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Asymmetric impact of climatic 
parameters on hemorrhagic fever 
with renal syndrome in Shandong 
using a nonlinear autoregressive 
distributed lag model
Yongbin Wang 1*, Ziyue Liang 1, Siyu Qing 1, Yue Xi 1, Chunjie Xu 2 & Fei Lin 1*

Hemorrhagic fever with renal syndrome (HFRS) poses a major threat in Shandong. This study aimed 
to investigate the long- and short-term asymmetric effects of meteorological factors on HFRS and 
establish an early forecasting system using autoregressive distributed lag (ARDL) and nonlinear 
ARDL (NARDL) models. Between 2004 and 2019, HFRS exhibited a declining trend (average annual 
percentage change = − 9.568%, 95% CI − 16.165 to − 2.451%) with a bimodal seasonality. A long-term 
asymmetric influence of aggregate precipitation (AP) (Wald long-run asymmetry [WLR] = − 2.697, 
P = 0.008) and aggregate sunshine hours (ASH) (WLR = 2.561, P = 0.011) on HFRS was observed. 
Additionally, a short-term asymmetric impact of AP (Wald short-run symmetry [WSR] = − 2.419, 
P = 0.017), ASH (WSR = 2.075, P = 0.04), mean wind velocity (MWV) (WSR = − 4.594, P < 0.001), 
and mean relative humidity (MRH) (WSR = − 2.515, P = 0.013) on HFRS was identified. Also, HFRS 
demonstrated notable variations in response to positive and negative changes in ∆MRH(−), ∆AP(+), 
∆MWV(+), and ∆ASH(−) at 0–2 month delays over the short term. In terms of forecasting, the 
NARDL model demonstrated lower error rates compared to ARDL. Meteorological parameters have 
substantial long- and short-term asymmetric and/or symmetric impacts on HFRS. Merging NARDL 
model with meteorological factors can enhance early warning systems and support proactive 
measures to mitigate the disease’s impact.

Keywords  Hemorrhagic fever with renal syndrome, Nonlinear autoregressive distributed lag model, 
Meteorology, Asymmetric relationships, Early forecasting, Ecological study

Hemorrhagic fever with renal syndrome (HFRS) is a viral disease caused by hantaviruses, which are transmit-
ted to humans through contact with infected rodents1. The disease is characterized by fever, hemorrhage, and 
renal failure, and can be fatal in severe cases. HFRS has been recognized as a significant public health concern 
in many parts of the world, particularly in Asia and Europe1–3, where it is endemic in certain regions1,3,4. While 
the disease is found in many countries, the prevalence of HFRS can vary widely from one region to another. 
This variation can be attributed to a number of factors, including differences in rodent populations, climate, 
and human behavior5. In some areas1,3,4, such as China, Russia, and Korea, HFRS is endemic and outbreaks 
occur regularly, while in other regions, such as Europe and North America, the disease is relatively rare. There 
is also variation in the strains of hantaviruses that are prevalent in different regions6. Hantaviruses are classified 
into different genotypes based on their genetic sequences, and each genotype is associated with specific rodent 
species. For example, the Hantaan virus (HTNV) is associated with the striped field mouse in Asia1, while the 
Seoul virus (SEOV) is associated with the brown rat in Europe and North America6. After the introduction of 
hantavirus into China, it adapted to various host animals, including a diverse range of rodents, shrews, and bats. 
Research indicates that there are over 8 suitable host species for the SEOV and 10 species of wild mouse hosts 
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for the HTNV in China, which has currently constituted 90% of global HFRS cases4. Although great achieve-
ments have been made in implementing surveillance and control measures to mitigate the impact of HFRS in 
China4, most provinces, such as Shandong, Heilongjiang, Jilin, Liaoning, and Hubei, have reported endemic 
cases of over 20,0004, leading to an annualized death rate of approximately 5–10% in past years7, and a recent 
study indicated a recurring sign in HFRS morbidity owing to variants in circulating strains8. For this reason, 
recognizing the intrinsic association of potential factors with HFRS and developing an enhanced early warning 
system assist in comprehending the disease’s patterns and dynamics, ultimately aiding in the prevention and 
control of HFRS epidemic.

Climate change significantly affects the distribution and transmission dynamics of infectious diseases. The 
pathogens, vectors, and hosts associated with infectious diseases are highly responsive to the environments they 
inhabit9–11. Ecological barriers affect the transmission of viruses from natural or intermediate hosts to human 
populations, with four key factors including transmission routes, transmission probabilities, contact frequen-
cies, and virus characteristics12. Climate change can weaken ecological barriers, increasing the emergence and 
transmission probabilities of emerging infectious diseases12. A recent study revealed that over 58% of infectious 
diseases faced by humanity worldwide have been exacerbated by climatic hazards (such as atmospheric warming, 
heavy precipitation, and flooding) at some point, and climatic hazards, via vector-borne transmission, contrib-
uted to increased incidence and prevalence of over 100 vector-borne diseases13. Under the impetus of climate 
change, it is estimated that by 2070, there will be at least 15,000 new instances of cross-species viral spillover. 
These heightened opportunities for viral sharing may increase the risk of emerging vector-borne diseases jump-
ing from animals to humans in the next 50 years, especially in Africa and Asia14.

