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Deep‑learning model for evaluating 
histopathology of acute renal 
tubular injury
Thi Thuy Uyen Nguyen 1,9, Anh‑Tien Nguyen 2,3,9, Hyeongwan Kim 4,5, Yu Jin Jung 4,5, 
Woong Park 4,5, Kyoung Min Kim 6, Ilwoo Park 2,7,8,10* & Won Kim 4,5,10*

Tubular injury is the most common cause of acute kidney injury. Histopathological diagnosis may 
help distinguish between the different types of acute kidney injury and aid in treatment. To date, a 
limited number of study has used deep‑learning models to assist in the histopathological diagnosis of 
acute kidney injury. This study aimed to perform histopathological segmentation to identify the four 
structures of acute renal tubular injury using deep‑learning models. A segmentation model was used 
to classify tubule‑specific injuries following cisplatin treatment. A total of 45 whole‑slide images with 
400 generated patches were used in the segmentation model, and 27,478 annotations were created 
for four classes: glomerulus, healthy tubules, necrotic tubules, and tubules with casts. A segmentation 
model was developed using the DeepLabV3 architecture with a MobileNetv3‑Large backbone to 
accurately identify the four histopathological structures associated with acute renal tubular injury in 
PAS‑stained mouse samples. In the segmentation model for four structures, the highest Intersection 
over Union and the Dice coefficient were obtained for the segmentation of the “glomerulus” class, 
followed by “necrotic tubules,” “healthy tubules,” and “tubules with cast” classes. The overall 
performance of the segmentation algorithm for all classes in the test set included an Intersection 
over Union of 0.7968 and a Dice coefficient of 0.8772. The Dice scores for the glomerulus, healthy 
tubules, necrotic tubules, and tubules with cast are 91.78 ± 11.09, 87.37 ± 4.02, 88.08 ± 6.83, and 
83.64 ± 20.39%, respectively. The utilization of deep learning in a predictive model has demonstrated 
promising performance in accurately identifying the degree of injured renal tubules. These results may 
provide new opportunities for the application of the proposed methods to evaluate renal pathology 
more effectively.
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Acute kidney injury (AKI) is characterized by sudden decrease in renal function. Pathologists use acute tubular 
injury (ATI) to describe the histopathological findings of AKI caused by damage to the tubules due to ischemia 
or toxin-induced toxicity. In practice, rather than using the term acute tubular necrosis (ATN), which has been 
traditionally employed despite the lack of necrosis in several cases, semiquantitative histopathological assess-
ment of ATI is classified into three levels: mild, moderate, or  severe1. Although the histopathology of ATI may 
differ between distinct pathologies, it is generally characterized by focal or diffuse tubular dilatation, thinning 
of the lining epithelium, vacuolation, loss of the brush border in proximal tubules, loss of nuclei, rupture of the 
basement membrane, and tubular cast formation in toxic acute tubular  injury2,3. Kidney Disease: Improving 
Global Outcomes (KDIGO) urges the discovery of the etiology of AKI whenever  possible4,5. Histopathological 
assessment may help distinguish different types of AKI and aid in patient  care1.
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Deep learning is the most recent machine-learning innovation and provides an unrivaled capacity to effi-
ciently manage patients, render diagnostic support, and guide  therapies6–8. Recent breakthroughs in deep learn-
ing, particularly convolutional neural networks (CNNs), have provided new techniques for developing systems 
that can assist pathologists in clinical diagnoses. Advances in whole-slide imaging technology have promoted 
new deep learning applications in renal  histopathology9,10. Pathologists’ common tasks of recognizing and iden-
tifying tissue components can be decomposed into computer vision tasks such as segmentation and detection.

Various deep learning algorithms have recently been developed for the multiclass segmentation of whole renal 
slide images from human and mouse kidney diseases. Most studies have focused on glomerular  segmentation11. 
Recently, Massimo Salvi et al.12 demonstrated that an automated method using the RENTAG algorithm may be 
effective in quantifying glomerulosclerosis and tubular atrophy. However, few studies have used deep-learning 
models for the histopathological assessment of renal tubular injury after AKI. Therefore, this study was con-
ducted to apply deep-learning models to the histopathological segmentation of the four structures in acute renal 
tubular injury.

