, J = 8.0 
Hz, 4H), 8.78 (s, 2H), 10.18 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 19.8, 55.4, 59.0, 98.6, 118.7, 120.1, 
123.4, 124.7, 130.4, 134.2, 135.8, 148.0, 151.4, 155.7, 160.0 ppm; Elemental analysis: Found: C, 58.09; H, 4.44; N, 
21.42; S, 4.16%;  C38H34N12O6S; requires: C, 58.01; H, 4.36; N, 21.36; S, 4.07%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(4-chlorophenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrim-
idine-6-carboxamide) (Scheme 1, Product a4): 1H NMR (400 MHz, DMSO-d6): δ = 2.41 (s, 6H,  CH3), 6.69 (s, 
2H), 7.34–7.38 (m, 8H), 7.43 (d, J = 7.8 Hz, 4H), 7.67 (d, J = 8.2 Hz, 4H), 8.96 (s, 2H), 10.25 (s, 2H) ppm; 13C 
NMR (100 MHz, DMSO-d6): δ = 20.6, 62.3, 98.9, 120.4, 124.7, 128.4, 129.2, 130.6, 134.2, 136.1, 144.3, 148.2, 
151.1, 160.3 ppm; Elemental analysis: Found: C, 54.38; H, 3.61; N, 21.08; S, 3.97%;  C36H28Cl2N12O4S; requires: 
C, 54.34; H, 3.55; N, 21.13; S, 4.03%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(4-bromophenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrim-
idine-6-carboxamide) (Scheme 1, Product a5): 1H NMR (400 MHz, DMSO-d6): δ = 2.42 (s, 6H,  CH3), 6.72 (s, 
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2H), 7.38 (d, J = 8.0 Hz, 4H), 7.41 (d, J = 7.8 Hz, 4H), 7.63 (d, J = 7.8 Hz, 4H), 7.69 (d, J = 8.0 Hz, 4H), 8.91 (s, 
2H), 10.22 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 20.5, 62.1, 98.6, 120.1, 124.6, 128.6, 129.4, 130.7, 
134.8, 136.4, 146.3, 148.4, 151.0, 160.2 ppm; Elemental analysis: Found: C, 48.85; H, 3.17; N, 18.96; S, 3.64%; 
 C36H28Br2N12O4S; requires: C, 48.88; H, 3.19; N, 19.00; S, 3.62%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(5-methyl-7-(4-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-
6-carboxamide) (Scheme 1, Product a6): 1H NMR (400 MHz, DMSO-d6): δ = 2.42 (s, 6H,  CH3), 6.85 (s, 2H), 7.39 
(d, J = 8.3 Hz, 4H), 7.68–72 (m, 8H), 8.28 (d, J = 7.9 Hz, 4H), 8.95 (s, 2H), 10.31 (s, 2H) ppm; 13C NMR (100 MHz, 
DMSO-d6): δ = 20.5, 63.6, 100.6, 120.9, 124.6, 128.7, 129.8, 130.6, 134.8, 136.7, 138.4, 148.5, 151.2, 160.5 ppm; Elemen-
tal analysis: Found: C, 52.88; H, 3.41; N, 24.04; S, 3.85%;  C36H28N14O8S; requires: C, 52.94; H, 3.46; N, 24.01; S, 3.93%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(5-methyl-7-(3-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimi-
dine-6-carboxamide) (Scheme 1, Product a7): 1H NMR (400 MHz, DMSO-d6): δ = 2.42 (s, 6H,  CH3), 6.83 (s, 
2H), 7.32 (t, J = 7.8 Hz, 2H), 7.39 (d, J = 8.2 Hz, 4H), 7.56 (d, J = 7.8 Hz, 2H), 7.70 (d, J = 7.9 Hz, 4H), 8.21 (d, J = 7.9 
Hz, 2H), 8.39 (s, 2H), 8.90 (s, 2H), 10.27 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 20.4, 63.8, 100.1, 120.6, 
124.4, 127.6, 128.1, 129.4, 130.4, 131.2, 134.8, 136.9, 138.2, 148.7, 151.0, 160.8 ppm; Elemental analysis: Found: 
C, 52.99; H, 3.53; N, 24.02; S, 3.81%;  C36H28N14O8S; requires: C, 52.94; H, 3.46; N, 24.01; S, 3.93%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(3-chlorophenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrim-
idine-6-carboxamide) (Scheme 1, Product a8): 1H NMR (400 MHz, DMSO-d6): δ = 2.39 (s, 6H,  CH3), 6.63 (s, 
2H), 7.26 (t, J = 7.8 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 8.2 Hz, 4H), 7.44 (d, J = 7.8 Hz, 2H), 7.49 (s, 2H), 
7.68 (d, J = 7.9 Hz, 4H), 8.92 (s, 2H), 10.17 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 20.1, 61.3, 98.7, 
120.1, 124.5, 127.2, 128.1, 129.2, 129.3, 130.4, 134.5, 136.4, 144.2, 148.0, 151.3, 160.4 ppm; Elemental analysis: 
Found: C, 54.41; H, 3.63; N, 21.06; S, 4.07%;  C36H28Cl2N12O4S; requires: C, 54.34; H, 3.55; N, 21.13; S, 4.03%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(3,4-dichlorophenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]
pyrimidine-6-carboxamide) (Scheme 1, Product a9): 1H NMR (400 MHz, DMSO-d6): δ = 2.39 (s, 6H,  CH3), 
6.66 (s, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.37 (d, J = 8.3 Hz, 4H), 7.45 (d, J = 7.8 Hz, 2H), 7.51 (s, 2H), 7.67 (d, J = 8.3 
Hz, 4H), 8.88 (s, 2H), 10.14 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 20.3, 61.6, 98.6, 120.2, 124.6, 128.7, 
129.3, 130.1, 130.5, 134.7, 136.6, 144.3, 144.8, 148.5, 151.4, 160.6 ppm; Elemental analysis: Found: C, 50.08; H, 
3.09; N, 19.40; S, 3.66%;  C36H26Cl4N12O4S; requires: C, 50.01; H, 3.03; N, 19.44; S, 3.71%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(2,4-dichlorophenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]
pyrimidine-6-carboxamide) (Scheme 1, Product a10): 1H NMR (400 MHz, DMSO-d6): δ = 2.39 (s, 6H,  CH3), 
6.69 (s, 2H), 7.32 (d, J = 7.9 Hz, 2H), 7.37 (d, J = 8.1 Hz, 4H), 7.46 (d, J = 7.9 Hz, 2H), 7.53 (s, 2H), 7.68 (d, J = 8.1 
Hz, 4H), 8.76 (s, 2H), 10.23 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 20.3, 61.9, 100.2, 120.6, 124.7, 
128.4, 129.1, 129.5, 130.1, 134.7, 136.7, 144.1, 144.6, 148.2, 151.3, 160.4 ppm; Elemental analysis: Found: C, 49.98; 
H, 3.07; N, 19.43; S, 3.64%;  C36H26Cl4N12O4S; requires: C, 50.01; H, 3.03; N, 19.44; S, 3.71%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(3,5-dichlorophenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]
pyrimidine-6-carboxamide) (Scheme 1, Product a11): 1H NMR (400 MHz, DMSO-d6): δ = 2.39 (s, 6H,  CH3), 
6.68 (s, 2H), 7.37 (d, J = 8.2 Hz, 4H), 7.47 (s, 4H), 7.50 (s, 2H), 7.68 (d, J = 8.2 Hz, 4H), 8.85 (s, 2H), 10.19 (s, 2H) 
ppm; 13C NMR (100 MHz, DMSO-d6): δ = 20.0, 62.3, 99.2, 120.4, 124.5, 129.3, 130.4, 130.7, 134.7, 136.4, 144.3, 
148.2, 151.1, 160.2 ppm; Elemental analysis: Found: C, 50.06; H, 3.13; N, 19.51; S, 3.78%;  C36H26Cl4N12O4S; 
requires: C, 50.01; H, 3.03; N, 19.44; S, 3.71%.
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Scheme 1.  Preparation of tetrazolo[1,5-a]pyrimidine-6-carboxamide derivatives using  Fe3O4@SiO2-(PP)
(HSO4)2 (A).
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N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(2-chlorophenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrim-
idine-6-carboxamide) (Scheme 1, Product a12): 1H NMR (400 MHz, DMSO-d6): δ = 2.37 (s, 6H,  CH3), 6.61 (s, 
2H), 7.25–7.28 (m, 4H), 7.32 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 8.0 Hz, 4H), 7.43 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 8.0 
Hz, 4H), 8.90 (s, 2H), 10.19 (s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 20.1, 61.7, 98.2, 120.1, 124.4, 127.1, 
127.6, 128.1, 128.4, 128.9, 134.4, 136.5, 145.2, 148.4, 151.3, 160.6 ppm; Elemental analysis: Found: C, 54.38; H, 
3.67; N, 21.17; S, 4.11%;  C36H28Cl2N12O4S; requires: C, 54.34; H, 3.55; N, 21.13; S, 4.03%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(7-(furan-2-yl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-
6-carboxamide) (Scheme 1, Product a13): 1H NMR (400 MHz, DMSO-d6): δ = 2.34 (s, 6H,  CH3), 5.81 (s, 2H), 
6.49 (d, J = 6.8 Hz, 2H), 6.56 (t, J = 6.9 Hz, 2H), 7.38–7.41 (m, 6H), 7.68 (d, J = 8.2 Hz, 4H), 8.55 (s, 2H), 10.09 
(s, 2H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 19.7, 56.7, 97.2, 104.6, 111.3, 119.7, 123.4, 124.5, 127.9, 131.4, 
134.1, 148.1, 151.2, 159.7 ppm; Elemental analysis: Found: C, 54.36; H, 3.65; N, 23.71; S, 4.45%;  C32H26N12O6S; 
requires: C, 54.39; H, 3.71; N, 23.78; S, 4.54%.