Studies have also linked climatic variables with HFRS11,15,16. For instance, Luo et al. indicated that a 6-month 
lag in mean temperature (MT) (RR = 3.05) and no lag in aggregate precipitation (AP) (RR = 2.08) had the most 
significant impact on HFRS in China using a generalized additive model (GAM)17. Chen et al.15 found that 
humidity and wind speed were correlated with the onset of HFRS, and there existed a non-linear exposure-lag-
response relationship in Shenyang using a GAM. Wang et al.16 observed that the most influential meteorological 
factors for HFRS were mean temperature with a 4-month lag, mean ground temperature with a 4-month lag, and 
mean air pressure (MAP) with a 5-month lag in Heilongjiang using Geodetector and autoregressive integrated 
moving average (ARIMA) models. However, there are gaps: (1) most studies have concentrated on the effects 
of temperature, air pressure, rainfall, and humidity on HFRS16,18, with scant evidence concerning sunshine and 
wind’s impact. But these six meteorological factors are coexisting, and the combined exposure may have complex 
interactions between positive and negative changes in these factors on HFRS; (2) previous work often neglected to 
account for autocorrelations among dependent variables15,18,19, leading to potential overestimations; (3) crucially, 
there is an absence of research probing into the dynamic impacts of climatic changes on HFRS—understanding 
if increases or decreases in climatic factors lead to differing effects and how potential factors respond to changes 
in the short run and how these responses evolve over time are vital for comprehensive insights into HFRS trans-
mission control. To fill these gaps, we employed the nonlinear autoregressive distributed lag (NARDL) model20. 
The choice was motivated by its advantages20–23: (1) it discerns both long- and short-term asymmetries between 
climatic variables and HFRS; (2) it offers flexibility regarding the cointegration of variables and possesses strong 
statistical power even with smaller sample sizes; (3) it effectively mitigates endogeneity issues among climatic 
variables; (4) it can automatically specify autocorrelations among variables. We hypothesize that climatic vari-
ables play a pivotal role in the transmission of HFRS both in the long and short terms, and the NARDL model 
by including climatic variables can improve the ability in forecasting HFRS epidemic compared to the linear 
autoregressive distributed lag (ARDL) model. Given that Shandong (Geographical distribution can be seen in 
Fig. S1) holds the distinction of being the riskiest among all HFRS-endemic provinces in China4, our study 
aims: (1) to clarify both long- and short-term asymmetric correlations between climatic variables and HFRS in 
Shandong using the NARDL model; (2) to ascertain if the NARDL model offers a more precise estimation of 
HFRS epidemic compared to the ARDL model.

Material and methods
HFRS data
The monthly HFRS cases from January 2004 to December 2019 in Shandong were sourced from the Data-center 
of China Public Health Science (DCPHS) under the Chinese CDC’s management (https://​www.​phsci​enced​ata.​
cn/​Share/​en/​data.​jsp?​id=​0aeea​f46-​415d-​49b3-​9442-​df313​05e66​9e&​show=0). Concurrently, population data for 
the same timeframe was extracted from the Shandong Statistical Yearbook 2022 (http://​tjj.​shand​ong.​gov.​cn/​tjnj/​
nj2022/​zk/​zk/​index​ch.​htm). All HFRS cases were confirmed in alignment with the diagnostic criteria set by the 
Chinese Ministry of Health (http://​www.​nhc.​gov.​cn/​wjw/​s9491/​wsbz.​shtml). Once verified, these cases were 
promptly reported within 24 h by accredited institutions and professionals.

Meteorological data
Daily climatic metrics, comprising mean temperature (MT), mean air pressure (MAP), aggregate precipita-
tion (AP), aggregate sunshine hours (ASH), mean relative humidity (MRH), and mean wind velocity (MWV), 
were sourced from the National Meteorological Science Data Center (http://​data.​cma.​cn/). Subsequently, these 
parameters were consolidated into a monthly format.

Statistical analysis
The Shapiro–Wilk test informed our HFRS incidence and meteorological data presentation in summary descrip-
tion, expressing results as either mean ± standard deviation ( x ± s ) or as the median (Q25, Q75). We employed 
the average annual percentage change (AAPC) and seasonal relative (SR) to elucidate the trends and seasonal 
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patterns of HFRS incidence, respectively24,25. Spearman’s rank (rs) correlation assessed the relationship between 
HFRS and climatic parameters. A correlation coefficient exceeding 0.9 and a variance inflation factor (VIF) 
surpassing 10 indicated multicollinearity among the parameters26,27. Such factors were thus excluded from the 
simultaneous NARDL and ARDL models to ensure independent effect evaluation.

The ARDL was chosen as a baseline due to its ability to navigate autocorrelations and non-stationarity while 
analyzing short- and long-term associations between variables28. Yet, given ARDL’s linear assumptions, it might 
not adequately capture the intricate relationship between factors when considering the asymmetric and non-
linear dynamic influences of weather parameters on diseases20,21. Therefore, the NARDL was introduced, offering 
the advantage of highlighting long- and short-term asymmetric and nonlinear effects over the ARDL (a more 
detailed explanation of the criteria used for selecting the ARDL and NARDL models were provided in Sup-
plementary material)20, which can uniquely decompose the dependent variable into its positive and negative 
segments of increments and decrements in independent variables. When confronted with non-linearity and 
asymmetry, the NARDL not only addresses autocorrelations and non-stationarity but also investigates how 
variables respond to changes in the short run, and how they gradually adjust and recover over the long term20.