In summary, our contributions are as follows. A segmentation model was developed using the DeepLabV3 
architecture to accurately identify the four histopathological structures associated with acute renal tubular injury: 
glomerulus, necrotic tubules, healthy tubules, and tubules with cast. Our approach achieves promising perfor-
mance in accurately identifying the degree of injured renal tubules.

Material and method
Kidney sample and criteria of acute kidney injury
This study was performed with the approval of the Ethical Committee of Jeonbuk National University Hospital. 
All methods were performed in accordance with the relevant guidelines and regulations. In a previous study, 
kidney samples were collected from a mouse model of cisplatin-induced acute tubular  injury13. We re-analyzed 
kidney samples from male C57BL/6 mice (age: 8–9 weeks; weight: 20–25 g). The mice were divided into two 
groups: control buffer-treated and cisplatin-treated. Mice in the cisplatin group were intraperitoneally admin-
istered a single dose of cisplatin (Cis; 20 mg/kg; Sigma Chemical Co., St. Louis, MO, USA), whereas mice in the 
control group were intraperitoneally administered saline. Histological measurements were performed 72 h after 
treatment with cisplatin or the control buffer. To evaluate the function of the injured kidney, blood samples were 
collected three days after cisplatin administration to measure serum creatinine levels. When serum creatinine 
was above 0.5 mg/dL, acute kidney injury caused by cisplatin was determined.

Histopathology and assessment of tubular injury
Kidney tissue was fixed in formalin and embedded in paraffin blocks. Hematoxylin and eosin (HE) staining was 
performed to assess renal tubular injury. Sections of 3-µm thickness were stained using the Periodic acid-Schiff 
(PAS) Stain Kit (Abcam, Cambridge, MA, USA; catalog no. 150680) in accordance with the manufacturer’s 
 instructions12,14. Tubular injury was evaluated by three blinded observers who examined at least 20 cortical 
fields (× 200 magnification) of the PAS-stained kidney sections. Tubular injury (necrotic tubules) was defined 
as tubular dilation, tubular atrophy, tubular cast formation, brush border loss, or thickening of the tubular base-
ment membrane. Finally, the slides were digitized using a Motic Easy ScanPRO slide scanner (Motic Asia Corp., 
Kowloon, Hong Kong) at 40× magnification.

Datasets
Forty-five whole-slice images (WSIs) with 400 generated patches were used for the segmentation model devo-
lopment. Ground-truth annotations were created using the SUPERVISELY polygon tool (supervisely.com). 
Polygons mark segment annotations by placing waypoints along the boundaries of the objects that the model 
must segment. All annotations were reviewed by three nephrologists with extensive experience in nephropathol-
ogy. The pathologists engaged in discussions to resolve disagreements. Four predefined classes were annotated: 
(1) glomerulus, (2) healthy tubules, (3) necrotic tubules, and (4) tubules with casts. Figure 1A, B and C show 
examples of the whole-slide images of H&E and PAS-stained kidney section obtained using a slide scanner 
and a randomly generated patch without annotations, respectively. The annotations consisting of four different 
structures, ‘glomerulus,’ ‘healthy tubules,’ ‘necrotic tubules,’ and ‘tubules with cast’ are shown in Fig. 1D. In total, 
27,478 annotations, along with their corresponding patches, were partitioned into two distinct proportions: a 
training subset comprising 80% of the data and a testing subset constituting the remaining 20%. Patches that 
belonged to the same WSI did not appear in either the training or testing proportions to ensure robust generali-
zation of the segmentation models. Subsequently, to fine-tune the model hyperparameters, the training subset 
underwent further random splitting into training (80%) and validation (20%) subsets. This approach aimed to 
facilitate the refinement of model performance by iteratively adjusting the hyperparameters based on the vali-
dation set, while preserving the independence of the testing set for the final evaluation of model generalization 
(Table 1 and Figs. 2, 3 and 4).

Preprocessing
Because the pathology images were represented in an RGB data structure, the pixel values of the images ranged 
from 0 to 255. The pixels were scaled to a range between zero and one to avoid gradient explosions during the 
training phase. The patch images were resized to 512 × 512 pixels before being fed into the deep-learning model 
for segmentation. Three different augmentation methods were used to address overfitting resulting from a limited 
number of samples: horizontal flipping, rotation, and brightness adjustment. The third augmentation method 
was used because of varying degrees of slide brightness. Although we performed PAS staining for all histological 
slides using the same protocol, the degree of staining and, consequently, the overall brightness of the specimen 
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Figure 1.  A–B Whole slide image of H & E (A) and PAS (B)-stained kidney section was digitalized using slide 
scanner at 40× magnification. Randomly generated patch without annotations. B H&E and PAS staining images 
of healthy tubules, necrotic tubules, and tubules with casts after cisplatin administration. C Randomly generated 
patch with annotations comprised four different structures: “glomerulus,” “healthy tubules,” “necrotic tubules,” 
and “tubule with cast”.
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Table 1.  The number of annotations in each class used in training and test set for segmentation model.

