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Analyzing the dynamical
sensitivity and soliton solutions
of time-fractional Schrodinger
model with Beta derivative

Muhammad Nadeem?, Fenglian Liu?*‘ & Yahya Alsayaad3*

In physical domains, Beta derivatives are necessary to comprehend wave propagation across various
nonlinear models. In this research work, the modified Sardar sub-equation approach is employed to
find the soliton solutions of (1+1)-dimensional time-fractional coupled nonlinear Schrédinger model
with Beta fractional derivative. These models are fundamental in real-world applications such as
control systems, processing of signals, and fiber optic networks. By using this strategy, we are able to
obtain various unique optical solutions, including combo, dark, bright, periodic, singular, and rational
wave solutions. In addition, We address the sensitivity analysis of the proposed model to investigate
the truth that it is extremely sensitive. These studies are novel and have not been performed before
in relation to the nonlinear dynamic features of these solutions. We show these behaviors in 2-D,
contour 3-D structures across the associated physical characteristics. Our results demonstrate that
the proposed approach offers useful results for producing solutions of nonlinear fractional models in
application of mathematics and wave propagation in fiber optics.

Keywords Nonlinear time-fractional coupled Schrédinger model, Modified Sardar sub-equation approach,
Beta derivative, Soliton solutions, Sensitivity analysis

Fractional calculus (FC) is a field of mathematics that focuses on non-integer order derivatives and integrals. In
recent years, various applications of FC have increased in the fields of physics, engineering, and applied math-
ematics. Numerous scholars have explored new theories and applications, like multiplicative fractional calculus
and fuzzy logic to develop the models for real-world problems®?. Novel kinds of inequalities are presented by
FC and its applications with non-conformable fractional integrals. Numerous concepts have reported, includ-
ing Riemann-Liouville, Atangana-Baleanu, Caputo-Fabrizio and conformable derivatives®~. These fractional
derivatives have applications in a wide range of scientific and technical disciplines. Wave motion in dispersive
objects, viscoelastic material comprehension, fractal feature processing in signals, modeling biological systems
with anomalous diffusion, and electromagnetic system understanding are some of its uses. They serve as funda-
mental concepts in the area of fractional calculus as well. When combined, these fractional derivatives provide
an adaptable framework for explaining and understanding complex real-world phenomena. This versatility has
led to advancements in several branches of signal processing, physics, biology, and materials research. Their
significance originates from their capacity to describe systems with fractional-order effects, rendering them
valuable tools for comprehending and addressing an extensive array of scientific and technical problems®”.

A class of mathematical models known as nonlinear partial differential equations (NLPDEs) is needed to
explain a broad range of natural events in quantum physics and wave propagation®’. Beyond their mathemati-
cal elegance, NLPDEs have theoretical relevance because they provide a solid framework for modeling complex
framework, mechanisms, and transfers in daily life challenges. Natural processes frequently exhibit nonlinear
behavior; examples include soliton production, shock waves, and pattern self-organization. Because of their
unpredictability, these occurrences call for intricate mathematical models that can depict the intricate relation-
ships between numerous variables'®!!.
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A soliton is a specific type of solitary wave that acts as a particle and keeps its individuality if it interacts with
another soliton. It is necessary to comprehend these individual waves to comprehend the dynamics of waves.
Typically, a single soliton solution is referred to as a “solitary wave”. Solitons offer stable solutions for NLPDEs
if the impacts of scattering and nonlinearity are completely balanced!?. The concept of solitons has grown to
be an exciting field of study and played a major impact on the recent developments in the telecom sector. Fibre
optics has demonstrated the effectiveness of solitons in transmitting digital messages over vast distances without
dispersing'*!*. Various analytical and numerical techniques have been used for the solutions of nonlinear mod-

els, such as; the khater technique'®, the unified technique'é, the % technique'’, the Hirota bilinear technique'?,

the extended tanh-function scheme', the F-expansion technique?, the modified simple equation method?*, the
homotopy perturbation technique®, the modified variational iteration technique®, the sine-Gordon expansion
technique?* and the direct algebraic technique® and so on?*-%%.