The NARDL’s implementation encompasses four stages (Overall methodological flow chart is provided in Fig. 
S2): first, integration order testing. The NARDL can be applied irrespective of the order of integration, provided 
the maximum order does not exceed one21. Stationarity was confirmed using the augmented Dickey–Fuller 
(ADF) statistic21, and if needed, logarithmic transformations or differencing were employed to achieve this. 
Second, long-term asymmetric cointegration20. A bounds test was used to determine if there was a long-term 
asymmetric cointegration between variables20,21. If found, the Wald test explored the associated short- and 
long-term asymmetries. Third, effect estimation. This entails quantifying dynamic multiplier responses of the 
dependent variable to changes in regressors using positive and negative partial sum decompositions20,23. Lastly, 
forecasting ability assessment. The model’s predictive capability for HFRS epidemic based on weather param-
eters was evaluated using data from January 2004 to December 2018 as training samples and subsequent data as 
testing samples. Also, a sensitivity analysis was conducted, where samples from January 2004 to December 2018 
were utilized for model development, and the remaining 24 samples were employed to validate the stability of 
the predicted outcomes. The comparison between NARDL and ARDL’s predictive capacity employed various 
metrics such as root mean square error (RMSE), mean absolute deviation (MAD), mean error rate (MER), and 
mean absolute percentage error (MAPE).

The NARDL formula is represented as:

where Yt represents HFRS cases, x signifies the climatic variables, x+ and x− are the positive and negative partial 
sums of increases and decreases in each climatic variable, respectively, p and q denote the optimal delayed orders 
of HFRS and weather factors, respectively, δ+1i and δ−1i correspond to the long-term equilibrium (this refers to the 
stable relationship that exists between meteorological factors and HFRS over an extended period. It captures the 
persistent effects of meteorological conditions on the HFRS transmission, taking into account any gradual adjust-
ments or trends that may occur over time. By identifying this relationship, researchers can gain insights into the 
sustained impact of meteorological factors on HFRS, allowing for the development of targeted interventions and 
policies to mitigate the risk of transmission) parameters for the dependent variable, τ+3i  and τ−3i  correspond to the 
short-run (this refers to the immediate or temporary effects of meteorological factors on HFRS. It captures the 
rapid fluctuations or deviations in HFRS transmission that are attributable to sudden changes in weather condi-
tions. Understanding this association is essential for timely response measures and forecasting, enabling public 
health authorities to implement proactive strategies to prevent or contain outbreaks in real-time) parameters 
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for the dependent variable, month denotes the seasonal component, t refers to the time variable spanning from 
1 to 192, and Δ refers to the first-order difference.

The maximum delay orders were set at 4 considering the 1–6-week gap from hantavirus infection to symptom 
onset and an additional 2-month interval from symptom onset to clinical diagnosis in China1. Subsequently, the 
determination of optimal delay orders was guided by the Akaike Information Criterion (AIC, the use of AIC 
in the selection is justified by its ability to: (1) balance the trade-off between model complexity and goodness 
of fit balance model fit and complexity. By penalizing the number of parameters in the model, AIC discourages 
overfitting; (2) facilitate model comparison by providing a quantitative measure of the relative quality of differ-
ent models; (3) provide a solid statistical foundation for the selection process)29. The partial autocorrelogram 
(PACF) revealed correlations between current and past values within the given conditions29. This observation 
of PACF helped identify the optimal autocorrelation orders for HFRS. To account for seasonal effects, a full set 
of monthly dummies as fixed regressors were included in our model (which was set using the program of @
expand(@month,@droplast in EViews. By doing so, an 11-month dummy parameter was produced). Further-
more, the stability of NARDL underwent verification through the use of cumulative sum (CUSUM) and CUSUM 
of squares (CUSUMQ) plots20, and the resulting errors of both models whether behaved like a white noise series 
(which refers to the residual series that is uncorrelated and has a constant variance) were judged by the Box-
Ljung Q statistic29. All statistical procedures were conducted using R 4.2.0 (R Development Core Team, Vienna, 
Austria) and EViews 12 (IHS, Inc. USA), with a significance level at P ≤ 0.05 (two-sided).

Ethics approval and consent to participate
The institutional review board of Xinxiang Medical University approved this study protocol (No: XYLL-2019072). 
All methods were carried out under relevant guidelines and regulations. The need for informed consent was 
waived by the study Ethics Committee of Xinxiang Medical University because the HFRS cases were shared 
anonymously and we cannot access any identifying information of the patients (available from: https://​www.​
phsci​enced​ata.​cn/​Share/).