Class Training set (Total = 22,951) Test set (Total = 4527)

Glomerulus 731 141

Healthy tubules 11,915 2249

Necrotic tubules 7362 1684

Tubules with cast 2943 453

Figure 2.  Representative PAS-stained images, ground truth mask and predicted mask generated by the CNNs 
in training set.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9010  | https://doi.org/10.1038/s41598-024-58506-9

www.nature.com/scientificreports/

may have differed among the different slides because the tissue embedded in paraffin was collected at various 
times. Thus, a random adjustment of the contrast of patches can improve model performance. The augmenta-
tion methods were applied only to the training and validation datasets, and not to the test set. All augmentation 
protocols were implemented using the Python Albumentation  library15. We applied 3 augmentation methods to 
the 50% of the training images: (1) horizontal flip, (2) rotate images with random angles from − 90 to 90°, and 
(3) contrast change.

Proposed model framework
In this study, we proposed to use  DeepLabV316, which is a two-stage segmentation framework for the segmen-
tation task. The architecture of the DeepLabV3 encoder consists of Atrous Spatial Pyramid Pooling (ASPP) 
blocks that allow it to maintain the Field-of-View (FOV) of the network layers and effectively capture contextual 
information at different scales. Moreover, DeepLabV3 uses dilated or “-atrous” convolution layers to maintain 
high-precision predictions while maintaining a wide FOV. This is particularly critical for histopathological imag-
ing because of the fine-grained structures and textures. In addition, the dense structure of the images leads to an 
extreme foreground–background class-imbalance phenomenon. To overcome this challenge, we integrated an 
objective function, which is the summation of the Dice  Loss17 and Focal  Loss18 functions. Unlike classification 

Figure 3.  Representative PAS-stained images, ground truth mask and predicted mask generated by the CNNs 
in validation set.
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tasks, the outputs of segmentation problems are continuous, rather than categorical. Thus, Dice Loss is particu-
larly suitable for continuous maps because it measures the overlap between a prediction and target. Furthermore, 
Dice Loss is independent of the statistical distribution of labels and penalizes misclassifications based on the 
overlap between the predicted regions and ground truths. The last part of our object function is the Focal Loss 
function, which was used in the  RetinaNet18 deep-learning model to mitigate the class-imbalance problem 
in dense object detection. Furthermore, we integrated DeepLabV3 with a MobileNet backbone designed for 
mobile and embedded devices such that the developed model can be applied to devices that might have limited 
computational resources in clinical environments.

As presented in Table 2, our datasets were imbalanced, with the number of annotations for the Glomerulus 
class being relatively small compared to the other classes. To address this issue, the objective function assigns a 
higher weight to examples in the minority class, and a lower weight to those in the majority class. Mathemati-
cally, the objective function can be described by the following equation:

(1)L(y, p) = 1−

(

2yp+ 1
)

(

y + p+ 1
) −

(

y − p
)γ

logb
(

p
)

,

Figure 4.  Representative PAS-stained images, ground-truth masks, and predicted masks generated by CNNs in 
test set.
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where y , p , and γ correspond to the ground truth, model prediction, and the parameter that controls the degree 
of focus on the difficulty of the examples, respectively. If γ is set to 0, the Focal Loss is reduced to the standard 
cross-entropy loss. The proposed model was implemented using  PyTorch19, and the loss function was obtained 
from the MONAI  library19,20. The training procedure took approximately 4 h on a graphics processing unit 
(GPU) RTX 3090 24 GB.

Data analyses
Network performance was quantitatively assessed using instance-level DICE and IoU scores. In image seg-
mentation, the DICE and IoU are commonly used to evaluate the performance of segmentation algorithms. 
They measured the similarity between the predicted segmentation mask and ground-truth mask. While DICE 
measures the ratio of the intersection of the two masks to the sum of their areas, the IoU metric calculates the 
overlap between the predictions and human masks by taking the ratio of their intersection to their union. In 
addition, sensitivity, specificity, and accuracy were calculated. In this study, we used these metrics to evaluate 
the performance of the proposed system comprehensively.