In this paper, we examine innovative soliton solutions and conduct sensitivity analysis to validate the sen-
sitivity of the proposed model. In this work, the use of Beta derivatives to time-fractional coupled nonlinear
Schrodinger (FCNLS) model is innovative since it allows for an additional complete analysis of solution spaces
and discovers the previous unknown solution of frameworks. This study is designed as: Section “Beta frac-
tional derivative”, discussed an overview of Beta fractional derivative and a physical significance of time FCNLS
model. Section “Methodology of the MSSE approach” explains the idea of modified Sardar sub-equation (MSSE)
approach. Section “Mathematical analysis” describes the extraction of soliton solutions. In Section “Dynamical
system’, we discuss the features of dynamical system of the proposed model with sensitivity analysis. The results
and discussions are presented in Section “Results and discussions” The conclusion remarks of this study are
discussed in Section “Conclusion remarks”.

Beta fractional derivative

Recently, the concept of the Beta fractional derivative (FD) has been proposed by Atangana et al®., indicating
an important development in study of mathematical derivatives. In particular, Beta FD offer greater capability
in accurately predicting real-time phenomena compared to standard derivative. The main advantage of FD is
its non-locality where it shows the impact of distant elements on the behavior of a system and adds fundamen-
tal value. Numerous fields, including dielectric polarization, viscoelasticity, electrical chemistry, processing of
images, and magnetic systems, make extensive use of beta FD. Most of them appear in physics and engineering
such as robotics, heat and mass transfer, biotechnology, and wave theory.

129

Definition 2.1 The Beta FD of g with order ¢ € (0, 1]is expressed as

gt +yt+ 5 —g)

. (0, R. 1
> g : (0,00) — (1)

§D7g(t) = lim
y—0
In the open interval (0, ¢), ¢ > 0, gis ¢-differentiable, and lim;_, o+ (g@f g(®)). Then
§07g(0) = lim (Dfg(1). @
Theorem 2.1 Let g is continuous at ty, when g : (0,00) — R is g-differentiable forty > 0, wherec € (0,1].

Theorem 2.2 If0 < ¢ < 1,4, beR, g, u, c-differentiable, at a pointt > 0. Then

1. 99 (nig+vow) = v 205 (g) + v2 295 (w),v, 1 € R.
2. (?’}Df(t,l/) = 0, in which{ is constant.
3. §Df (@u) = g¢Df () + ugDf ().
Qx5 _ ., QxS
4. 8@?(%)2 uogt(g)uzgogr(“)'
5. Assuming y = (t—|—%§))§_1f,f — 0 when y — 0, ff@f(g(t)):(t—{—ﬁ)g_1 %, with
o= % (t+ ﬁ)g),as 1y is constant,

t dg(t
6. (OF(ED) =1%0.

Mathematical model
The time FCNLS model in (1+1) dimension containing a fractional derivation (FD) of beta is as follows*

2

D0V =DV + 1_a2|V|2v+V(R—u), (3)
_®§ v 2
osr = 20D L oo, (4)
1+«
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-D7 (V1

DU =
14+«

+ 1A —-a)DU. (5)
In Beta FD, Df and ’D,Zf are real valued functions and U/ and R are complex functions. Nonlinear behavior in
time FCNLS model causes the effects which extend over a simple linear composition of its parameter aspects.
This nonlinearity enables exciting phenomena such as the generation of solitons, self-destructive, and change
of energy among connected components. The study of the (1+1)-dimensional time FCNLS model with beta
derivatives has gained increasing significance due to its numerous applications in various domains. Travelling
waves in fractal media have been described via analytical solutions for a class of FCNLS models. The FCNLS
model has been transformed into ordinary differential equations using new conformable fractional derivative
techniques, which has made it easier to derive precise traveling wave solutions. Fractional dual-function and
fractional Riccati methods have been used to find vector photonic soliton and periodic solutions for the FCNLS
model. Fractional space-time derivatives have been the focus of investigations on the FCNLS model and new
explosives®"?2. Our paper proposes novel techniques to handle this complex problem using the MSSE approach
and obtain the optical soliton solutions, time series, and sensitivity analysis®. This study has tremendous implica-
tions for engineering and scientific research since it provides insights into complex system behaviors and aids in
the development of appropriate control systems. This research offer new avenues for research, especially because
they have never been applied to the time FCNLS model. Our work follows a more general strategy, spanning a
wide range of optical solutions and concentrating on specific solution types.