Results
Statistical description
From 2004 to 2019, a total of 22,876 cases were reported, averaging 2098 annual notifications (5.708 per 100,000 
individuals) and 175 monthly notifications (0.476 per 100,000 individuals). The peak year was 2004, with 4171 
cases (10.931 per 100,000 population). This number was 3.727 times higher than the lowest count in 2004, 
which saw 1119 cases (3.261 per 100,000 population). Overall, there was a decreasing trend in HFRS incidence 
(AAPC = − 9.568%, 95% confidence intervals [CI] − 16.165 to − 2.451%) (Fig. 1). The decomposition SR from 
January to December was recorded as 0.72, 0.551, 0.643, 0.666, 0.994, 1.44, 0.779, 0.449, 0.414, 1.346, 2.629, and 
1.37, suggesting a dual peak pattern, with one in June and another in October-December per year. Additionally, 
there seemed to be a natural cyclical pattern with a duration of about 4–7 years in HFRS incidence.

Table 1 shows that meteorological variables were also influenced by seasonality. Figure 1 indicates that HFRS 
trends seemed to align with those of AWV, ASH, and MAP. Conversely, the trends for HFRS and MRH, AP, along 
with MT appeared to be in opposition. Additionally, there was an indication of strong collinearity given rs > 0.9 
and VIF > 10 between MT and MAP (Table S1 and Fig. S3), meaning that these two factors should be included 
in different models with other variables to investigate their independent effects.

Development of the NARDL and ARDL models
The ADF test indicated that the HFRS series (t = − 2.707, P = 0.007) was stationary. In contrast, the series for MT 
(t = 0.771, P = 0.879), MAP (t = − 0.857, P = 0.343), ASH (t = − 0.441, P = 0.522), MWV (t = − 1.753, P = 0.389), 
AP(t = − 0.697, P = 0.414), and MRH (t = − 0.224, P = 0.604) were non-stationary. After differencing once, all 
series achieved stationarity with resulting all P < 0.001, ensuring the requirement for modeling was met. The 
PACF plot highlighted the need to integrate a 1-month lag autocorrelation into the model (Fig. S4). The bounds 
test returned an F-value of 14.174, surpassing the critical upper bounds (I0 = 1.82, I1 = 2.99), signifying a long-
term cointegration relationship between HFRS and climate variables. Subsequently, a range of NARDL models 
were established, Upon evaluation, the NARDL (1, 0, 2, 3, 0, 2, 0, 0, 1, 1, 0) emerged as the most suitable model, 
boasting the lowest AIC of 9.838 (Fig. S5). This optimal NARDL model represents parameters such as HFRS at 
lag 1, MRH(+) at lag 0, MRH(−) at lag 2, and so forth (Table S2). The CUSUM and CUSUMQ tests, positioned 
within the 5% significance levels (Fig. 2), confirmed the model’s stability. Following similar modeling procedures, 
the ARDL (1, 0, 0, 1, 0, 0) was identified as the best model among possible candidates (Fig. S6 and Table S3). The 
Box-Ljung Q statistic = 0.289 (P = 0.591) for the residuals from ARDL and Box-Ljung Q statistic = 2.364 (P = 0.124) 
for the residuals from NARDL indicated that both models are adequate and suitable for modeling the series.

Long‑ and short‑term asymmetric and symmetric impacts of weather factors on HFRS
Table 2 presents both the long- and short-term asymmetry Wald tests, revealing a noticeable long-term asym-
metric effect of AP and ASH on HFRS, coupled with a short-term asymmetric influence of AP, ASH, MWV, and 
MRH on HFRS. Table 3 shows the effect estimates, despite demonstrating no significant long-term asymmetry of 
MRH on HFRS, the long-run coefficients were meaningful. Notably, the coefficients of MRH and ASH were posi-
tive, while MAP has a negative coefficient with a long-run symmetric effect. Specifically, a 1% increase in MRH 
and a 1 h increase in ASH led to escalations in HFRS by approximately 10 (95% CI 4–16) and 2 (95% CI 1–3) 
cases, respectively. Conversely, a 1% decrease in MRH and a 1 h decrease in ASH resulted in increases of about 
6 (95% CI  − 1–12) and 2 (95% CI 1–4) cases, respectively, in HFRS. Whereas an increase or decrease of 1 hPa 
in MAP declined the HFRS transmission risk by 2 (95% CI 1–3) cases. These variations in HFRS transmission 
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risk correspond to cumulative changes in the weather parameters. Additionally, the long-run coefficients for AP 
and MWV were positive while MT was negative but not statistically significant. Despite this, the direction of the 
effects for these variables is useful. The data from Table 3 also indicates that HFRS displayed significant variations 
due to both positive and negative changes in weather variables, especially within short-term lags of 0–2 months. 
To elaborate: ∆MRH(−) and ∆AP(+) at a 1-month lag, alongside ∆MWV(+) at a 0-month lag demonstrated 

Figure 1.   Time series plot indicating the temporal trends of the climatic factors and HFRS cases in Shandong, 
2004–2019. As depicted in this figure, overall HFRS epidemic showed a downward trend. Among the 
meteorological factors, the MT trend was slowly increasing but the trend for others remained relatively stable 
during 2004–2019.

Table 1.   Monthly mean statistics for the HFRS and climatic values in Shandong during 2004–2019.