Comparison with other model
In our comprehensive comparative analysis, we used U-Net21 and  SegFormer22, two widely used neural network 
architectures. U-Net, a widely used convolutional neural network architecture for semantic segmentation, features 
a distinctive U-shaped design comprising the contracting, bottleneck, and expansive paths. It excels at capturing 
intricate spatial features and is known for its success in medical image segmentation tasks. SegFormer, a state-
of-the-art algorithm for segmentation, adopts a transformer-based  architecture23 with lightweight multilayer 
perception. It demonstrates an extremely high level of performance on the  Cityscapes24 dataset, highlighting 
its effectiveness in diverse computer vision applications. We applied the standard architectures of U-Net and 
SegFormer without modification and used the same training, validation, and test subsets as in our model. The 
DICE and IoU values of U-Net and SegFormer were measured for comparison.

Statistical analyses
We used One-way ANOVA (or t-tests) for comparison between deepLabV3, UNet and Segformer by comparing 
respective Dice and IoU coeffecienct. P < 0.05 was considered statistically significant.

Table 2.  Quantitative segmentation performance of four classes in the actue tublar injury images in training, 
validation and testing sets.

DICE (%)

Glomerulus Healthy tubules Necrotic tubules Tubules and cast

Training 96.19 ± 2.96 94.77 ± 1.62 90.89 ± 22.14 96.49 ± 3.41

Validation 95.91 ± 13.04 94.76 ± 2.79 90.09 + 22.05 96.38 ± 2.81

Testing 91.78 ± 11.09 87.37 ± 4.02 88.08 ± 6.83 83.64 ± 20.39

IoU (%)

Glomerulus Healthy tubules Necrotic tubules Tubules and cast

Training 93.19 ± 4.89 90.12 ± 2.79 87.64 ± 22.19 93.42 ± 6.07

Validation 93.06 ± 13.04 90.15 ± 4.42 86.59 ± 21.94 93.18 ± 5.23

Testing 86.09 ± 12.87 77.79 ± 6.11 79.36 ± 10.89 75.49 ± 21.21

Sensitivity (%)

Glomerulus Healthy tubules Necrotic tubules Tubules and cast

Training 86.29 ± 28.77 94.96 ± 1.97 65.78 ± 43.85 62.45 ± 45.27

Validation 80.23 ± 35.39 94.96 ± 1.66 67.03 ± 43.74 64.54% ± 44.77

Testing 84.84 ± 27.11 86.72 ± 6.49 75.96 ± 32.59 69.44% ± 35.87

Specificity (%)

Glomerulus Healthy tubules Necrotic tubules Tubules and cast

Training 99.87 ± 1.23 91.72 ± 9.29 97.03 ± 3.06 99.26 ± 1.97

Validation 99.89 ± 1.34 91.33 ± 10.54 96.89 ± 2.61 99.25 ± 0.89

Testing 99.69 ± 2.65 90.25 ± 10.04 88.54 ± 7.32 98.74 ± 1.29

Accuracy (%)

Glomerulus Healthy tubules Necrotic tubules Tubules and cast

Training 99.69 ± 0.03 95.39 ± 0.28 97.13 ± 0.24 98.97 ± 1.15

Validation 99.72 ± 0.11 91.32 ± 2.85 96.89 ± 2.67 98.95 ± 1.15

Testing 99.43 ± 0.37 90.95 ± 3.27 90.07 ± 5.13 97.98 ± 1.85
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Results
Model parameter optimization
We trained the model using the following hyperparameters: a learning rate of 0.5, batch size of 32, 60 epochs, 
and γ of 2. We evaluated the performance of each combination of hyperparameters using a held-out validation 
dataset. We found that the learning rate had a significant impact on model performance, with higher learning 
rates leading to faster convergence but a lower Dice coefficient (DICE) and Intersection over Union (IoU). In 
contrast, a lower learning rate results in overfitting. The batch size had a less pronounced effect, with a larger 
batch size generally resulting in faster convergence and improved validation performance. In addition to learn-
ing rate and batch size, we discovered that γ of Focal Loss was very sensitive to the performance of the model. 
A small value led to overfitting of the majority classes, whereas a large value resulted in poor performance in 
the training dataset.