Methodology of the MSSE approach

The modified Sardar sub-equation (MSSE) approach expands on the original Sardar sub-equation approach by
incorporating additional variables and scenarios into the ansatz for solving nonlinear problems. This approach
has been successfully applied to solve NLPDEs in many different areas of mathematics and science. The general
form of NLPDEs is

WO, DLV, DV, DV, DEV,..) =0. (6)
Step-i: Utilizing the complex wave transformation into Eq. (4), we obtain

Vix,t) = Mme’,  Reut) =80,  UxH =N

S S
b(t+%> l(t—i—%) 7)
SN LG VA WL C VA
S S

Thus, the nonlinear ordinary differential equations (NLODEs) is achieved as

oM, M, M',.) =0 (8)
Step 2. According to the approach, the general solution of Eq. (8) is described in the following form
] .
M) =Fo+> FLwm),  F#o, 9)
j=1
where M = M(n) assures
L' m? = L + 01 Lm)* + w, (10)

where wg # 1, w; and w; # 0 are integers. Compute the constants Fo and ). Moreover, F; is invertible, thus
it can be zero. The values of ] can be obtained by using balance principle. The cases to Eq. (10) are as follows.
Case-1:
o Ifwy=0, w; >0and w, # 0, then
w
Li(n) = 1/—;;sech(«/w1(7l+f))~ (11)
o Ifwy=0, w; > 0and w; # 0, then
w1
Lo(n) = 4/ ;CSCh(\/U)l(U +1)). (12)
2

Case-2:

e Tor constants k; and ky, let wg = 0, w; > 0and w, = +4k;ky, then

4k, Jo1

L3(n) = - . 13
(4k% — a)z) sinh (, fwo1(n + 1:)) + (4k% — u)z) cosh ( Jw1(n + r)) (13)
Case-3:
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2
e Tor constants Ej and Ey, let wy = :)le,a)l < 0and wy > 0, then

La(n) = 1/—ﬂtanh( —ﬂ(nﬂ)). (14)
20)2 2

2
e Tor constants Ej and Ey, let wy = 4%2,0)1 < 0and wy > 0, then

Ls(n) = 1/—&coth( —g(n—kr)). (15)
20)2 2

2
e For constants Ey and Ey, let wg = %2, w1 < 0and wy > 0, then

Lo = || =5 (tanh ( ~Ztn+ r)) + isech (v =2m1 (1 + z))). (16)
2

2
® Tor constants E; and E,, let wy = 4%2,(01 < 0and wy > 0, then

£7(n)=1/—8w—w12<tanh( —%(n+r))+coth< —%(n—i—r))). 17)

2
® For constants Ey and E», let wg = %2

—z%(@—el cosh (JTwMHJ))) (18)

, w1 < 0and wy > 0, then

Ls(n) = Ey sinh (V=201 (7 + ¥)) + E ,
\/%msh (V=201(n + 1)) (19)
Loln) = —— (V=201 +0) +i
Case-4:

o Letwy=0,w; < 0and w; # 0, then

Lio(n) = ,/—Z—; sec (v=w1(n + 1)). (20)

e Letwy =0, w; < 0andw, # 0, then

L) = ,/—Z—; csc (V=a1(7+ 7). 1)

Case-5:
2
o Letwy = 4%2 w1 > 0and @, > 0and E? — E3 > 0, then
w w
L) = /—— tan <,/—1(n+r)). (22)
2(()2 2
2
e Letwy= %2, w1 > 0and @, > 0and E? — E2 > 0, then
13 w
Lis(n) = —y[|—>—cot [ /=1 +71) ). (23)
26()2 2
2
o Letwy= é%z,wl > 0and w; > 0and E? — E? > 0, then
w1
Li4(n) = —, /—ﬁ (tan (V2w1(n + 1)) — sec (V2w1(n + 1))). (24)
2
2
o letwy= 4%2, w; > 0and w; > 0and E% —E% > 0, then

Lis(n) = ,/—%(tan (,/%(n + r)) — cot <,/%<n + r)>>. (25)

2

o letwy= %2, w; > 0and w; > 0and E% —E% > 0, then
_%(,/E%—E%—Sl cos («/Zwl(n—l—r))) 6
Lis(n) = .

