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Tangential velocity constraint 
for orbital maneuvers with Theory 
of Functional Connections
A. K. de Almeida Jr. 1*, T. Vaillant 1,2, V. M. de Oliveira 2,3, D. Barbosa 4, D. Maia 1, 
S. Aljbaae 5,6, B. Coelho 2,7, M. Bergano 1,7, J. Pandeirada 4,8, A. F. B. A. Prado 5, A. Guerman 9 & 
A. C. M. Correia 10,2

Maneuvering a spacecraft in the cislunar space is a complex problem, since it is highly perturbed by 
the gravitational influence of both the Earth and the Moon, and possibly also the Sun. Trajectories 
minimizing the needed fuel are generally preferred in order to decrease the mass of the payload. 
A classical method to constrain maneuvers is mathematically modeling them using the Two Point 
Boundary Value Problem (TPBVP), defining spacecraft positions at the start and end of the trajectory. 
Solutions to this problem can then be obtained with optimization techniques like the nonlinear 
least squares conjugated with the Theory of Functional Connections (TFC) to embed the constraints, 
which recently became an effective method for deducing orbit transfers. In this paper, we propose a 
tangential velocity (TV) type of constraints to design orbital maneuvers. We show that the technique 
presented in this paper can be used to transfer a spacecraft (e.g. from the Earth to the Moon) and 
perform gravity assist maneuvers (e.g. a swing-by with the Moon). In comparison with the TPBVP, 
solving the TV constraints via TFC offers several advantages, leading to a significant reduction in 
computational time. Hence, it proves to be an efficient technique to design these maneuvers.

In order to perform planetary or interplanetary maneuvers within the solar system, a spacecraft changes its 
velocity. Such a variation can be obtained, for instances, with a gravity assist maneuver after a close encounter 
with a massive body or via specific impulses due to the burn of propellant preloaded in the spacecraft. In the 
case of a spacecraft initially orbiting the Earth, a velocity impulse can be applied in a specific direction to guide 
the spacecraft toward its target. This is characterized by the flight-path angle, which is the angle between the 
local horizontal (the line perpendicular to the radius vector) and the velocity vector1. When this angle is equal 
to zero, the velocity is tangential to the local orbit. A tangential velocity represents the direction of the initial (or 
final) velocity after (or before) the application of the impulse of a trajectory that minimizes the costs to transfer 
a spacecraft between circular orbits1. This result also holds for transfers between elliptical orbits, with the point 
of burn located at either its perigee or apogee2. A tangential velocity is the solution of the optimization procedure 
within a two-body problem approach3, although different solutions can take advantage of symmetries for some 
specific transfers between co-planar elliptical orbits. In a model more complex than the two-body problem, tan-
gential burns turned out also from numerical evidences to be able to minimize the costs involved in impulsive 
maneuvers, although there is no analytical proof. For instance, this result can be seen in4 for Earth-to-Moon 
or Moon-to-Earth transfers. Furthermore, a tangential initial velocity with respect to the point of burn at the 
initial circular orbit represents the maximum efficiency to transfer a spacecraft from the Earth to the Moon5. 
This tangential velocity assumption is used to solve the transfer problem (and assess costs) in various works, 
such as6,7, employing the shooting method.

The Theory of Functional Connections (TFC) is a recently developed mathematical framework to perform lin-
ear interpolation8,9. TFC derives functionals that contain a free function and satisfy linear constraints, regardless 
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of the form of the free function. These functionals enable the search for solutions in a subspace of functions 
that analytically satisfy the linear constraints. TFC can be applied to transform a constrained problem into an 
unconstrained one, thereby converting differential equations subject to constraints into unconstrained ones10. 
For example, these differential equations can represent the equations of motion of a spacecraft11. The procedure 
searches for a solution (finds the trajectory) in a subspace that exactly satisfies the specified linear constraints. 
This is important, because TFC embeds the type of constraints proposed in this work into the dynamical model. 
A nonlinear least squares method12 is then employed to enhance efficiency of a numerical procedure to solve 
the problem, and, hence, to design the proposed orbital maneuvers.

The Two Point Boundary Value Problem (TPBVP) in an astrodynamics context consists of searching for a 
solution that enables a spacecraft to travel from point A to point B. Thus, only the positions of the spacecraft are 
given, and the velocities at these points are unknown and need to be determined. One technique for solving this 
problem is the shooting method, which reduces the problem to a sequence of initial value problems. The method 
relies on the integration of the initial conditions multiple times to match the boundary conditions. In astrody-
namics, this procedure can leverage solutions of the Lambert’s problem as an initial guess13, can be combined 
with a direct transcription14 and multiple shooting approach6, among others in the literature, like the sequential 
gradient-restoration algorithm15. The TPBVP can also be efficiently solved using TFC11. For instance, spacecraft 
transfers from Earth to the Moon16 or between other bodies in the Solar system17 have been evaluated using TFC 
via the TPBVP constraints. In this paper, it is proposed the use of a set of constraints different from the TPBVP, 
called TV (tangential velocity) type constraints. In these constraints, the final position is free to be anywhere 
on a circumference around the Moon, rather than a single specific point. The approach combines analytical and 
numerical techniques to efficiently search for solutions satisfying the TV type constraints.

The primary objective of this paper is to introduce the TV type constraints to design orbital maneuvers and 
demonstrate their efficiency - via the TFC procedure - to transfer a spacecraft from Earth to the Moon and to 
perform a gravity assist maneuver with the Moon. The TFC allows us to improve efficiency by analytically embed-
ding the TV type constraints into the equations of motion of the spacecraft to be maneuvered. The proposed 
method is compared to the TPBVP types of solution also solved via a TFC procedure. Although the TV type 
constraints are coupled and nonlinear in rectangular coordinates, as will be shown later, these constraints can 
become linear after a proper change of coordinates, as was demonstrated in18. Thus, a set of polar coordinates 
centered at the Moon is adopted in this paper in order to linearize the proposed constraints.