N,N’-(Sulfonylbis(1,4-phenylene))bis(5-methyl-7-(2-oxo-2H-chromen-4-yl)-4,7-dihydrotetrazolo[1,5-a]
pyrimidine-6-carboxamide) (Scheme 1, Product a14): 1H NMR (400 MHz, DMSO-d6): δ = 2.39 (s, 6H,  CH3), 
6.45 (s, 2H), 6.81 (s, 2H), 6.98 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.1 Hz, 4H), 7.43 (t, J = 8.2 Hz, 2H), 7.69 (d, J = 8.2 
Hz, 4H), 7.76 (t, J = 8.2 Hz, 2H), 7.92 (d, J = 8.1 Hz, 2H), 8.91 (s, 2H), 10.29 (s, 2H) ppm; 13C NMR (100 MHz, 
DMSO-d6): δ = 20.7, 63.7, 98.1, 102.3, 106.6, 119.7, 124.5, 127.8, 128.6, 129.3, 131.4, 133.7, 134.7, 138.9, 148.2, 
151.2, 155.6, 161.7, 173.8 ppm; Elemental analysis: Found: C, 58.43; H, 3.55; N, 19.49; S, 3.68%;  C42H30N12O8S; 
requires: C, 58.47; H, 3.50; N, 19.48; S, 3.72%.