E; + Sy sin (v201(n + 1))
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= s (V2or1(n + 1)) o)

Li7(m) = sin (\/27(77 + 1')) -1

Case-6:

o Letwy =0, w; > 0,then

4wy eV/Ornt)
Lig(n) = ENCITT S (28)
o letwy=0, w; > 0,then
A e/ OO
Li9(n) = | 4oy gD (29)
Case-7:
® Letwy =0, w; =0and w; > 0, then
La0(n) .
20N) = —(——- 30
a1+ 1) (30)
o Letwy =0, w; = 0andw, > 0, then
i
L) = ——. (31)

Jor(n+ 1)

Step 3. Put Eq. (9) into Eq. (8) and by using Eq. (10), the polynomial can be obtained as a power of L(1). Step
4. Assemble the similar parameters of £(1) and equating them to zero, we can obtain the algebraic system for
Fo, Fj (j =1,2,3,...). Step 5. Finally, apply the Mathematica Software to the algebraic systems of equations to
obtain the coefficients values. Putting these parameter values to Eq. (8), we get the solution of Egs. (3, 4 and 5).
The MSSE approach is a helpful tool for obtaining the precise results to NLPDEs, such as the (1+1)-dimensional
FCNLS model. This method requires assuming an ansatz for results in terms of additional variables and a unique
function, and then solving an algebraic system of equations to obtain the unknown constants.

Mathematical analysis

This part concentrates on implementing our suggested approach to validate its effectiveness, performance, and
reliability. Consequently, we obtain a soliton solution for the time-dimensional (1+1) FCNLS model. The Eq.
(7) containing the complex transformation is employed. The Eq. (3) is now utilized to convert Egs. (3), (4) and
(5) into NLODEs. Consequently, the real and imaginary parts of NLODE:s yields

" cc—1 3 2 5 N-=S8 )
M (n)+(a(b_a))/\/l(n) (7(1(17—(1)(1—042)/\/1 (n)+( b= M) =0, (32)
and
la+ bc+ 2ac =0, (33)
solve Eq. (33), we get
c—1 ¢
b—a a (34)
putting Eq. (34), into Eq. (32), we get
" ¢ 2 3 N-§ —
M () + < )M(ﬂ) (m)M () + < = ))M(ﬂ) 0. (35)

Inserting Eq. (7) into Egs. (4 and 5), and then integrate, we get the following Egs.

B —bM?
1+t -(1+a)a)’

bM?
N = I-—a)yb—(1-wa) (37)

Inserting Egs. (36 and 37), into Eq. (32), acquire an ODE
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2 2
" s N 3 —
M (n)+<a2)M(n) (a(b—a)(l—aZ)M () =0. (38)
Employing balance principle in Eq. (38), we obtain j = 1. The precise results shown in Eq. (9) with ] = 1is
M) = F1L(n) + Fo. (39)

On comparing the similar powers of L(n))i with j = 0,1,2,3,.... We create a system of algebraic equations by
combining Eq. (39) with Eq. (38), as well as Eq. (10). After evaluation, we obtain the following results presented
below.

Family-1:
wy (—(b2w; + 2ibc /w1 + (a? — 1)c? ;
Fo— 0, ]—'1—>—\/2( (B2 l ) )), a2 (40)
Jor Jor

It has been established that the aforementioned outcomes are satisfactory to Family 1.

\ /—Z’)—;\/a)z(bz(—wl) — 2ibcJowr — (a2 — l)cz)eigsech<ﬁ<w — % + \IJ>>
Jor

Vir(x,t) = —

e Ifwy=0, w; >0andw, # 0,we get

i| ex+
- w—l\/a)z (b?(—w1)—2ibc, /w1 —(a?—1)c?)e (

)