In Section “Dynamics modelling”, the reference frames and the proper (polar) variables used in this work 
are defined and the equations of motion are derived. Section “TV type constraints” introduces the TV type 
constraints proposed in this paper, outlines their application scope with TFC, and highlights their advantages 
in comparison to the TPBVP type of constraints. In Sect. 4, a practical application of the TV type constraints is 
provided by transferring a spacecraft from a circular orbit around Earth to a circular orbit around the Moon, aim-
ing to determine the minimum �V  required for this maneuver. The advantages of using TV type constraints are 
also discussed for this maneuver. Section “Moon’s gravity assist maneuver” offers a second application of the TV 
type constraints involving a gravity assist with the Moon. The influence of the parameters on the efficiency of the 
maneuver is investigated. Finally, Section “Conclusions” summarizes the main conclusions drawn from this work.

Dynamics modelling
An inertial frame of reference with coordinates ( xI , yI ) centered at the Sun is defined. The Earth and the Moon 
rotate in circular orbits around their common barycenter, which is the center of a rotating frame of reference 
with coordinates ( xb, yb ) at a distance Rs from the Sun, where Rs is the position of the Sun with respect to the 
barycenter. This frame rotates with the same constant angular speed ω of the Earth and the Moon with respect 
to the inertial frame. Additionally, its center undergoes rotation around the Sun. Both frames are co-planar, as 
shown in Fig. 1 with respect to the inertial frame.

The equations of motion of a satellite in the rotating frame are given by

where rb is the position of the body with respect to the barycenter in the rotating frame; ω = (0, 0,ω) is the angu-
lar velocity of the rotating frame; µe , µm , and µs are the gravitational parameters of the Earth, Moon, and Sun, 
respectively; re , r , and rs are the position of the satellite with respect to the Earth, Moon, and Sun, respectively; 
and Rs = rb − rs is the position of the Sun in the rotating frame of reference. The vectors and bodies involved 
in the motion can be seen in Fig. 2 from the perspective of the rotating frame of reference.

The motion of the satellite must be described relative to the Moon in order to satisfy linearity conditions 
in the constraints. The position of the satellite can be written as a function of the position relative to the Moon 
using the transformation

where Rm = d2x̂b is the position of the Moon relative to the barycenter, with d2 = Rµe/(µe + µm) , where R is 
the distance between the Earth and the Moon. Thus, the equations of motion with respect to the Moon can be 
derived by replacing Eq. (2) into Eq. (1), resulting in
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The components of r can be written in rectangular coordinates as the pair (x, y), defining a system of coordinates 
centered at the Moon, as illustrated in Fig. 3. Here, r represents the position of the satellite with respect to the 
Moon. This clarification is essential, because the forthcoming constraints will be linearly defined with respect 
to the Moon, not the barycenter. The coordinate r is defined as the distance between the satellite and the Moon, 
while the coordinate θ is the angle between the position vector r and the y-axis, with positive values in the coun-
terclockwise direction (refer to Fig. 3).

Thus, the polar coordinates are defined based in the following transformation from rectangular coordinates

(4)
{

r̂ = − sin θ x̂ + cos θ ŷ,

θ̂ = − cos θ x̂ − sin θ ŷ.

Figure 1.   The rotating frame of reference ( xb, yb ), with the Earth and the Moon, with respect to the inertial 
frame of reference ( xI , yI ) centered at the Sun.

Figure 2.   The four bodies and main vectors in the rotating frame perspective.
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Since r and θ are variables dependent on time, the position, velocity, and acceleration are given by

In accordance with the polar coordinates (r, θ) defined above, the equations of motion of the satellite given by 
Eq. (3) become

where the independent variable is t and the dependent variables are r(t) and θ(t) . Here, Pr and Pθ are the com-
ponents of the perturbation of the Sun on the satellite in, respectively, r̂ and θ̂ directions, as expressed by

where

with magnitude rs and

where Rs = 1 AU and θs is the angular position of the Sun relative to the rotating frame centered at the barycenter. 
This angle is given by θs = ωst + γ , where γ and ωs are the initial angular position and velocity of the Sun with 
respect to the rotating frame, respectively. The values of the parameters used in this work are shown in Table 1. 
For comparison purposes, these values are the same as those used in6,16,19,20.

TV type constraints
The constraints introduced in this paper dictate that the spacecraft travels from a point A to any location on a 
circle of radius rp around the Moon. Additionally, the final velocity must be such that its component in the radial 
direction is zero. In this section, these constraints are precisely formulated in mathematical terms and integrated 
into the equations of motion using TFC. Subsequently, it is demonstrated that these constraints serve to address 
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2ṙ(θ̇ + ω)+ r θ̈ + ω2d2 cos θ − µeR cos θ
(

r2 − 2rR sin θ + R2
)3/2

− Pθ = 0,

(7)Pr r̂ + Pθ θ̂ = −µs

r3s
rs −

µs

R3
s

Rs ,
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Figure 3.   The systems of coordinates rectangular ( xb, yb ) centered at the barycenter, rectangular (x, y) centered 
at the Moon, and polar ( r, θ ) centered at the Moon.

Table 1.   The values of the parameters used in this research.
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two distinct problems: assessing the associated costs of an Earth-to-Moon transfer and evaluating the gains (e.g. 
specific energy) obtained by utilizing the Moon for a gravity assist maneuver, propelling the spacecraft to higher 
speeds in the trans-lunar space.

Definition
The TV (Tangential Velocity) type constraints characterize a trajectory starting from an initial point (specified 
by coordinates r0 and θ0 ) at time zero and extending to any point on a circle of radius rf  around the center of the 
system of coordinates (the center of the Moon) at time T. Furthermore, the velocity at this specified time is such 
that its radial component is zero. The mathematical definition of the TV type constraints is shown in Table 2, 
and a visual representation of these constraints concerning the main celestial bodies is depicted in Fig. 4. It is 
noteworthy that the final position is not uniquely determined, allowing for any point on a circle around the 
Moon. This means that, if a solution exists (and a convergence is reached by the method), it will converge to any 
point at a distance rf  from the center of the Moon such that the other constraint given by a null radial component 
velocity is also satisfied.