7-(9-Ethyl-9H-carbazol-2-yl)-N-(4-((4-(7-(9-ethyl-9H-carbazol-3-yl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]
pyrimidine-6-carboxamido)phenyl)sulfonyl)phenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-car-
boxamide (Scheme 1, Product a15): 1H NMR (400 MHz, DMSO-d6): δ = 0.97 (t, J = 6.4 Hz, 6H), 2.37 (s, 6H,  CH3), 
3.49 (q, J = 6.4 Hz, 4H), 6.21 (s, 2H), 6.84 (d, J = 8.0 Hz, 2H), 7.02 (s, 2H), 7.18 (t, J = 8.0 Hz, 2H), 7.24–7.27 (m, 4H), 
7.36–7.40 (m, 6H), 7.67 (d, J = 8.1 Hz, 4H), 7.82 (d, J = 8.1 Hz, 2H), 8.89 (s, 2H), 10.11 (s, 2H) ppm; 13C NMR (100 
MHz, DMSO-d6): δ = 15.3, 20.8, 34.9, 64.7, 98.6, 107.1, 108.6, 111.8, 112.3, 114.9, 115.6, 123.5, 126.7, 127.4, 17.8, 
128.6, 129.3, 134.4, 136.4, 137.1, 137.8, 148.2, 151.4, 162.9 ppm; Elemental analysis: Found: C, 65.07; H, 4.69; N, 
20.45; S, 3.38%;  C52H44N14O4S; requires: C, 64.99; H, 4.61; N, 20.40; S, 3.34%.