b Jar
Rui(x, 1) = ’
11(x, 1) A+a)b—(1+wa)
(42)
_ Jor
) = ’
Uy (x,t) 1—a)b—(1—a)a)
(43)
— - i0 b(hL%g))g icx
\/wji\/wz(w(—wl) = 2ibeJor — (@ —1)e?)eesch| Jor| ——= — W
Vip(x, t) =— Jor )
1
(44)
1) :
_ . i(cx+l(t+ 5‘(§)) ) h(Hrﬁ)g icx
Vo FE oD 2 Jor— @1 C“h(ﬁ‘ <f_ v w))
“b| - Jor
) = ’
Ria(x1) (1+a)(b— (1+a)a)
(45)
1) 2
,‘(cwI(H ;@)) ) b(t+¢)§
VP on -2 Jor— @ D)e CSCh(“E (ﬁ_ﬁww
b| — Jor
) = ’
Ui (x,t) Q—a)b—(1—-a)a)
(46)
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o Ifwy =0, w; > 0and w, = 4K K3, we get
4k1+\/ws (bz(—wl) — 2ibc/o; — (a{2 — l)cz)eie )
Visz(x,t) =— \/ b(t+ ; )( x (4ky \/a)z (bz(—wl) — ZibCJaT] — (32)616)
(4k% - wz) cosh <Ja71<?9 - % + \IJ>>
1
bl ) ’
+(4k? — @) sinh (ﬂ(W -y w))
(47)
2
bl - 4k1/\/wz(b2(7(4)1)*21%(\/&717(0(2*1)62)8"9
1 \¢ 1 \%
(4kf—wz) cosh (JE(ib(H l“c(g)) - J%+W>)+(4kf—wz) sinh (JE(LH g(g)) - \;%+\IJ)>
R 1) = ,
13(x, 1) A+a)b—(1+a)a)
(48)
2
i(cx+l(t+®)§)
bl = 4k1\/a)z(b2(7w1)72ibc\/a717(01271)52)12
L \S Y
(4k%7w2) cosh <\/w71<7b< * ];(g)) 7%+\I’>>+(4k%7w2) sinh (m<7h(t+ :_(9) 7%+\I/>)
U 1) = ,
L3(1) 1—a)b—(1—wa)
(49)
2
o Ifwy= 4%2, w1 < 0and w, > 0, we get
()
\ /—%\/wz (bz(—wl) — 2ibc /w1 — (oz2 — 1)62)6’9 tanh 7
Via(x,t) = — ,
’ V2o
(50)
2
,/7%\/wz(bz(fa)l)72ichc717(a271)c2)e tanh 7
—bf - V2 Jan
R V1) = >
10 1+a0)(b— (1 +a)a)
(51)
2
i([ﬁz(w@)g) W(w’%w)
,/7%\/wz(b2(7w1)72ibc\/a717(azfl)cz)e tanh 7
bl - NNz
Ui 4(x,t) = ,
L4l 1) I-a)b-(1-wa
(52)
S
4 m(bw?) s +w>
\ /—Z}’—;\/u)z (bz(—a)l) — 2ibc /w1 — (oe2 - l)cz)e’(’ coth 7
Vis(x,t) = — ,
’ V2 /o1
(53)
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2
1 \S b(i+15)°
t X&) i
T <
B I e
coth

[+
il ex+
N Y (e e e N i (i

2
—b| - NNz
1) = )
Ris(x,1) 1+a)(b— 1+ a)a)
(54)
2
i(cx+l(t+®)g) —w] %l7 ’fjfl +\Il)
,/7%\/a)z(bz(fwl)72ibc\/w717(a271)c2)e coth 7
bl - NNz
Ui 5(x,t) = ,
st (1-a)(b—(1-aa)
(55)
D) (bzcz)eig tanh | v/2/—w1 7b(t+%§))g — x4y
@ \/ 2 1 < Jor
Vig(x,t) = — NN
1
(H— ) (56)
+isech (\/»«/—wl < r(g) — % + \IJ>>
+ ,
NON
S I3 2
\/%We’g <tanh (ﬂ(*b(ﬁﬁ) —«}%+W)>+isech<«/§\/—7m<7b(t+jﬁ) —&%+W>))
ad i NG
Rasnf) = (I+a)b—(1+aa) :
(57)
1 \$ 2
/— Z§ /wz(bzcz e“’<tanh (\/’ﬁ( ( l“(;)) 7«}%+\p>>+lsech<«[ﬁ<w,ﬁ%+w>>>
Vaor
Une(x,1) = (1—a)(b—(1-a)a) ’
(58)
i0 (” 1"(5)); icx
e wz(bzcz) 9 [ tanh | v/24/—=01 - M+‘~P
Vi7(x,t) = — NN
1
b(t+#)g 59)
+icoth (ﬁ«/—wl <;(§) — \’/Cwﬁl + W))
+ )
V2 /o1
ml(h(w@)cw) m<b<t+@)<7%+¢) 2
w (02— (a?—1)c2)e” | i coth W3 ~+tanh 75
bl — i
Riz(x,t) = Tt _(dron ,
(60)
Scientific Reports|  (2024) 14:8301 | https://doi.org/10.1038/s41598-024-58796-z nature portfolio