Using TFC to embed the TV type constraints into the equations of motion
The TFC is extensively developed to address uncoupled and linear constraints on dependent variables8. TFC 
proves versatile for accommodating any number of constraints of the form

Table 2.   The constraints of the Two Point Boundary Value Problem (TPBVP) and the Tangential Velocity 
(TV) proposed in this paper.

Type Time

Position Velocity

Radial Angular Radial Angular

TPBVP
t = 0 r = r0 θ = θ0 none none

t = T r = rf θ = θf none none

TV
t = 0 r = r0 θ = θ0 none none

t = T r = rf none ṙ = 0 none

Figure 4.   (a) The TPBVP involves a transfer from point A to point B without constraints on the velocity. (b) 
The TV type constraints represent a transfer from point A to any location at a distance rf  from the center of the 
Moon, with tangential velocity relative to the dashed circular final orbit.
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where k is an integer, tn represents a specific time t value, and x(k)n  denotes the particular value of the k-th deriva-
tive of x evaluated at time tn . For instance, the combination n = 0 and k = 0, 1 in Eq. (10) characterizes the initial 
value problem (for the time t0 ), while n = 0, 1 and k = 0 in Eq. (10) characterizes the TPBVP (for the times t0 
and t1 ). TFC can also handle relative constraints of the type

where, if i = k , then j  = l , and if j = l , then i  = k . Finally, TFC can manage integral type constraints for certain 
cases of linear equations21.

The TV type constraints at time T represent a fixed final radius around the Moon with a null tangential veloc-
ity at this point. In rectangular coordinates, these constraints are expressed as

In rectangular coordinates, these constraints are coupled and nonlinear. Consequently, applying TFC directly to 
embed the TV type constraints in these coordinates is not feasible. However, a proper change of coordinates can 
be implemented to transform coupled and nonlinear constraints into uncoupled and linear ones18. The coordi-
nates r, θ defined in Section “Dynamics modelling” are adopted in this paper because the TV type constraints 
are linear on these variables. At time T, they become

As a result, the constraints are now uncoupled and linear, making it possible to use TFC to embed them into the 
equations of motion, as described next.

The constraints shown in Table 2 are linear on the dependent variables, allowing them to be incorporated 
into the equations of motion (Eq. 6) using TFC in polar coordinates. Any solution of the resulting equations 
exactly satisfies these constraints. Following the methodology in8, the constrained expression for the dependent 
variable r(t) is derived from a linear combination of a free function and a given number of support functions, 
which are linearly independent with regarding to each other and to the free functions, and whose number is 
equal to the number of constraints. Since there are three constraints for the radial coordinate and its derivatives, 
the constrained expression can be derived from

where gr(t) is the free function associated to the r coordinate and ηk(t, g(t)) and sk(t) , for k = 0, 1, 2 , are coef-
ficients and given support functions, respectively. For the purpose of this work, the coefficients ηk(t, g(t)) are 
constants in time (e.g.8). To simplify, we also choose the support functions as elements of the canonical basis of 
polynomials of order 2 ( s0(t) = 1 , s1(t) = t , s2(t) = t2 ), according to9. The TV type constraints shown in Table 2 
for the r(t) coordinates are given by

A set of three equations are generated by substituting r(t) from Eq. (14) into Eq. (15). This set of equations is 
solved for the three coefficients ηk for k = 0, 1, 2 . This operation ensues the derivation of the following constrained 
expression for r(t)

where g ′r(T) represents the derivative of the free function gr(t) with respect to t evaluated at t = T . Analogously, 
the constrained expression for the θ variable can be derived as

where gθ (t) is the free function for the θ coordinate. The free functions are written as
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where ξj and ζj are unknown coefficients, hj are the orthogonal Chebyshev polynomials (e.g.22), and m is its 
highest order truncation. It is important to note that the orthogonal Chebyshev polynomials are valid only in 
the interval −1 ≤ τ ≤ 1 , hence the change of the independent variable from t to τ given by τ = 2t/T − 1 must 
be performed in order to satisfy this time interval. Note that the sum starts at j = 3 and j = 1 for gr and gθ , 
respectively, because the terms of the polynomials must be linearly independent with the support functions, and 
there are three support functions (for the three constraints given by Eq. (15)) for r (and its derivative) and one 
only support function (for the constraint θ(0) = θ0 ) for θ.

The free functions shown in Eq. (18) are used in the expressions for the r and θ variables shown in Eqs. (16) 
and (17). After this, the dependent variables r and θ in Eq. (6) are replaced by the respective ones given by 
Eqs. (16) and (17). This procedure ensues in a set of two unconstrained differential equations. This set is discre-
tized through the collocation points method using the Chebyshev-Gauss-Lobatto nodes23 distributed between 
0 and T as follows

where (N + 1) is the number of equations generated by this procedure for each equation in Eq. (6). These equa-
tions are then solved for the unknown coefficients ξj for j = 3, 4, ...,m and ζj for j = 1, 2, ...,m using the nonlinear 
least squares optimization method24 to minimize the sum of the squares of the left sides of Eq. (6) under the 
distribution given by Eq. (19). Further details on the TFC procedure can be seen in8,24.

Comparison with the TPBVP
The problem represented by the TPBVP is to transfer a spacecraft from point A around the Earth to point B 
around the Moon in a given transfer time T, as seen in Fig. 4a. The constraints of the type TPBVP are shown in 
Table 2. Although two positions are specified at two times, there is no constraint on the velocity.

In this paper, it is proposed the use of the TV type constraints for this problem. These constraints are identical 
to the traditional TPBVP at the initial time ( t = 0 ), but at the final time ( t = T ), a constraint is applied in the 
radial component of the final velocity ṙ(t)|t=T , instead of applying the constraint at the angle θ(T) . A comparison 
between the TV and TPBVP types of constraints is shown in Table 2. The main distinction between the TV and 
TPBVP types is that the final velocity and position are perpendicular in the TV type, i.e. (r · ṙ)|t=T = 0 . Since 
the system of coordinates is centered at the Moon, the final velocity is tangential to a final circular orbit of radius 
r|t=T = rf  to which the spacecraft is transferred.