Months HFRS cases MRH (%) AP (mm) MT (℃) MWV (m/s) MAP (hPa) ASH (h)

January 97.19 60.11 5.55 − 1.36 2.66 1014.47 158.38

February 87.13 59.39 12.30 1.31 2.87 1011.63 157.58

March 103.88 53.82 14.54 7.30 3.20 1007.25 218.93

April 107.44 57.56 35.05 13.76 3.28 1001.64 229.02

May 119.25 60.23 58.84 19.75 2.98 996.86 253.18

June 100.00 66.96 75.65 23.88 2.66 993.06 218.39

July 71.31 79.15 183.00 26.17 2.38 991.81 177.97

August 160.00 80.30 175.54 25.46 2.22 994.70 188.44

September 66.63 73.23 66.61 21.28 2.14 1001.58 184.65

October 217.06 66.08 22.08 15.39 2.37 1007.77 193.76

November 269.50 64.65 26.26 7.84 2.68 1010.53 161.06

December 135.38 61.61 11.91 0.86 2.76 1017.33 157.94
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the most substantial negative short-term effect, with a decrement of 1% and an increment of 1 mm and 1 m/s 
leading to reductions in HFRS by about 2 (95% CI 1–4), 1, and 78 (95% CI 46–109) cases, respectively. While 
∆ASH at a 0-month lag showed a negative short-term effect, with a decrement of 1 h contributed to a reduction 
in HFRS by 1 case. Likewise, there were no significant short-run coefficients in ∆MAP and ∆MT, we still captured 
the direction of the effects for these factors. Figure 3 visually portrays the asymmetric adjustment patterns of 
HFRS in adapting to the long-term equilibrium in light of positive and negative shifts in meteorological factors. 
This further supports the long- and short-term asymmetric and/or symmetric influences of these factors on 
HFRS (Fig. 3a–e). For instance, Fig. 3a shows a red dashed line that first increases and then decreases but the 
coefficients are always above 0, validating the negative short-term asymmetric relationship that transitions to a 
positive long-term asymmetry.

Forecasting ability evaluation
Using data from January 2004 to December 2018, we developed both ARDL and NARDL models and subse-
quently made predictions for January to December 2019. Figure 4 showcases the simulation and forecasting 
outcomes, while Table 4 delves into the predictive accuracy of each model. It was evident that the NARDL’s 
error metrics were consistently lower than the ARDL’s in both the simulation and prediction stages. Moreover, 
when comparing the forecasting performance with the commonly used GAM and ARIMA models, the NARDL 
model demonstrated lower forecasting error rates than those of both models (Table S4). Importantly, the sen-
sitivity analysis revealed that the NARDL model also exhibited lower forecasting error rates compared to other 
models (Table S4). These results emphasize the effectiveness and suitability of the NARDL model in capturing 
the intricate interrelationships present in HFRS incidence data.

Discussion
Growing evidence associates climatic parameters with HFRS11,15,16. However, the asymmetric relationships in 
both long and short terms have been underexplored. This study, utilizing the NARDL, is pioneering in decom-
posing climatic parameters into positive and negative partial sums to assess these effects on HFRS in Shandong. 
Our results underscore meteorological factors’ dual role in influencing HFRS transmission both in long- and 
short-term contexts. The NARDL, incorporating these factors, depicted a more accurate dependence structure 

Figure 2.   Stability test for the NARDL. (a) CUSUM test, (b) CUSUM of squares test. The CUSUM and CUSUM 
of squares were not beyond 95%CI at various time suggested the efficacy and stability of the model.
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in HFRS than the ARDL, supporting the early predictive utility of combining meteorological factors and NARDL 
for HFRS risk.

There has been a decline in HFRS cases in Shandong during 2004–2019 (AAPC = − 9.568%), aligning with the 
broader trend observed across China4. Nonetheless, a few cities, such as Daqing, Songyuan, and Tonghua, have 
seen a minor uptick in recent years11. Government initiatives like vaccination, rodent control, public awareness 
campaigns, and environmental management have been crucial in driving this decline4. The pattern of HFRS 
cases shows two prominent peaks, one in spring and another in autumn, which corresponds with the seasonal 
pattern seen in both China and Korea4,30. This seasonality might be intimately tied to rodent population dynam-
ics, human behavior, and environmental conditions31,32. One potential impact of seasonality on HFRS cases is 
the fluctuation in rodent populations throughout the year. Rodents are the primary reservoirs of hantaviruses, 
and their populations tend to increase during the warmer months when food and shelter are more abundant31. 
This increase in rodent populations can lead to a higher risk of human exposure to the virus, resulting in an 
uptick in HFRS cases during the spring and autumn32. Human behavior may also play a role in the seasonality 
of HFRS cases31. People tend to spend more time outdoors during the warmer months, increasing their chances 

Table 2.   Long- and short-term effects using the preferred NARDL and ARDL. Note: MT and MAP were 
entered into two different models with other weather variables. Since the coefficient represents the increased or 
decreased HFRS cases attributable to the different meteorological factors, and thus when reporting effect sizes, 
it is customary to round up to the nearest whole number if there is a decimal point present in this study.