www.nature.com/scientificreports/

\/% w2 (2 —(a?~1)2)e” | icoth 22 l Hanh w2 :
bl — 2v2 /o1
Uz (x,t) = 1—a)b—(1—wa) )
(61)
(H‘l( ))g 1
8o (B one)e? /B + B — B cosh | Vav=an | —f - 5 4w
Vit t) = — o) ’
ff<E2+E151nh <«[«/TCU1( r(g) _&%4.@)))
(62)
. 2
\/Tlez(bz( w1)—2ibcJwr—(a?— 1)62)8'0 (\/E2+Ez Ej cosh (fv—w (@_}%4—\?)))
N <
ﬁ\/aT1<E2+E1 sinh (ﬁJTM(@_%W)))
Rigx 1) = ETSCEET ’
(63)
. 2
\/j\/wz(bz( ) —2ibeJor — (a2~ l)cz)e’9<\/E2+Ez —E) cosh <fﬁ m,%w)))
b _ <
ﬁm<Ez+El sinh (ﬁ«/*wl (@*}%*‘0))
U g(x, 1) = 1-a)b—(1—a)a) ,
(64)
<
\/E\/wz (b2(—aw1) — 2ibe far — (a2 —1)c?)e cosh <fﬁ< (t+1(§)) _%+w>>
Viglx,t) = —

fﬁ(smh <[ﬁ< (+r(g))§ ) %+w>> N >

1S
i(cx+l<’Jr g(g))
,/7%\/wz(bz(fwl)72ihc\/u717(01271)£2)e
- ot rig)”
ﬂ@ sinh | V2/=o1 +7%+W +i

Riolx,t) = (1+a)b—(1+a)a) ’

s
)cosh (ﬂ«/fwl<@*«}%+‘l/>)
—b

(i+15)°
5

i| cx+ b 1\ )
\ /7Z—;\/wz(hz(fwl)72ibc\/a717(a271)52)e ( ) cosh (\/Z/fwl (@7ﬂ+w

L)
ﬁﬂ(sﬁnh <ﬁm<7b<+r§(g)) 7%+W>)+i>

Uro(x,t) = (1—-a)b—(1—a)a) )

o Ifwy=0, w; <0andw; # 0,we get

W= ﬁ; \/(1)2 b2 (—wy) — 2ibeJwr — ( ) )e sec («/wl <h(t+£(lo) - \I/CaxT + W))
Jor

Vio(x,t) = —
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z(chrI(Hﬁ)g) 1 S ’
«/7%\/wg(b2(7w1)72ibc\/w717(a271)52)e ° sec <m(@7%+w>>
A o
Riw@n) = I+a)b—(1+wa) ’
(69)
2
x( +7I(t+T1§)>g> b 1 9
1/—%«/u)z(bz(—wl)—2ibc\/a)71—(()(z—l)cz)e sec \/—7@1< <r+ r(<)> le -HIJ))
_ Tor
Uit 1) = (1 —a)b—(1—aa) :
(70)
0 h(t+%§))g .
\ /—g—;\/a)z(bz(—wl) — 2ibcJwr — (oz2 - 1)62)61 esc | V—or| = - \'/Cale + ¥
Vin(x,t) =— Jor >
(71)
2
z( +<+l‘g<%> ) b(z+¥)§
\ /—%\/wz (b*(—w1)—2ibc Jor —(a?—1)c?)e csc <\/—7a)1<%— J%-&—ll/))
Y N
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Dynamical system

A system of dynamic is applied to describe the temporal dependency of a location of the point within its con-
necting area®. It is a collection of criteria that outline how parameters shift through time, the sensitivity of the
concerning model, and how a system evolves. Dynamic systems are widely used in many fields, such as math-
ematics, biological sciences, chemistry, science and engineering, and financial studies. Population dynamics,
chemical reactions, engineering problems, and the Schrodinger model are among the applications for these
systems. Complex instances that predict the effects of changes in a range of sectors necessitate a deep under-
standing of dynamic applications and structures. The Eq. (38) can be turned into a dynamical framework after
utilizing a particular modification. Now, consider

M@ =P, M'm=P, (104)
After applying the aforementioned transformation to Eq. (104), we obtained the dynamical system that follows
P =B,

/ 2 2 (105)
P =B, = _;M(ﬂ) + (m)M3(n)-

We can obtain the sensitivity analysis of the concerning framework utilizing the dynamical system of Eq. (105)
by applying varied time-variant and initial conditions.