As was mentioned earlier, for maximum efficiency of the burn, tangential burn occurs only at apogee or peri-
gee on elliptical orbits1,2. This result is valid in a two-body problem local approximation3. In a three body-problem 
context, the impulse applied in the same direction as the velocity relative to the rotating frame maximizes the 
change in the Jacobi constant5. In a restricted four body-problem context, a tangential impulse is assumed in 
the numerical procedure given by the shooting method to evaluate the costs for Earth-to-Moon transfers in6, 
which is adopted also using lunar gravity assist7. A tangential burn applied at perigee or apogee is represented by 
the tangential velocity constraint (included in the TV type constraints) and it is analytically integrated into the 
equations of motions using TFC. Hence, any solution numerically obtained using the procedures explained in 
this section must satisfy this constraint, which is not present in the TPBVP. Besides that, the tangential velocity 
in the two-body context means that this point is the periapsis of the orbit around the Moon, so there is no risk 
of collision of the spacecraft with the Moon. In fact, the motion close to the Moon for short periods of time can 
be approximated by the two-body problem. The TV type constraints can be visualized in Fig. 4b with the dashed 
circular initial and final orbits of the transfer. Note that the point B is not defined in the final orbit because there 
is no constraint in the final angle θ(T).

Earth‑to‑Moon transfer using the TV type constraints
The task in this section is to transfer a spacecraft from an initial circular orbit around the Earth to another cir-
cular orbit around the Moon within a specified time transfer duration T using bi-impulsive maneuvers. A first 
impulse �V1 is applied at the initial orbit around the Earth to initiate the transfer, and another impulse �V2 is 
applied at the final time t = T to circularize the orbit around the Moon. The spacecraft is transferred under the 
gravitational influence of the Earth, Moon, and Sun. This problem can be formulated as a TPBVP. Several meth-
ods are available to solve it, such as the patched restricted three-body problem25,26, gradient shooting method13, 
direct transcription and multiple shooting method6, and Jacobi integral variational equation27. The bi-circular 
restricted four-body problem has been commonly employed for such transfers in numerous works6,7,20,28–33. 
Furthermore, the TPBVP is solved using TFC for the Earth-to-Moon transfer problem based on the bi-circular 
restricted four-body problem in16. In this paper, an alternative approach is proposed by adopting the TV type 
constraints outlined in Section “TV type constraints”, instead of the TPBVP, to address the Earth-to-Moon 
transfer problem. The efficiency of the solution is enhanced by the TFC procedure described in Section “Using 
TFC to embed the TV type constraints into the equations of motion”. The influence of the Sun can be neglected 
for preliminary works on Earth-to-Moon transfers16. However, the influence of the Sun will be considered in 
this section for the purpose of comparison with previous works.

Advantages of the TV type constraints
The initial position must be specified for both the TPBVP and the TV types of constraints. On the other hand, 
the angle of the final position must be provided only when using TPBVP, because the final angle is unconstrained 

(19)tk =
(

1− cos

(

kπ

N

))

T

2
, for k = 0, 1, 2, ...,N ,
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in the TV type constraints. The TV type constraints show advantages in comparison with the TPBVP type in 
evaluating the costs for transfers between the Earth and the Moon. They are:

•	 The value of θ(T) satisfying ṙ|t=T = 0 (to minimize costs) is directly provided by the solution (by the con-
vergence of the optimization method) when using TV type constraints. On the other side, for the TPBVP 
constraints, an additional optimization procedure must be implemented in order to find the angle of the 
position satisfying ṙ|t=T = 0 . Hence, the numerical solution provided by using the TV type is faster than 
TPBVP type. A quantitative comparison will be shown in Section “Computational efficiency”.

•	 There is no need to use patched conics to solve the transfer problem. In patched conics, the motion is cut out 
in different sections, and each of them corresponds to a two-body approximation, where the main body is 
the one which has the highest gravitational influence on the spacecraft.

•	 The use of integrators (such as Runge-Kutta, etc.) in the code is unnecessary, as required by shooting methods 
to solve TPBVP type constraints. There is no need to iterate the initial conditions multiple times to match 
boundary conditions.

•	 The solution ensures no collision with the Moon. Assuming that the velocity of the satellite in the rotating 
frame is approximately equal to its relative velocity with the Moon in an inertial frame centered at the Moon 
(in a two-body problem context, as shown in34), the condition ṙ|t=T = 0 implies that r(T) is locally the 
periapsis (or apoapsis) of the orbit. In a two-body problem context, the spacecraft has zero radial velocity 
only at the periapsis or apoapsis. The position r(T) cannot be the apoapsis, since the spacecraft comes from 
a region out of the sphere of influence of the Moon.

•	 Since the risk of collision with the Moon is null, there is no need to choose a large rf  , contrary to TPBVP.

Results for a bi‑impulsive maneuver to solve the Earth‑to‑Moon transfer
This subsection presents the costs associated to the use of bi-impulsive maneuvers to transfer a spacecraft from an 
initial circular orbit of 167 km altitude around the Earth to a final orbit of 100 km altitude around the Moon (con-
sidering a radius of the Earth and Moon of 6378 km and 1738 km , respectively). The total cost �V = �V1 +�V2 
is the sum of the impulse �V1 applied at the initial orbit around the Earth and the one applied at the final orbit 
around the Moon �V2 . For comparison purposes, these costs are evaluated in this paper using both the TPBVP 
and TV types of constraints defined in Section “TV type constraints”. Note that the solutions obtained using these 
constraints are deduced for a given initial point A, which can be anywhere in the initial orbit around the Earth 
(see point A in Fig. 4). Hence, an additional procedure must be implemented in order to find the best point A 
related to the lowest cost �V  , as described next:

•	 Simulations are launched for each position (r0, θ0) of point A in the initial orbit of 167 km altitude around 
the Earth (Fig. 4) spanned with a first rough step.

•	 For each position (r0, θ0) , the cost �V  is computed from the simulation.
•	 The position (r0, θ0) presenting the minimum value of �V  , denoted as (r0, θ0)min1 , is determined.