Performance of segmentation model
The effectiveness of the proposed segmentation model for each class is summarized in Table 2. The average 
(± standard deviation) DICE scores for the glomerulus, healthy tubules, necrotic tubules, and tubules with cast 
were 91.78 ± 11.09, 87.37 ± 4.02, 88.08 ± 6.83, and 83.64 ± 20.39%, respectively. These results suggest that the 
proposed segmentation model is highly accurate in identifying different classes of objects, with the glomerulus 
class achieving the highest DICE score. Analysis of the IoU scores yielded similar results. The average (± standard 
deviation) IoU for the glomerulus, healthy tubules, necrotic tubules, and tubules with cast were 86.09 ± 12.87, 
77.79 ± 6.11, 79.36 ± 10.89, and 75.49 ± 21.21%, respectively, thus demonstrating the accuracy of the proposed 
segmentation model across all classes with the glomerulus class achieving the highest IoU score.

In addition, the sensitivity, specificity, and accuracy of the proposed model were evaluated. The sensitivity 
values for the glomerulus, healthy tubules, necrotic tubules, and tubules with cast were 84.84 ± 27.11, 86.72 ± 6.49, 
75.96 ± 32.59, and 69.44 ± 35.87%, respectively. The specificity values for the glomerulus, healthy tubules, necrotic 
tubules, and tubules with cast were 99.69 ± 2.65, 90.25 ± 10.04, 88.54 ± 7.32, and 98.74 ± 1.29%, respectively. The 
accuracy values for the glomerulus, healthy tubules, necrotic tubules, and tubules with cast were 99.43 ± 0.37, 
90.95 ± 3.27, 90.07 ± 5.13, and 97.98 ± 1.85%, respectively.

Comparison with other studies
We compared our model with existing state-of-the-art methods (U-Net and SegFormer) for histopathological 
assessment of renal tubular injury. Table 3 presents a comparison between the performances of the three mod-
els for the testing subset. Our model (DeepLabV3) exhibited a comparable or slightly better performance than 
SegFormer. The performance of the proposed model was better than that of U-Net, particularly in segmenting 
necrotic tubules and tubules with cast.

Discussion
Over the last decade, numerous studies have focused on the development of deep-learning models for nephro-
pathology. In several previous studies, neural networks have been trained and successfully applied to specific 
glomerular segmentation tasks, such as distinguishing between glomerular and non-glomerular regions and 
classifying healthy and injured glomeruli in WSIs of both human disease and animal  models25–27. In 2020, Uchino 
et al. developed a comprehensive deep-learning model to classify multiple glomerular images and suggested its 
potential use in enhancing the diagnostic accuracy for  clinicians28.

The initial results of the multiclass segmentation task for kidneys were reported in  201829. They proposed a 
method for renal segmentation of PAS-stained digital slides of renal allograft resections using CNNs for nine 
classes, including five healthy structures (glomerulus, distal tubules, proximal tubules, arterioles, and capillar-
ies) and four pathological structures (atrophic tubules, sclerotic glomeruli, fibrotic tissue, and inflammatory 
infiltrates). Three different network architectures were used to perform this task: a fully convolutional network, 
U-net, and a multiscale fully convolutional network.

Another CNN for the multiclass segmentation of kidney sections with PAS staining was developed by 
Hermsen et al.30. Dice coefficients were used to assess the segmentation performance for ten classes (glomerulus, 

Table 3.  Comparison of testing performance between our model (DeepLabV3), Segformer, and U-Net.

DICE (%)

Glomerulus Healthy tubules Necrotic tubules Tubules and cast

DeepLabV3 91.78 ± 11.09 87.37 ± 4.02 88.08 ± 6.83 83.64 ± 20.39

Segformer 84.39 ± 24.94 86.69 ± 0.44 75.69 ± 26.95 79.19 ± 24.88

U-Net 80.44 ± 24.64 82.18 ± 5.90 64.81 ± 28.81 53.66 ± 30.17

IoU (%)