5-Methyl-N-(4-((4-(5-methyl-7-(9-methyl-9H-carbazol-2-yl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-
6-carboxamido)phenyl)sulfonyl)phenyl)-7-(9-methyl-9H-carbazol-3-yl)-4,7-dihydrotetrazolo[1,5-a]pyrim-
idine-6-carboxamide (Scheme 1, Product a16): 1H NMR (400 MHz, DMSO-d6): δ = 2.37 (s, 6H,  CH3), 3.43 (s, 
6H), 6.23 (s, 2H), 6.85 (d, J = 8.2 Hz, 2H), 7.04 (s, 2H), 7.18 (t, J = 8.2 Hz, 2H), 7.23–7.27 (m, 4H), 7.35–7.39 
(m, 6H), 7.67 (d, J = 8.0 Hz, 4H), 7.81 (d, J = 8.2 Hz, 2H), 8.96 (s, 2H), 10.18 (s, 2H) ppm; 13C NMR (100 MHz, 
DMSO-d6): δ = 20.6, 34.1, 64.7, 97.9, 107.0, 108.3, 111.2, 112.4, 114.7, 115.1, 123.9, 126.6, 127.4, 17.7, 128.6, 
129.2, 134.4, 136.3, 136.8, 137.4, 148.2, 151.1, 162.2 ppm; Elemental analysis: Found: C, 64.29; H, 4.37; N, 21.06; 
S, 3.38%;  C50H40N14O4S; requires: C, 64.37; H, 4.32; N, 21.02; S, 3.44%.

Results and discussion
Fe3O4@SiO2‑(PP)(HSO4)2 (A): preparation and characterization
First, the preparation of  Fe3O4@SiO2-functionalized propylpiperazine-1,4-diium dihydrogensulfate (A) is reported. 
Catalyst (A) was prepared in three steps, as shown in Scheme 2. First, piperazine was reacted with (3-chloropro-
pyl)trimethoxysilane to form intermediate A1.  Et3N was then used to trap the HCl gas. Next, A1 was reacted with 
 Fe3O4@SiO2 nanoparticles to form A2. The final step was the acidification of (A2) to form  Fe3O4@SiO2-(PP)(HSO4)2 
(A) as the final product. The successful grafting of the organic part to  Fe3O4@SiO2 nanoparticles was investigated 
by FT-IR analysis. The FT-IR spectra of catalyst A,  Fe3O4, intermediate A2, and  Fe3O4@SiO2 nanoparticles, could 
be seen in Fig. 1. The FT-IR spectrum of  Fe3O4 nanoparticles shows distinctive peaks below 600  cm−1 related to 
the Fe–O bonds (stretching vibration). However, in the FT-IR spectrum of  Fe3O4@SiO2 nanoparticles, in addition 
to the peak corresponding to the F-O bond (below 600  cm−1), there are distinctive peaks as Si–O, Si–OH, and 
Si–O–Si at 1622, 1028, 915, and 871  cm−1 (stretching and bending vibrations) respectively. The FT-IR spectrum of 
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Scheme 2.  Preparation of  Fe3O4@SiO2-(PP)(HSO4)2 (A).



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8870  | https://doi.org/10.1038/s41598-024-59096-2

www.nature.com/scientificreports/

intermediate A2 shows distinctive peaks at 3694 (N–H), 2988, 2944 (C–H), 1584 (Si–O), 1373, 1221, 1129, 1037, 
892, 674, and 490 (Fe–O)  cm−1 ascribed to the vibration of C–H, C–C, Si–O-Si, Fe–O and C–N bonds. Compared 
to the FT-IR spectra of  A2, some changes are observed in the spectra of sample A. The peaks located at 3706 and 
 3669cm−1 are related to the N–H vibration bonds. The sulfonic acid groups have a broad peak at 3000–3600  cm−1.

FE-SEM images (Fig. 2) were used to investigate the surface morphology of the as-prepared  Fe3O4@SiO2-
(PP)(HSO4)2 (A). As observed in the images, the sample has a homogeneously spherical morphology with an 
average diameter of less than 100 nm.