This procedure is repeated, but this time in a smaller interval of the orbit centered on (r0, θ0)min1 with a smaller 
spanning step, in order to determine a more accurate position (r0, θ0)min2 minimizing the value of �V  , and so 
on. The procedure is then repeated several times by successively decreasing the step until a new iteration of the 
procedure no longer modifies the position (r0, θ0) minimizing �V  within a given accuracy. Simultaneously, the 
same procedure is applied for the initial position of the Sun, indicated by the angle γ . The TV type constraints 
do not require an additional procedure to find the best point B (with the lowest cost �V  ) to apply the second 
impulse for the final circular orbit. However, if the TPBVP type is adopted, an additional procedure must also 
be implemented to find the best point B on the final orbit.

The �V  costs evaluated using the TV type constraints are depicted in Fig. 5a as a function of the flight time 
T, where 3 ≤ T ≤ 6.8 days with a step of 0.01 day. These costs consider the gravitational influence of the Sun. 
The lowest cost found in this range is 3945.6619 m/s, associated with a flight time T = 4.59 days. This cost aligns 
with other works in the literature that also consider the solar perturbation for this Earth-to-Moon transfer. For 
instance, the minimum cost of 3949.53 m/s associated with T = 4.59446 days is shown in20, the minimum cost 
of 3944.8 m/s associated with T = 4.6 days in6, and the minimum cost of 3944.83 m/s associated with T = 4.625 
days in16. In comparison, a Hohmann-like transfer requires 5 days with a total cost of 3954 m/s6.

The same �V  costs shown in Fig. 5a were also evaluated using the TPBVP type constraints, but this time 
with the aid of the additional procedure to find the position of the point B in the final orbit (the value of θf  ) that 
minimizes the �V  . The differences between the �V  evaluated using the TV and TPBVP types of constraints 
are shown in Fig. 5b. Note that these differences are very small. The closer to the minimum �V  , the smaller this 
difference. Such a difference around T ≈ 4.59 days could not be properly evaluated in this narrow region because 
it is smaller than the machine level error involved in the numerical procedures. This is an important result, since 
the very small differences between the TV and the TPBVP types of constraints shown in Fig. 5b mean that the 
TV type is almost as accurate as the TPBVP type to minimize the �V  costs.

Computational efficiency
In this subsection, a comparison between the traditional TPBVP and the proposed TV types of constraints is 
done concerning the numerical efficiency of the methods. The Python language with the assistance of the TFC 
module35 is chosen to numerically evaluate the nonlinear least squares method using singular-value decompo-
sition in a just-in-time (JIT) compiler36. This procedure is adopted to solve both the TPBVP and TV types of 
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constraints by embedding the respective constraints into the equations of motion (Eq. 6). In order to determine 
the coefficients ξj and ζj of the free functions (Eq. 18), the TFC method proceeds iteratively with a nonlinear least 
squares procedure to best fit the trajectory with the dynamical equations. An initial guess is then necessary. The 
first initial guess adopted is a trajectory with a constant velocity between a point with a distance of 167 km from 
the surface of the Earth and a point with an altitude of 100 km from the surface of the Moon. After a first itera-
tion, a new set of coefficients is obtained and it is used as an initial guess for the procedure explained in Section 
“Using TFC to embed the TV type constraints into the equations of motion”. The procedure is then solved for a 
flight time T = 1 day, and the solution obtained is used as a initial guess for the following flight time, increased 
by the step used in this work, i.e., 0.01 day.

The average times to find the minimum costs for a given flight time T are shown in Table 3. They are evaluated 
from an ensemble of 100 cases each. The TV type constraints show a reduced computational time of 31.39% in 
comparison with the TPBVP type of constraint for the 4BP case (considering the perturbation of the Sun), and 
also a reduced computational time of 45.35% for the 3BP case. Note that the TFC method to obtain the solu-
tion is very fast - a solution is usually obtained in less than one second for a given set of constraints. The major 
computational cost is the additional optimization procedure, which must be implemented in the code to find 
the position of the point A of the initial orbit, the initial best position of the Sun (the angle γ in the case of the 
4BP), and/or the position B of the final orbit around the Moon in the case of the TPBVP. This last optimization 
procedure (to find the final position around the Moon) is not needed in case the TV type constraints are used. 
This is the main advantage of the TV type in comparison with the TPBVP type constraints.

A residual is defined as the sum of the magnitude of the left side of Eq. (6) allocated for the N + 1 different 
times tk given by Eq. (19). The maximum value of the order of magnitude of the residual divided by N is of the 
order of 10−11 (m/s2 ) for all cases among the TV or TPBVP for the 3BP or 4BP.

Moon’s gravity assist maneuver
A gravity assist maneuver can be completely described by the following three parameters34, which are also shown 
in Fig. 6:

•	 the periapsis distance rp,
•	 the magnitude of the velocity at the periapsis vp,

a)

b)

Figure 5.   The costs of Earth-to-Moon transfers evaluated using the TV type constraints as function of flight 
time T are shown in (a). The difference between these costs evaluated using the TV and the TPBVP types of 
constraints is shown in (b).

Table 3.   Average time to find the minimum �V  cost for a given flight time. The number of points discretized 
in the time domain and the number of basis functions are such that N = 400 and m = 396 . The transfer using 
the TPBVP and the TV types of constraints are both solved using the TFC procedure.

Type of constraints

Computational time (s)

4BP 3BP

TPBVP 49.6575 38.4789

TV 34.0725 21.0278
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•	 the close approach angle θp.

The efficiency of the gravity assist can also be quantified by the velocity gain which corresponds to the increase 
of velocity of the spacecraft with respect to the Earth-Moon barycenter due to the gravity assist maneuver with 
the Moon. The gain in velocity is defined as

where V i and V f  represent the velocities of the spacecraft at the sphere of influence of the Moon in an inertial 
frame of reference centered at the barycenter of the Earth-Moon system before and after the gravity assist 
maneuver, respectively. Assuming that the motion of the spacecraft close to the Moon can be approximated by 
the two-body problem dynamics, this gain is34

where the angle δ (Fig. 6) is defined by

and v∞ is the norm of the relative velocity of the spacecraft with respect to the Moon when approaching it. 
The constant energy of the two-body problem is used to connect this velocity to the velocity at the periapsis, 
according to34

The gain DVb shows the change in velocity due to the gravity assist, but cannot indicate if the velocity increases 
or decreases. Hence, another gain in velocity can be defined by

It measures the gain in the norm of the velocity with respect to the Earth, and can be deduced from the expres-
sion of the velocity given in34 with

where V2 = d2ω is the velocity of the Moon with respect to the barycenter. The specific energy gain is given by34

(20)DVb = �V f − V i�,

(21)DVb = 2v∞ sin δ,

(22)sin δ = 1

1+ rpv2∞
µm

,

(23)v2∞ = v2p − 2
µm

rp
.