NARDL ARDL

Variable Coefficient (95% CI) P Variable Coefficient (95% CI) P

Long-run effect Long-run effect

 MRH(+) 9.045 (3.029, 15.061) 0.004  MRH 9.299 (− 1.935, 20.532) 0.107

 MRH(−) 5.758 (− 0.342, 11.857) 0.066  AP − 0.142 (− 1.268, 0.984) 0.805

 AP(+) 0.664 (− 0.158, 1.485) 0.115  MWV 39.243 (− 129.176, 207.661) 0.649

 AP(−) 0.251 (− 0.559, 1.061) 0.545  ASH 3.227 (0.795, 5.659) 0.010

 MWV(+) 76.631 (− 18.92, 172.182) 0.118  MAP − 1.727 (− 2.933, − 0.521) 0.006

 MWV(−) 66.964 (− 26.386, 160.314) 0.162  MT − 19.490 (− 62.253, 23.274) 0.373

 ASH(+) 1.469 (0.262, 2.676) 0.018 Short-run effect

 ASH(−) 2.107 (0.948, 3.266) 0.001  D(MWV) − 16.067 (− 39.285, 7.151) 0.177

 MAP(+) 2.676 (− 10.066, 15.418) 0.681

 MAP(−) 8.010 (− 3.577, 19.598) 0.177

 MT(+) − 14.661 (− 34.641, 5.32) 0.152

 MT(−) − 11.772 (− 31.7, 8.157) 0.249

Short-run effect

 ∆MRH(−) − 1.732 (− 3.715, 0.25) 0.089

 ∆MRH(−), 1-month lag − 1.552 (− 3.067, − 0.036) 0.047

 ∆AP(+) − 0.042 (− 0.221, 0.137) 0.644

 ∆AP(+), 1-month lag − 0.235 (− 0.428, − 0.042) 0.018

 ∆AP(+), 2-month lag − 0.198 (− 0.371, − 0.025) 0.026

 ∆MWV(+) − 77.158 (− 108.982, − 45.334)  < 0.001

 ∆MWV(+), 1-month lag − 44.755 (− 77.054, − 12.456) 0.007

 ∆ASH(−) 0.357 (0.02, 0.694) 0.040

 ∆MAP(+) − 2.165 (− 5.731, 1.401) 0.236

 ∆MT(−) 1.859 (− 3.526, 7.244) 0.500

Table 3.   Long- and short-term asymmetry results using Wald test. Note: MT and MAP were entered into two 
different models with other weather variables.

Variable

Long-term 
asymmetry

Short-term 
asymmetry

WLR P WSR P

MT 0.664 0.507 0.677 0.450

AP − 2.697 0.008 − 2.419 0.017

ASH 2.561 0.011 2.075 0.040

MWV 0.475 0.635 − 4.594  < 0.001

MRH − 1.810 0.072 − 2.515 0.013

MAP 1.963 0.051 − 1.190 0.236
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of coming into contact with infected rodents or their droppings. Furthermore, agricultural activities such as 
farming and harvesting also peak during the spring and autumn months in Shandong, potentially increasing 
the risk of exposure to hantaviruses32.

Predicting HFRS epidemic based on meteorological factors is instrumental in shaping proactive responses, 
ensuring public safety, and optimizing resource utilization. This study found that the integration of meteorologi-
cal factors into the NARDL model represents a significant advancement in the prediction of HFRS incidence. 
Compared to the commonly used ARDL model, the “autoregressive” term of NARDL is able to include delayed 
values of HFRS morbidity itself, the “nonlinear” aspect shows that the association of HFRS with meteorological 
parameters can be nonlinear, and the “distributed lag” implies that current observations of HFRS incidence are 
influenced by its past observations and past observations of meteorological parameters. These enable offering 
several advantages in modeling HFRS incidence series20–23: (1) asymmetry. This refers to cases where the impact 
of positive changes in weather factors might be different from the impact of negative changes; (2) short- and 
long-term dynamics. Including lagged values of variables in the model allows for the examination of both 
immediate and persistent impacts of weather factors, contributing to a more comprehensive analysis; (3) easy 

Figure 3.   Dynamic multiplier asymmetric effects of climatic variables on HFRS. (a) Multiplier graph for 
MRH, (b) multiplier graph for AP, (c) multiplier graph for MWV, (d) multiplier graph for ASH, e. multiplier 
graph for MAP, (f) multiplier graph for MT. Cumulative dynamic multipliers indicated the cumulative effect of 
meteorological factors on the spread of HFRS over time. These multipliers help in elucidating how changes in 
meteorological variables influence the incidence of HFRS over a period of time. By capturing the cumulative 
impact of these variables, researchers can gain insights into the long-term effects of meteorology on the spread 
of HFRS. For instance, in (a), the red dashed line shows the cumulative asymmetric effect of MRH on HFRS. 
The coefficient is found to be positive (above 0) and statistically significant at the start of the evolution, and 
then the value slightly decreased (above 0) when approaching the long-run. Overall, it suggests that an increase 
in MRH over time is associated with a higher incidence of HFRS. In (b), the red dashed line changed from a 
negative value to a positive value, showing that a decrease in AP is first linked to a lower incidence of HFRS in 
the short term, but then the negative short-term asymmetric relationship would transition to a positive long-
term asymmetry.
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interpretation. NARDL allows for straightforward interpretation of coefficients, as it can directly capture the 
direction and magnitude of the effects of weather factors. This enhances the understanding of the relationship 
between variables and facilitates policy or decision-making; (4) enhanced model fit: the inclusion of nonlinear 
and asymmetric terms in NARDL improves the model fit by better capturing the underlying dynamics of the data, 
leading to more accurate and reliable predictions. These qualities equip the NARDL model to better consider 
the complex interactions between meteorological conditions and HFRS transmission dynamics, resulting in a 
more accurate and nuanced prediction of HFRS epidemic by use of the NARDL model. Therefore, it seems that 
the weather-integrated NARDL can be transferable to analyze and forecast HFRS epidemic in other regions and 
even for all similar phenomena, but it entails further validation.