To further characterize  Fe3O4@SiO2-(PP)(HSO4)2 (A), the samples were subjected to XRD analysis to deter-
mine the crystalline phases. Figure 3 shows the XRD patterns of  Fe3O4 and (A). The XRD pattern of  Fe3O4 nano-
particles demonstrates prominent peaks at 30.6, 35.4, 44.3, 53.9, 57.4, 64.5, and 75.0 [2Ɵ°], indicating a cubic 
structure for  Fe3O4 [Reference code: 00-001-1111]. The XRD pattern of sample (A) shows a similar pattern with a 

Figure 1.  FT-IR spectra of intermediate A2 and  Fe3O4@SiO2-(PP)(HSO4)2 (A) (Down),  Fe3O4 and  Fe3O4@SiO2 
nanoparticles (Up).

Figure 2.  FE-SEM images of  Fe3O4@SiO2-(PP)(HSO4)2 (A). 
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shoulder located in the 10–30 (2Ɵ°) range, which may be due to the amorphous phase of silica. Furthermore, the 
peaks related to the  Fe3O4 phase have lower intensities due to the integration of organic parts and the  SiO2 phase.

Fe3O4@SiO2‑(PP)(HSO4)2 (A): thermal stability and chemical composition
The chemical composition of  Fe3O4@SiO2-(PP)(HSO4)2 (A) was determined by EDX analysis (Fig. 4). The EDX 
analysis indicates the presence of Fe (32.84%), Si (15.01%), S (6.89%), N (2.21%), C (6.71%), and O (39.04%), 
confirming the integration of the organic part and sulfate group into  Fe3O4@SiO2. The presence of Fe, Si, S, C, 
N, and O elements indicates the formation of  Fe3O4@SiO2-(PP)(HSO4)2 (A).

Next, the thermal behavior of (A) was investigated by TGA-DTA analysis (Fig. 5). The sample is stable up 
to 200 °C and shows four different mass losses due to the removal of the adsorbed water (50–200 °C), removal 
of  SOX gases (200–320 °C), decomposition of the organic part by the removal of  CO2,  H2O, and NOx gases 

Figure 3.  XRD patterns of  Fe3O4, fresh, and recovered  Fe3O4@SiO2-(PP)(HSO4)2 (A) catalyst.

Figure 4.  EDX analysis of  Fe3O4@SiO2-(PP)(HSO4)2 (A). 
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(300–550 °C), and the formation of  SiO2 phase (500–800 °C).45 Accordingly, the ratio of inorganic to organic 
parts is nearly 2/1, which is close to the ratio of the initial substrates.

Determination of active sites
The sample has an acidic nature and thus, the determination of  H+ values is important to investigate the role 
and determine the conditions for the application of the sample as a catalyst. The values of  H+ were determined 
by EDX analysis, TGA method, and barium sulfate  (BaSO4) titration-precipitation test. The obtained results are 
shown in Table 1.

The sulfur values of the sample were determined through the sulfur element percent in the results of EDX 
analysis (S, 6.89%). Similarly, the amount of S atoms could be determined by the values of  SOx removal using 
TGA. The  BaSO4 method involves titration by barium chloride solution. Accordingly, the  H+ capacities of the 
sample were found to be 2.15, 2.71, and 2.03 mmol  H+/g by EDX, TGA, and  BaSO4 tests, respectively.

To assure the desirable performance and facile separation of the nano-catalyst, by a magnetic field, VSM 
analysis was used. Figure 6 shows the plotted results of VSM analysis performed at 25°C within the magnetic field 
of − 10,000 to 10,000 Oe. According to the hysteresis curves shown in Fig. 6, the functionalization of the  Fe3O4 
decreased the VSM characteristic values including saturation magnetization  (Ms), remanence magnetization 
 (Mr), and coercivity field  (Hc) (Table 2). However,  Fe3O4 exhibited a considerable magnetic nature.

In organic–inorganic hybrids, such as those used here, the organic part hurts the saturation magnetization. The 
organic chain has a diamagnetic effect and accordingly, the sample (A) shows lower magnetic saturation than  Fe3O4 
and  Fe3O4@SiO2 samples. In addition, our observations confirm the easy recovery of the catalyst by an external magnet.