(24)DVg =
∥

∥V f

∥

∥− �V i�.

(25)
∥

∥V f

∥

∥ =
√

v2∞ + V2
2 − 2v∞V2 sin

(

θp + δ
)

,

(26)�V i� =
√

v2∞ + V2
2 − 2v∞V2 sin

(

θp − δ
)

,

(27)DE = −2V2v∞ cos θp sin δ.

Figure 6.   Parameters of a gravity assist with the Moon (following34). P is the periapsis.
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Note that the notation used by34 to characterize the gravity assist maneuver is γ , which is the angle between the 
periapsis and the x axis. In this paper, θp is the angle between the periapsis and the y axis. This choice enables a 
direct relation with θ defined in Section “Dynamics modelling” and shown in Fig. 3 for the case where the posi-
tion is such that θ(T) = θp . Hence, the relation between the angle adopted in this paper and the angle used in34 
is θp = γ − 90◦ . The relation sin γ = cos θp is used to write Eq. (27) obtained from the respective energy gain 
shown in34. Note that from this equation, the specific energy decreases for −90◦ < θf < 90◦ , and increases for 
90◦ < θf < 270◦ , with a maximum at 180◦.

Using the TV type constraints to perform a gravity assist maneuver
The first parameter of interest in a gravity assist maneuver is the distance at the perigee rp . In this maneuver, we 
propose that rp be given by the final position of the transfer. The connection between the perigee and the TV 
type constraint is

The maneuver is then evaluated as a function of this distance, which must be provided. The following parameter 
of the transfer is the magnitude of the velocity at periapsis vp . In a two-body problem, the radial component 
of the velocity at the periapsis is null, hence, this magnitude is evaluated only with the tangential component 
vp = rpθ̇p . Since rp is provided, the parameter of the gravity assist maneuver becomes θ̇p , instead of vp . The con-
nection between this parameter and the TV type constraints is

Hence, the velocity at the periapsis is vp = rf θ̇f  . The last parameter of the gravity assist maneuver is θp . The con-
nection between this parameter and the TV type constraints is

Advantages
The constraints of the type TV show the following advantages in comparison with the type TPBVP:

•	 In the procedure proposed in this manuscript to perform the gravity assist maneuver, the parameters θ̇p and 
θp are obtained by the solution (through the convergence) of the optimization method.

•	 It is not necessary to use patched conics to solve the transfer problem.
•	 There is no need to use optimization procedures to satisfy the main constraint of the gravity assist maneuver, 

which is ṙ|t=T = 0 for a given flight time, because it is embedded into the equations using TFC.
•	 Once again, since rf  is the periapsis ( rf = rp ), the solution does not show any collision with the Moon.
•	 Since a collision with the Moon is not possible, there is no need to choose a large rf  (in comparison with 

methods to solve the TPBVP) in order to avoid solutions that collide with the Moon.
•	 The periapsis distance rp , which is one of the three parameters of the gravity assist, is specified in the con-

straint. It is then easier to study its influence on the trajectory, and to determine what initial conditions 
must be chosen in order to have a gravity assist with a given value of periapsis distance. In the TPBVP, the 
periapsis distance can only be deduced a posteriori from the obtained solutions as the two other parameters 
(the magnitude of the velocity at the periapsis vp , the close approach angle θp ). With the TV type constraints, 
the periapsis is imposed and the two other parameters are obtained from the solution.

Methodology
In the gravity assist maneuver, because it is not necessary to put the spacecraft in an orbit around the Moon, only 
one impulsive maneuver is applied, contrary to the transfer maneuver where two impulses are used. The space-
craft starts from a circular orbit at an altitude of 167 km around the Earth, and a unique impulse characterized by 
�V  is then applied so that the spacecraft heads towards the Moon for a gravity assist. In Section “Earth-to-Moon 
transfer using the TV type constraints”, the influence of the Sun was considered for the purpose of comparison 
with previous works on Earth-to-Moon transfers, although its influence can be neglected. However, for the lunar 
gravity assist maneuver, the influence of the Sun will be not considered in order to simplify the problem. The 
terms due to its perturbation are set to zero ( Pr = 0 and Pθ = 0 ) in the equations of motion given by Eq. (6), 
and the problem is reduced to the CR3BP (with the inertial frame centered at the Earth-Moon barycenter for 
simplicity). The influence of the Sun is relatively weak for a short time (less than 10 days) orbit transfer from the 
Earth to the Moon. For instance, the influence of the Sun can reduce the costs of an Earth-to-Moon transfer by 
about 5 m/s for short time travels16. Although this value may be significant for a mission, it represents a small 
percentage of the total cost. Thus, it is expected that the perturbation of the Sun does not change the general 
behavior of the gain for a gravity assist maneuver, as was noted, for instance, in37.

Like in Section “Results for a bi-impulsive maneuver to solve the Earth-to-Moon transfer”, an additional 
optimization procedure is performed in order to find the most efficient trajectory, where, from the initial impulse 
�V  , the final velocity after the gravity assist Vf =

∥

∥V f

∥

∥ is as high as possible. Here, the optimization with TFC 
gives a solution for the trajectory between the starting point A and the periapsis, and then all three parameters 
of the gravity assist maneuver are known (the periapsis distance rp , the magnitude of the velocity at the periapsis 
vp , the close approach angle θp ). From these parameters, the velocity Vf  is then estimated from Eq. (25), which 
was obtained from a two-body approximation. In order to obtain an efficient gravity assist, the procedure then 

(28)rp = rf .

(29)θ̇p = θ̇f .