Glomerulus Healthy tubules Necrotic tubules Tubules and cast

DeepLabV3 86.09 ± 12.87 77.79 ± 6.11 79.36 ± 10.89 75.49 ± 21.21

Segformer 76.76 ± 26.51 76.77 ± 0.69 61.55 ± 27.12 64.81 ± 28.81

U-Net 72.78 ± 23.73 70.08 ± 8.36 53.41 ± 24.59 53.66 ± 30.17
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sclerotic glomerulus, empty Bowman’s capsules, proximal tubules, distal tubules, atrophic tubules, undefined 
tubules, arteries, interstitium, and capsule) of nephrectomy and transplant biopsy specimens. In both datasets, 
the glomerulus was the best-segmented class (Dice coefficients of 0.95 and 0.94)30. Recently, Bouteldja et al. 
published high-performance deep-learning algorithms for the multiclass segmentation of kidney histology for 
various diseases in mouse models and other species. In this study, six annotated structures were used: tubules, 
full glomerulus, glomerular tuft, artery, arterial lumen, and  vein31. Although previous studies have focused on 
developing models for segmenting renal tubular structures, the predefined classes of tubules included only 
normal tubular types, such as proximal and distal tubules, or abnormal tubular types, such as atrophic tubular 
structures, in a renal fibrosis  model32.

To the best of our knowledge, there have been a limited number of reports on segmentation models for iden-
tifying injured tubules in patients with acute kidney injury. Our study presents a deep learning-based segmenta-
tion model for evaluating acute renal tubular injury in digitized PAS-stained images. We applied deep-learning 
models to identify the typical structural types of toxicity-induced acute tubular injuries, including glomeruli, 
healthy tubules, necrotic tubules, and tubules with casts. The DICE scores and IoU showed high and consistent 
performances in the segmentation of these regions. Notably, the performance of the proposed model was the 
highest for the glomerulus despite the glomerulus class having the smallest number of annotations. This suggests 
that the performance of the model can be improved further by adding more training data, particularly for the 
glomerulus class. Overall, the results suggest that the proposed segmentation model has the potential to be used 
in clinical applications for the accurate identification and segmentation of different kidney structures, particu-
larly injured tubules. In future, we intend to translate the technique developed in this study to a human biopsy 
dataset. As a dissociation exists between histopathological findings and the clinical symptoms of AKI in some 
cases (such as volume depletion-induced AKI in allergic, cardiogenic, or hemorrhagic shock), renal biopsy may 
assist in assessing structural injury, differentiating the cause of AKI, and aiding in  treatment1.

The proposed approach exhibited a similar or slightly higher performance than the state-of-the-art models. 
The mean DICE values for SegFormer and U-Net were 81.49% (ranging from 75.69 to 86.69%) and 70.27% 
(ranging from 53.66 to 82.18%), respectively, across the four classes, whereas our model yielded a mean DICE 
of 87.71% (ranging from 83.64 to 91.78%). The mean IoUs for SegFormer and U-Net were 69.97% (ranging from 
61.55 to 76.77%) and 62.48% (ranging from 53.41 to 72.78%) across the four classes, respectively, whereas our 
model had a mean IoU of 79.68% (ranging from 75.49 to 86.09%). Therefore, compared with previously used 
methods for assessing renal tubular injury, the method proposed in this study may be effective for identifying 
injured renal tubules in acute kidney injury in terms of segmentation performance and computational complex-
ity. It is noteworthy that our model exhibited a comparable or slightly better performance than Segformer, with 
significantly simpler computational complexity. SegFormer produced results with a high degree of parameter 
counts of 64 million, whereas our model, DeepLabV3, based on Mobile-net, presented relatively high efficiency 
with only 11 million parameter counts. This efficiency underscores the potential practical advantages of our 
model in terms of computational resources and model complexity.

Our study has some limitations. First, a deep-learning model was developed to evaluate the histological 
images of murine cisplatin-induced acute tubular injury. Although the histological structures of the mouse and 
human kidneys are similar, the distance or connective tissue area among the structures in the mouse kidney 
tissue is relatively small compared to that in humans. These closely located structures make it more difficult to 
distinguish the boundaries between them, particularly in necrotic areas where the basement membranes are 
occasionally not intact. Second, the number of WSIs and patches generated in this study was limited. A study that 
includes a larger number of annotations is underway and is expected to achieve higher performance in training 
the model. Third, when substances such as casts are present in the injured tubular lumen, the effectiveness of 
measuring the degree of tubular injury decreases.

Conclusion
The deep-learning segmentation model developed in this study can accurately identify the histopathological 
structures of injured renal tubules. The results serve as the basis for future studies with larger datasets, including 
mouse and human biopsy samples, which can provide new opportunities for applying the proposed methods 
to renal pathology.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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