Preparation of tetrazolo[1,5‑a]pyrimidine‑6‑carboxamide derivatives
Reaction condition optimization
The prepared sample (A) was then used in the synthesis of tetrazolo[1,5-a]pyrimidine-6-carboxamide deriva-
tives to act as a catalyst. Initially, the reaction of N,N’-(sulfonylbis(1,4-phenylene))bis(3-oxobutanamide), 
1H-tetrazol-5-amine, and benzaldehyde was chosen as a model for the synthesis of 5-methyl-N-(4-((4-(5-me-
thyl-7-phenyl-4,5,6,7-tetrahydrotetrazolo[1,5-a]pyrimidine-6-carboxamido)phenyl)sulfonyl)phenyl)-7-phenyl-
4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxamide (a1). To determine the optimal conditions in the synthesis 
of compound (a1), the model reaction was studied using different solvents, catalyst dosages, and temperatures 
(Table 3). According to the results obtained, the reaction did not proceed at low temperatures. In addition, non-
polar, less polar, and polar solvents with boiling point less than 100°C such as hexane, dichloromethane  (CH2Cl2), 

Figure 5.  TGA-DTA analysis of  Fe3O4@SiO2-(PP)(HSO4)2 (A). 

Table 1.  Determination of  H+ values of  Fe3O4@SiO2-(PP)(HSO4)2 (A).

EDX analysis TGA method BaSO4 test

2.15  mmolg−1 2.71  mmolg−1 2.03  mmolg−1
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chloroform  (CHCl3), and ethyl acetate (EtOAc) were not suitable for the reaction. In aqueous media, no products 
were formed. Upon increasing the reaction temperature up to 100 °C, the reaction yields in tetrahydrofuran 
(THF) and toluene were 56 and 20%, respectively. Notably, the reaction had an acceptable yield in dimethyl 
formamide (DMF, 79%). To obtain better product yields, ultrasonic irradiation (US) was used. A high product 
yield (95%) was obtained under ultrasonic irradiation using DMF solvent. Notably, under solvent-free conditions 
and ultrasonic irradiation, the desired product  (a1) was formed in a high yield (91%) at 100 °C.

Next, the reaction was investigated using different dosages of the catalyst. In the absence of the catalyst, no 
product was formed. The results revealed that 0.5 g of the catalyst gave the highest yield of the product (a1). Thus, 

Figure 6.  VSM analysis of (A),  Fe3O4, and  Fe3O4@SiO2 samples.

Table 2.  Magnetic parameters of  Fe3O4,  Fe3O4@SiO2, and A.

Sample Ms (memu/g) Mr (memu/g) Hc (Oe)

Fe3O4 5.71 0.919 − 71.45

Fe3O4@SiO2 4.19 0.604 − 63.99

A 3.28 0.474 − 61.88

Table 3.  Optimization of the reaction conditions. *Isolated Yield; based on the preparation of a1.

Entry Catalyst Condition Time (h) Yield (%)*

1 0.05g, 0.1 mmol  H+ EtOH, Reflux 3 24

2 0.05g, 0.1 mmol  H+ EtOH, r.t 3 –

3 0.05g, 0.1 mmol  H+ THF, 100 °C 3 56

4 0.05g, 0.1 mmol  H+ Hexane, Reflux 3 –

5 0.05g, 0.1 mmol  H+ CH2Cl2, Reflux 3 –

6 0.05g, 0.1 mmol  H+ CHCl3, Reflux 3 –

7 0.05g, 0.1 mmol  H+ Toluene, Reflux 3 20

8 0.05g, 0.1 mmol  H+ DMF, 100 °C 3 79

9 0.05g, 0.1 mmol  H+ H2O, Reflux 4 –

10 0.05g, 0.1 mmol  H+ EtOAc, Reflux 3 –

11 0.05g, 0.1 mmol  H+ DMF, 100 °C, Ultrasonic Irradiation 3 95

12 0.05g, 0.1 mmol  H+ Solvent-free, 100 °C, Ultrasonic Irradiation 2 91

13 0.01g, 0.02 mmol  H+ DMF, 100 °C, Ultrasonic Irradiation 4 47

14 0.025g, 0.05 mmol  H+ DMF, 100 °C, Ultrasonic Irradiation 3 92

15 0.075g, 0.15 mmol  H+ DMF, 100 °C, Ultrasonic Irradiation 3 91

16 0.1g, 0.2 mmol  H+ DMF, 100 °C, Ultrasonic Irradiation 3 89

17 – DMF, 100 °C, Ultrasonic Irradiation 5 –
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DMF solvent and solvent-free conditions were selected as the two best media for the reaction while the suitable 
catalyst dosage was determined as 0.05 g, as it provided the highest yields at reasonable reaction times (Table 3).