(30)θp = θf .
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minimizes �V/Vf  , which represents the relative velocity gain. The optimization procedure used for this is the 
following:

•	 The initial circular orbit of 167 km of altitude around the Earth is spanned with a rough first step, and simula-
tions are carried out for each of the initial positions (r0, θ0) obtained.

•	 For each position (r0, θ0) , the ratio �V/Vf  is computed from the simulation.
•	 The position (r0, θ0) , that provides the lowest value of �V/Vf  , labeled (r0, θ0)min , is then determined.

This operation is then repeated several times, as it was done in Section “Results for a bi-impulsive maneuver 
to solve the Earth-to-Moon transfer”, in order to refine the position (r0, θ0)min , always working with smaller 
intervals around this value and smaller steps. It is important to note that the specific position of the periapsis 
represented by θp in Fig. 6 is obtained by the convergence of the procedure. The use of the TV type constraints 
allows the code to converge to a value of θp that minimizes the objective function for a given flight time. This is 
very advantageous for a gravity assist maneuver, since the θp value is not known a priori.

The procedure used for the gravity assist is then identical to the one used for the orbit transfer in Section 
“Results for a bi-impulsive maneuver to solve the Earth-to-Moon transfer”. The only difference is the quantity 
to minimize. In the same way, the computational efficiency performance is identical to the one presented in 
Section “Computational efficiency”.

Results
As was explained in Section “Advantages”, one of the advantages of the TV type constraints is the ability to 
choose the periapsis distance rp . This makes it easier to observe its influence on the gravity assist since it is not 
deduced a posteriori from the solution. For clarity, a new variable related to the altitude of the perigee is defined 
as ap = rp − rm , where rm = 1738 km is the radius of the Moon. The procedure explained in the last subsection 
is performed for several values of the altitude of the perigee, given by ap = 50 , 100, 150, 200, 500, 1000, 2000, 
5000, 10000 km, imposed by the constraints for which the flight time varies along 1 ≤ T ≤ 9.99 days with a 
step of 0.01 day. An example of trajectory obtained with this procedure is shown in Fig. 7 for T = 4.58 days and 
ap = 100 km using the frame of reference centered at the barycenter. The velocity with respect to the inertial 
frame is in red, and the dashed black line represents the escape velocity from the Earth-Moon system defined as √
2(µe + µm)/rb , where rb is the distance between the spacecraft and the barycenter.

Therefore, for each value of ap , the evolution of the different parameters and quantity can be obtained. For 
instance, the evolution of the non-dimensional quantity given by the ratio �V/Vf  and minimized for the lunar 

Figure 7.   Trajectory obtained with the TV type constraints in TFC for a flight time T = 4.58 days and a 
periapsis altitude of ap = 100 km in the inertial frame of reference associated with the Earth-Moon barycenter. 
In the inset, the red curve represents the magnitude of the velocity of the spacecraft, while the dashed black 
curve is the escape velocity from the Earth-Moon system. As the motion of the Earth is very close to the Earth-
Moon barycenter, only the initial position of the Earth is indicated.
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gravity assist (Section “Methodology”) is represented in Fig. 8. For, ap ≤ 2000 km, this quantity is lower than 6, 
but this ratio increases for higher ap , in particular for large times of flight. In Fig. 9 the evolution of Vf  with respect 
to �V  is represented for the different values of T. From Fig. 9, it can be deduced the specific impulse �V  neces-
sary for a given flight time in order to obtain a requested velocity Vf  after the gravity assist. As expected, as the 
periapsis altitude ap decreases, the velocity increases. The largest values of the velocity Vf  are obtained for short 
flight times ( T ≤ 3 days ), but they require a higher impulse �V  . For longer flight times ( T > 3 days ), a given 
value of �V  , and, consequently, a given quantity of propellant can lead to two different values of Vf  , the highest 
one being given by the shortest flight time among the two possibilities. This leads to the presence of a minimum 
value of �V  and a corresponding flight time T for each value of the periapsis altitude, whose values are given in 
Table 4. Depending on the periapsis altitude, the minimum �V  varies between 3131.4447 and 3134.6159 m/s, 
and the corresponding T between 4.45 and 4.58 days.

The velocity gains, DVb , defined in Eq. (21), and DVg , defined in Eq. (24), and the energy gain, DE , defined 
in Eq. (27), are also shown in Figs. 10, 11, 12, for each value of ap , respectively. From Figs. 11 and 12, it can be 
verified that the gravity assist allows the spacecraft to gain energy and then to increase its velocity. The evolution 
of DE presents a maximum different for each periapsis altitude ap , whose value and corresponding flight time 
T are indicated in Table 5. With respect to ap , the maximum DE varies between 0.4843 and 1.6717 (km/s)2 , for 
a corresponding T between 2.05 and 2.90 days. However, it can be observed that, for higher values of T, DE can 
be negative for ap ≥ 2000 km . These negative values DE should correspond to the observed negative values of 
DVg and then lead to a decrease in velocity. Nevertheless, this decrease in velocity cannot be indicated by the 
velocity gain, DVb , which only enables to observe the absolute variation of velocity. On the other hand, the peak 
of the velocity gain, DVb , matches with a reasonable approximation with the peak of the energy gain, DE , for 
ap ≤ 2000 km . In Fig. 13, the evolution of the angle at the periapsis θp is represented with respect to the flight 
time. The maximum gain in energy is for θp = 180 deg , according to Eq. (27), which coincides with flight times of 
about 2.2 days and values of ap up to 200 km. The angle can be below 90 deg for large flight times if ap ≥ 2000 km . 

Figure 8.   Ratio �V/Vf  for a gravity assist maneuver around the Moon, evaluated using the TV type constraints 
as a function of time for different periapsis altitudes ap . The initial point is at an altitude of 167 km around the 
Earth.