Sensitivity analysis

Sensitivity analysis is a mathematical approach to assessing the effect of alternations in a framework of variables
on its output. It is crucial to understand the capacity and reliability of dynamic structures. This analysis is com-
monly applied to investigate the changes in variables or configuration that affect the performance of systems in
several types of disciplines, including energy, ecological structures, and dynamical framework?®. The graphical
representations of sensitivity analysis under appropriate parameter values and initial conditions are shown in
Figs. (14-17).
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Results and discussions

In this section, we compare some of our most current research findings with previous published study. Shakeel
et al.*” employed the exponential rational approach to explore the results of time FCNLS model involving Beta
derivative. In our present work, we consider (1+1)-dimensional time FCNLS model including Beta derivative
and apply the MSSE approach to obtain dark, singular, periodic and rational solutions. This work presents a
new technique to investigate sensitivity in model dynamics, performing time series analysis, and obtaining the
optical soliton solutions. These methods work well, are simple to use, and can be applied to a variety of complex
systems. Earlier research, on the other hand, was mainly concerned with determining optical soliton solutions
and investigating sensitivity in model behavior. We build on this in our research by adding time series analysis,
which offers a thorough comprehension of the dynamic behavior of the model. In addition, our findings provide
new perspectives on how to use MSSE to investigate sensitivity and obtain soliton solutions, which advances the
field of nonlinear dynamics studies. Localised areas of a wave’s lower intensity are represented by dark solitons.
In physical systems such as optical fibers, they correspond to regions of minimum light intensity, frequently as
a result of dispersion being counteracted by nonlinear processes. Localized intensified patches within a wave
are the defining feature of bright solitons. Within optical systems, they represent regions of high light intensity,
usually due to nonlinear effects counteracting dispersion. Within a wave, sudden changes or areas of severe
behavior are indicated by singular soliton solutions. The study of wave dynamics, including electromagnetic wave
propagation, depends on these solutions, which can be found in many different physical processes. Insights into
wave behavior that can be characterized by straightforward mathematical relationships are provided by rational
soliton solutions, which are wave patterns controlled by rational functions. The framework of obtained solitons
is depicted in Figs. 1, 2, 3,4, 5, 6, 7,8, 9, 10, 11, 12 and 13 and every feasible portrait of sensitivity analysis is
explored in Figs. 14, 15, 16 and 17.

A single wave with singular soliton solutions shows that derivatives are discontinuous. Compactions and
peakons having peaks with discontinuous first derivatives, are two examples. Periodic solutions are very impor-
tant in various branches of technology because they occur again over time. Rational approaches are very benefi-
cial in mathematics subjects including geometry, calculus, and numerical methods. These methods help in pattern
recognition, connecting various sorts of solutions, and offering insights on equation structures. This technique
may be constrained by its limited applicability to particular equation types or issue domains. The efficiency of
the approach depends on constraint relations on parameters, which aren’t always easily met or appropriate in
every situation. Controlling the method’s complexity, especially when working with large equations or systems,
may provide difficulties and reduce its effectiveness. Although the method yields analytical answers, it might
not always provide great precision, particularly for highly nonlinear or complicated systems, which could result
in errors. Even with these benefits, there might still be opportunities for algorithmic refinements or greater
generalizability to a larger class of equations and issues.

Graphical description

Fig. (1) demonstrates bright soliton solutions of Eq. (41). Fig. (2) explores singular soliton solutions of Eq. (44).
Fig. (3) illustrates kink-type solutions of Eq. (47). Fig. (4) shows dark solutions of Eq. (52). Fig. (5) represents
singular solutions of Eq. (58). Fig. (6), illustrates the combo soliton solutions of Eq. (55). Fig. (7), illustrates
the singular solutions of Eq. (58). Fig. (8), illustrates the U-shaped singular dark solutions of Eq. (61). Fig. (9)
demonstrates bright singular solutions of Eq. (64). Fig. (10) explores periodic solutions of Eq. (67). Fig. (11),
illustrates the combo of periodic solutions of Eq. (70). Fig. (12) shows the exponential solutions of Eq. (95).