Our findings revealed a significant and asymmetric impact of rainfall on HFRS, both in the short 
(WSR = − 2.419, P = 0.017) and long (WLR = − 2.697, P = 0.008) terms. From a long-term perspective, we observed 
a positive relationship despite no significance in the long-term coefficient (AP(+) = 0.664, P = 0.115; AP(−) = 0.251, 
P = 0.545). This finding concurs with a previous study33, which suggested a causal link between autumn crop 
production and HFRS. Precipitation affects vegetation growth and rodent food availability. Increased rainfall 
can lead to abundant food resources for rodents, causing an upsurge in their population, thus higher transmis-
sion rates of hantaviruses18. But, adopting a short-term view, we found a reverse association between AP(+) at 
1–2 month delays (with coefficients of − 0.235, P = 0.018; − 0.198, P = 0.026, respectively) and HFRS, aligning 
with prior studies conducted in Shandong34, Anqiu35, Jiaonan36, together with Jiamusi and Qiqihar37. Notably, 
the majority of HFRS cases in China have occurred in low-lying regions and wetlands37. In such environments, 
heavy short-term rainfall serves to disrupt rodent nests and diminish rodent-human interactions due to reduced 
rodent activity and decreased human exposure over the long term37. However, our results diverge from a study 
in Heilongjiang that indicated no connection between rainfall and HFRS38. This discrepancy may be due to 
three potential reasons: (1) the earlier study employed a linear ARIMA model that failed to capture the complex 
relationship between these variables38; (2) the previous findings were derived from data spanning January 2001 
to December 200938, whereas our findings were based on data from January 2004 to December 2019, potentially 
resulting in divergent outcomes due to the different time periods analyzed; (3) the prior study solely gathered 
MT, MRH, and AP data38, without accounting for other meteorological confounding variables.

This study highlights a short-term asymmetric correlation between humidity and HFRS (WSR = − 2.515, 
P = 0.013), rather than a long-term asymmetry (WLR = − 1.81, P = 0.072). In the long term, we observed a posi-
tive relationship (MRH(+) = 9.045, P = 0.004; MRH(−) = 5.758, P = 0.066), matching well with the findings from 
other investigations10,35. Humidity can impact rodent behavior, such as their movement and nesting habits11. 
Specific humidity conditions may favor virus survival outside the host, increasing the risk of transmission11. 
Also, a prior study identified a temporal correlation between host densities in the third quarter and HFRS in the 
fourth quarter and revealed a positive link between MRH and host densities in the third quarter39. This consist-
ency with our findings suggests that MRH could influence the densities of mites on hosts. In the short term, we 

Figure 4.   Comparison of the fitting and predictive values from the ARDL and NARDL. The results from this 
figure indicated that overall, the curve simulated and predicted by the NARDL model (red line) more closely 
matched the actual observations (black line) compared to the ARDL model, showing that NARDL model can 
better capture the dynamic dependence characteristics of HFRS epidemic.

Table 4.   Comparison of the fitting and forecasted abilities between ARDL and NARDL.

Models

Fitting part Forecasting part

MAD MAPE RMSE MER MAD MAPE RMSE MER

ARDL 21.484 0.238 30.814 0.175 32.485 0.477 42.583 0.520

NARDL 20.564 0.237 28.453 0.167 16.754 0.263 21.984 0.268
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observed a reverse relationship between HFRS and MRH(−) with a l-month lag (coefficient = − 1.552, P = 0.047), 
in line with earlier investigations15,18. As MRH is closely linked with AP, our study’s findings also align well with 
the outcomes seen in AP-related research19. This congruence could be explained by reduced rodent-human 
interaction, decreased rodent population density, and a more pronounced adverse effect of elevated MRH on 
hantavirus infectivity and stability11,18.

This study indicated long- (WLR = 2.561, P = 0.011) and short-run (WSR = 2.075, P = 0.04) asymmetries 
between ASH and HFRS (with coefficients of ASH(+) = 1.649, P = 0.018, ASH(−) = 2.107, P = 0.001, and 
∆ASH(−) = 0.357, P = 0.04), consistent with earlier observational studies17,35. Sunlight may not directly affect 
rodent populations, but it has an indirect effect. Sunlight exposure is closely related to the ecological environ-
ment, particularly in humid areas, which are conducive to the survival and reproduction of rodents, leading 
to an increase in the rodent population, elevating the potential reservoirs of hantaviruses and thus raising the 
risk of HFRS transmission11. Besides, Shandong is the largest agricultural province in China, where suitable 
sunlight exposure often plays a significant role in agricultural production. Farmlands provide abundant food 
resources, attracting the aggregation of rodents. Crop cultivation and agricultural activities might disturb soil 
and vegetation, causing changes in rodent habitats, making them more likely to come into contact with humans 
and increasing the opportunities for HFRS transmission11.