Table 4.   Minimum value of the velocity impulse �V  required and corresponding flight time for each value of 
the periapsis altitude.

rp (km) �V (m/s) T (day)

50 3134.6159 4.58

100 3134.5947 4.58

150 3134.5736 4.57

200 3134.5527 4.57

500 3134.4310 4.57

1000 3134.2389 4.56

2000 3133.8823 4.55

5000 3132.9201 4.51

10000 3131.4447 4.45
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This was expected because, when the gravity assist maneuver leads to a decrease in energy, as this is the case for 
these conditions (Fig. 12), θp should be below 90 deg . In Fig. 14, the velocity gain DVg is represented as a function 
of the initial impulse �V  . It can be noted that DVg presents a maximum around the flight time of 4 days, whose 
exact value depends on the periapsis altitude. It can then be observed that, for values of the velocity impulse 
close to the minimum (see Table 4), it is possible to slow down the spacecraft at the minimum or to speed it up 
at the maximum, depending on the objectives of the mission, by choosing suitable values for the flight time and 
periapsis altitude. Therefore, the minimum quantity of propellant with only a small variation can be used for all 
the possible gains in velocity.

Conclusions
This paper proposed the use of the tangential velocity (TV) type of constraints in the Theory of Functional Con-
nections (TFC) in order to find possible trajectories of orbital maneuvers. The TFC method enables to include 
linear constraints, as initial or final conditions into a functional interpolation of the solution. Therefore, any 
solution given by TFC will always analytically satisfy the constraints. In the example of an orbit transfer from a 
circular orbit around the Earth to a circular orbit around the Moon, the constraints given to TFC in the case of 
the Two Point Boundary Value Problem (TPBVP) are the initial and final positions. However, for such a prob-
lem, the choice of a tangential impulse enables to minimize the cost. Therefore, imposing a tangential velocity 
constraint in TFC enables a direct search for solution solutions minimizing the transfer cost. In this paper, it was 
shown that this can be only done in polar coordinates in order to keep the constraints linear.

Table 5.   Maximum value of the energy gain DE obtained and flight time corresponding for each value of the 
periapsis altitude.

rp (km) DE (km/s)2 T (day)

50 1.6717 2.05

100 1.6487 2.07

150 1.6266 2.09

200 1.6053 2.11

500 1.4909 2.22

1000 1.3389 2.37

2000 1.1199 2.57

5000 0.7553 2.82

10000 0.4843 2.90

Figure 9.   Velocity Vf  after the gravity assist maneuver with respect to the initial impulse �V  , and for different 
periapsis altitudes ap . For each value of ap , the curve is obtained with different values of the flight time T. The 
integer values of T in days are indicated for each curve with a special symbol.
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As a result, using the TV type constraints in TFC significantly reduces the computational time. Indeed, for 
the example of the orbit transfer from the Earth to the Moon, if the final velocity is imposed as tangential, only 
one optimization procedure is necessary to find the best position of the spacecraft on its initial orbit, as the final 
position is directly given by the solution. In the TPBVP, two optimization procedures are necessary, one for 
the initial position, and another for the final one. Using the TV type constraints in TFC also avoids the use of 
patched conics approximation and integrators like Runge-Kutta required by shooting methods. Finally, this also 
avoids the risk of collision with the final body, because the final position given by the TFC solution corresponds 
to the periapsis of the trajectory around the final body, thus making it possible to choose a small radius for the 
final position.

The use of the TV type constraints in TFC is applied in this paper in the cislunar space for two maneuvers: 
an orbit transfer from a circular orbit around the Earth to a circular orbit around the Moon and a lunar gravity 
assist maneuver. For the orbit transfer, where the objective is to find the trajectory minimizing the quantity of 
propellant required, it has been shown that the TV type constraints yield identical results to those of the TPBVP 
with a significant decrease in computational time. Concerning the lunar gravity assist, the TV type constraints 

Figure 10.   Velocity gain DVb of a gravity assist maneuver around the Moon, evaluated using the TV type 
constraints as a function of time for different periapsis altitudes ap . The initial point is at an altitude of 167 km 
around the Earth.

Figure 11.   Velocity gain DVg of a gravity assist maneuver around the Moon, evaluated using the TV type 
constraints as a function of time for different periapsis altitudes ap . The initial point is at an altitude of 167 km 
around the Earth.
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enable a rapid determination of the minimum initial impulse with respect to the required final velocity (after the 
encounter) depending on the different parameters of the gravity assist. Indeed, the TV type constraints enable 
to impose the altitude of the periapsis of the gravity assist, which is one of the determinant parameters, being 
the two other parameters given by the solution. It can be noted that, for both applications considered here, the 
computation performed with TFC is identical, and that the unique difference lies in the quantities to minimize.

The choice of the cislunar space was only made in order to work in a well-known and studied framework, 
where the obtained results can be compared with previous reference works. However, the TV type constraints 
are not limited to the cislunar space, and could be used in any spatial environment. In the same way, the use of 
the TV type constraints is not restricted to the two maneuvers considered here, orbit transfer and gravity assist, 
but could be applied in any spatial environment or maneuver requiring a tangential velocity constraint. This 
study is also here reduced to the framework of the planar case. However, the use of the TV constraints could also 
be applied in a more realistic model with three dimensions. For instance, with a spherical coordinates system 
(r,θ,ϕ ) centered at the Moon, the TV constraints would be still valid. However, it would be then necessary to 
add the new initial constraint ϕ(0) = ϕ0 . The solutions could then be obtained by TFC subject to convergence 

Figure 12.   Energy gain DE of a gravity assist maneuver around the Moon, evaluated using the TV type 
constraints as a function of time for different periapsis altitudes ap . The initial point is at an altitude of 167 km 
around the Earth.

Figure 13.   Periapsis angle θp of a gravity assist maneuver around the Moon, evaluated using the TV type 
constraints as a function of time for different periapsis altitudes ap . The initial point is at an altitude of 167 km 
around the Earth.
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with the constraints r(0) = r0 , r(T) = rf  , θ(0) = θ0 , ϕ(0) = ϕ0 , ṙ(T) = 0 . As TFC turned out recently in several 
studies as an effective and promising method to design orbital maneuvers, and as a tangential velocity in orbital 
maneuver corresponds to a optimal solution related to the lowest propellant consumption, the use of the TV 
type constraints in TFC could then have many other useful applications in the future.

Data availability
The datasets analysed during the current study can be generated by following the procedures explained in this 
paper. They can also be obtained from the corresponding author on reasonable request.
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