Under the optimized conditions, the scope of the reaction was expanded using various aromatic and aliphatic 
aldehydes. The results are shown in Table 3. Accordingly, when aliphatic aldehydes were used, no product was 
formed. However, different aromatic aldehydes were found to be appropriate substrates in the reaction. The 
electronic effects of the substituents on the aromatic ring in the aromatic aldehydes are expected to affect the 
reaction rate. Based on the results obtained, electron-donating substituents increased the reaction rate, contrary 
to electron-withdrawing groups (Table 4).

Scheme 3 shows a plausible proposed reaction mechanism for the synthesis of compounds a1–a18. As sug-
gested, the Brønsted acid catalyst activates the carbonyl groups. The reaction starts with the reaction of  NH2 
group with the activated carbonyl groups to form an enamine active compound (Intermediate I1). The next step 
is the reaction of I1 with the activated aldehyde to form I2. Intermediate I2 undergoes cyclization and enamine 
formation to yield the final products.

Aldehyde Product Method 1: Time (h)/Yield (%)* Method 2: Time (h)/Yield (%)* M.p. (°C)

a1 3/95 2/91 289–291

a2 1.5/86 1.5/89 276–278

a3 1.5/85 1.5/93 279–281

a4 4/95 3/96 ˃300

a5 4/96 3/90 ˃300

a6 5/89 4/85 ˃300

a7 5/92 4/96 ˃300

a8 4/95 3.5/94 296–298

a9 2.5/96 2/93 ˃300

a10 2/94 1.5/92 ˃300

Continued
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Finally, an external magnet could be used to recover the catalyst, which was then washed with ethanol, dried, 
and used again. The preparation of (a1) was chosen for the recovery test. The recovery experiments showed 
acceptable results after 10 catalytic runs (Fig. 7). The XRD pattern of the recovered catalyst confirmed the stability 
of the catalyst during the reaction (Fig. 1). In addition, after each run, the recovered catalyst was tested using titra-
tion by barium chloride solution. The results indicated good catalyst stability and no clear leaching was observed.

Conclusion
In this work, tetrazolo[1,5-a]pyrimidine-6-carboxamide derivatives were prepared using  Fe3O4@SiO2-(PP)
(HSO4)2 (A) as a catalyst. The TGA-DTA analysis indicated the stability of this organic–inorganic hybrid up 
to 200 °C. In addition, the ratio of the inorganic to organic parts was 2/1, which was close to that of the initial 
substrates. Using the barium chloride titration test, the  H+ capacity of the sample was determined to be 2.03 
mmol  H+/g. The XRD pattern of the fresh and recovered samples (A) confirmed the stability of the catalyst. The 
results showed promising potential and easy recovery of magnetic nano-catalysts. The obtaining of reasonably 
high yields in short reaction times and readily available starting materials make this protocol potentially useful 
in organic synthesis.

Table 4.  Preparation of (a1–a18).  *Isolated Yields; Method 1: DMF, 100 °C, Ultrasonic Irradiation; Method 2: 
Solvent-free, 100 °C, Ultrasonic Irradiation.

Aldehyde Product Method 1: Time (h)/Yield (%)* Method 2: Time (h)/Yield (%)* M.p. (°C)

a11 2/97 1.5/95 ˃300

a12 4/95 3/91 293–295

a13 2.5/82 2/85 266–268

a14 3/93 2.5/89 ˃300

a15 3/94 2.592 ˃300

a16 3/95 2.5/98 ˃300

a17 2.5/– 2/– –

a18 3/– 2/– –
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Data availability
The spectral data, which could support our findings, are available as a supplementary material attached to this 
article.
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