A 25
20
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i : : X
T e T o ;
(a) 3-D (b) Contout plot (c) 2-D

Figure 1. The values of parameters are w; = 1.5, w, = 3.2, b =2.03, c =132, [ = 1.23,¢ =04 and ¥, =
1.23, displays the graphical representation of Eq. (41).
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(a) 3-D (b) Contout plot (c) 2-D

Figure 2. The values of parameters are w; = 1.5, wy = 3.2, b=2.03, c =132, [ = 1.23,¢ =0.14and ¥, =
1.23, displays the graphical representation of Eq. (44).
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Figure 3. The values of parameters are w; = 1.5, w; = 3.2, b=2.03, c =132, | =123, ¢ = l4and ¥, =
1.23, displays the graphical representation of Eq. (47).

Fig. (13) represents rational solutions of Eq. (98). Figs. 14, 15, 16 and 17, illustrates the physical depiction of
sensitivity analysis.

Conclusion remarks

This work explores a (1+1)-dimensional temporal FCNLS model for fibre optic wave analysis that includes Beta
fractional derivatives. We extract soliton solutions and perform a qualitative model evaluation using the MSSE
approach. The solutions have been found in single, periodic, combination, dark, and rational solutions. Using
sensitivity analysis, we investigate the sensitivity of the dynamical system and expose its dependency on several
physical parameters with novel insights. These techniques provide a dynamic mathematical tool for solving a
variety of nonlinear wave difficulties in mathematical physics, engineering, fibre optic waves, and other nonlinear
domains. These results may be important for comprehending how fibre optic waves spread in oceanography.
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Figure 4. The values of parameters are w; = 1.5, w; = 3.2, b =2.03, c = 1.32, | = 1.23, ¢ = 2.4 and
W, = 1.23, displays the graphical representation of Eq. (50).
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Figure 5. The values of parameters are w; = 1.5, wy = 3.2, b =2.03, ¢ = 1.32, [ = 1.23, ¢ = 0.34and ¥,
= 1.23, displays the graphical representation of Eq. (52).
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Figure 6. The values of parameters are w; = 1.5, w; = 3.2, b =2.03, c =1.32, [ = 1.23, ¢ = 0.9 and ¥,
= 1.23, displays the graphical representation of Eq. (55).
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Figure 7. The values of parameters are w; = 1.5, wp = 3.2, b =2.03, c = 1.32, [ = 1.23, ¢ = 1.94and ¥,
= 1.23, displays the graphical representation of Eq. (58).
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Figure 8. The values of parameters are w; = 1.5, w, = 3.2, b =2.03, ¢ = 1.32, | = 1.23, ¢ = 0.67 and I,
= 1.23, displays the graphical representation of Eq. (61).
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Figure 9. The values of parameters are w; = 1.5, w, = 3.2, b =2.03, c = 1.32, [ = 1.23, ¢ = 1.8 and ¥, =
1.23, displays the graphical representation of Eq. (64).
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Figure 10. The values of parametersarew; = 1.5, w, = 3.2, b =2.03, c = 1.32, [ = 1.23, ¢ = 0.45and ¥, =
1.23, displays the graphical representation of Eq. (67).
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Figure 11. The values of parameters are w1 = 1.5, wy = 3.2, b=2.03, c =132, [ =123, ¢ =0.1land ¥, =
1.23, displays the graphical representation of Eq. (70).
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Figure 12. The values of parametersarew; = 1.5, w, = 3.2, b =2.03, c = 1.32, [ = 1.23, ¢ = 0.0l and ¥, =
1.23, displays the graphical representation of Eq. (95).
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Figure 13. The values of parameters arew; = 1.5, w, = 3.2, b =2.03, c = 1.32, [ = 1.23, ¢ = 0.03and ¥, =
1.23, displays the graphical representation of Eq. (98).
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Figure 14. Graphical representation of Eq. (105) with condition (B;, By) = (2.2, 2.8).
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Figure 15. Graphical representation of Eq. (105) with condition (B;, By) = (2.2, 2.4).
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Figure 16. Graphical representation of Eq. (105) with condition (B;, Bz) = (2.3, 2.67).
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Figure 17. Graphical representation of Eq. (105) with condition (B;, B;) = (0.2, 0.5).
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