A long-term symmetric negative correlation between MAP and HFRS was observed (MAP = − 1.727, 
P = 0.006), inconsistent with recent studies16,40. Plausible explanations are that16,28,40,41: (1) changes in MAP might 
influence rodent behavior, potentially impacting their interaction with humans or with each other. This could 
affect the transmission dynamics of the hantaviruses responsible for HFRS. (2) MAP can affect weather patterns 
and conditions, potentially impacting the habitats or breeding conditions of the rodents that are vectors for 
HFRS. A study indicated that elevated MAP levels are often linked to lower humidity28,41, these conditions are 
unfavorable for the survival and transmission of hantaviruses. (3) Changes in MAP often come with weather 
changes, which might alter human outdoor activities, influencing the likelihood of contact with infected rodents.

A negative correlation between increased MWV and HFRS (with coefficients of ∆MWV(+) = − 77.158, 
P < 0.001, ∆MWV(+) at a l-month lag = − 44.755, P = 0.007) was observed in the short term (WSR = − 4.594, 
P < 0.001), fitting well with a recent study in Shenyang15. Such an association can be attributed to several 
factors17,28,41. First, higher wind speeds can lead to better dispersion of aerosols and particles in the air, poten-
tially reducing the concentration and longevity of infectious agents responsible for HFRS transmission. Second, 
increased wind can inhibit the survival and stability of viruses in the environment, making it more challeng-
ing for the causative agents of HFRS to persist. Lastly, higher wind speeds are often associated with improved 
ventilation and air circulation, which can dilute the concentration of pathogens and prevent their accumulation 
in specific areas. This, in turn, reduces the likelihood of contact between humans and the sources of infection. 
Besides, studies indicated that temperature can influence the breeding and viability of rodents, as well as the 
infectivity of hantaviruses17,18,42,43. Also, it can impact the behaviors of both rodent populations and human 
communities11,18,43. However, our study suggested an uncorrelation between them. This discrepancy may be 
because40,42,44: (1) prior studies used linear models such as generalized linear model and SARIMA, which cannot 
adequately capture the dynamic relationship between them; (2) meteorological factors exhibited great variation 
in different regions, thus further investigation was warranted locally, favoring the development of region-specific 
climate-based forecasting models.

The practical implications of our findings: by analyzing the long- and short-run asymmetric relationships 
between meteorological factors and HFRS, public health authorities in Shandong can better understand the 
intricate environmental conditions that are conducive to the spread of the disease. This information can then be 
used to develop early warning systems that alert communities to the potential for an outbreak of HFRS, allowing 
for timely intervention and prevention measures38,45. In addition, by understanding how changes in meteorologi-
cal conditions affect the incidence of HFRS, authorities can implement targeted interventions such as rodent 
control measures, public education campaigns, and vaccination programs to reduce the risk of transmission. This 
proactive approach can help to prevent outbreaks of HFRS and minimize the burden of the disease on affected 
communities46. Also, the findings can prioritize surveillance and control efforts in high-risk HFRS areas, ensuring 
that resources are directed where they are most needed. This targeted approach can help to maximize the impact 
of prevention strategies and improve the overall effectiveness of public health interventions.

Our study also has some limitations. First, it is inevitable to encounter under-reporting or under-diagnosis 
issues in a passive monitoring system. Second, being an ecological trend study, it does not allow for the explora-
tion of individual-level relationships or the inference of causal effects. Third, a more detailed temporal analysis 
could have been achieved with daily or weekly data, but their unavailability hinders further investigation. Fourth, 
this study only considers the long and short-term asymmetric independent effects of meteorological factors on 
HFRS. Further research is needed to explore the complex the long and short-term asymmetric interactions of 
pollution and climatic factors on HFRS and to develop comprehensive strategies to protect the ecological bar-
rier of HFRS for mitigating the impact of HFRS on public health12,15. Fifth, the current findings are based on 
data from Shandong, it is worth further exploring whether these discoveries can be generalized to other regions 
with different climate conditions. Lastly, we did not account for the impact of unmeasured confounders such as 
geographic and socioeconomic factors, population density, and host susceptibility.

Conclusions
Taken together, our findings highlight the significant and potentially asymmetric and/or symmetric roles of 
weather factors in the long- and short-term HFRS incidence. Integrating meteorological variables into pub-
lic health intervention plans appears crucial, especially in the context of global climate change. The NARDL 
proves more suitable for capturing the dynamic epidemic structure of HFRS incidence compared to the ARDL. 
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Weather-integrated NARDL prediction model for HFRS is a promising approach in the realm of public health, 
offering a proactive means to anticipate, prepare for, and combat disease epidemic. By understanding and har-
nessing the relationships between weather patterns and HFRS dynamics, we can better protect communities 
and reduce this disease burden.

Data availability
All data for this work are presented in the results and conclusions or please contact the corresponding author 
on the reproducibility of this work.
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