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The fractional analysis 
of thermo‑elasticity coupled 
systems with non‑linear 
and singular nature
Abdur Rab 1, Shahbaz Khan 1, Hassan Khan 1,2*, Fairouz Tchier 3, Samaruddin Jebran 4*, 
Ferdous Tawfiq 3 & Muhammad Nadeem 5

It is mentioned that understanding linear and non‑linear thermo‑elasticity systems is important for 
understanding temperature, elasticity, stresses, and thermal conductivity. One of the most crucial 
aspects of the current research is the solution to these systems. The fractional form of several thermo‑
elastic systems is explored, and elegant solutions are provided. The solutions of fractional and integer 
thermo‑elastic systems are further discussed using tables and diagrams. The closed contact between 
the LRPSM and exact solutions is displayed in the graphs. Plotting fractional problem solutions 
demonstrates their convergence towards integer‑order problem solutions for suitable modeling. The 
tables confirm that greater precision is rapidly attained as the terms of the derived series solution 
increase. The faster convergence and stability of the suggested method support its modification for 
other fractional non‑linear complex systems in nature.

Keywords Fractional calculus, Caputo operator, Power series, Laplace transform, Laplace residual power 
series method, Fractional partial differential equation

Many scientists use the core concepts and theory of fractional calculus (FC) to investigate memory-related 
behaviours and dynamical aspects of scientific phenomena. The fundamental reason for the attraction to 
fractional operators comes from the fact that the usage of fractional differential and integral operators is related 
to the great application of different models in design, chemical engineering, physical science, and mathematics. 
It has been rapidly growing and playing a key role in a variety of sectors, assisting in the modelling of innovative 
problems linked to memory-based fractal-framed repercussions and heredity-related procedures. The primary 
objective of introducing a fractional order derivative into the system is to investigate the interplay between 
longer-range, higher degrees of freedom, decreased imprecision because of the uniqueness of the real-world 
principal parameters, non-local effects that highlight historical and representative future states, maximum 
information utilisation, and the fractional order systems as particular instances of the conventional order system. 
By proposing new ideas, many researchers are laying the groundwork for the growth of  FC1–7.

The solutions of physical and technical importance, fractional ordinary and fractional partial differential 
equations (FODEs, FPDEs), and integral equations (FIEs)8 have gotten a lot of attention. Because most non-linear 
fractional-order problems do not have exact solutions, to investigate their approximation solutions, analytical 
and numerical approaches have been suggested and used. On the other hand, many scholars have studied the 
mathematical characteristics of FPDEs and tried to solve them.

FC is related to real endeavours, and it is broadly used within chaos theory, optics, nanotechnology, human 
diseases, and other  fields5,9–15. The analytical and numerical solutions for the above models play an essential part 
in depicting the aspect of nonlinear issues in related fields of study.

Coupled one-dimensional nonlinear thermo-elasticity coupled systems can be found in a variety of scientific 
domains, including solid-state and plasma physics. Because of their importance and applications, thermo-
elasticity problems have received a lot of attention. A Coupled linear and nonlinear thermo-elasticity system 
offers a broad field of study for studying the interaction of the mechanical and thermal domains. The study of 
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associated stresses, thermal conductivity, and temperature elasticity is known as thermo-elasticity. Recently, 
the investigation of these ideas has piqued the interest of numerous scholars working in many fields related to 
mathematics. Famous scientists, mathematicians, and engineers were influenced by the certainty of irrational 
physical behaviour, as depicted by elastic deformations obtained by temperature stresses. For such systems, 
obtaining exact solutions is challenging. Therefore, various analytical and numerical approaches have been 
developed to solve FPDEs, including the variational iteration method (VIM)16, the Adomian decomposition 
method (ADM)17, the q-homotopy analysis transform method (q-HAM)18, the fast element-free Galerkin 
 method19, the operational matrix  method20, the fractional natural decomposition  scheme21, the Fourier transform 
 technique22, the Homotopy perturbation  method23, the operational calculus  method24, the Laplace-Sumudu 
transform  method25, the multistage differential transformation  method26, and the iterative reproducing kernel 
 method27. These techniques have been developed for the approximate solution of FPDEs.

El-Ajou28 was the first to employ the Laplace residual power series method (LRPSM) to explore the exact 
solitary-form solutions of time FPDEs.  LRPSM29,30 combines the hybrid form of Laplace transform (LT) and 
 RPSM31–36. Initially, LT is utilized in LRPSM to convert the given problem into algebraic equations. Subsequently, 
RPSM is employed to derive the series solution. Ultimately, inverse LT is used to obtain the approximate result. 
LRPSM demands fewer calculations, less time, and offers greater precision.

LRPSM is an effective and simple method for generating a power series (PS) solution for FPDEs without 
requiring linearization, discretization, or perturbation. The approach yields a series of algebraic expressions 
for determining the PS coefficients. Its key advantage lies in relying on simpler and more accurate derivations 
compared to other integration-based techniques. The method serves as an alternative approach for solving 
 FPDEs37,38. In this article, LRPSM is applied to solve the nonlinear systems that arise in thermo-elasticity. The 
article presents the generalized LRPSM technique, followed by the application of the LRPSM algorithm to several 
numerical problems. The results and efficiency of the suggested method are demonstrated through tables and 
graphs. The graphical representation is comprehensive, and the results closely approximate the actual solution 
for each target problem. The fractional-order LRPSM solutions prove valuable for analyzing the dynamics of 
the provided problems.

The current paper’s summary is provided here. “Preliminaries” section discussed some necessary definitions 
and results from FC theory and “LRPS methodology” section the basic technique is presented, certain test 
models are used to confirm the efficiency of LRPSM in Section “Numerical problems”, the findings are reviewed 
in “Results and disscusions” section, and the conclusion is provided in “Conclusion” section.

Preliminaries
The basic definitions and theorems of fractional derivatives in the Caputo sense are covered in this section.

Definition 2.1 The fractional derivative of a function P(ω, ξ) of order µ is expressed as in Caputo  sense39

Definition 2.2 Suppose that P(ω, ξ) is continuous piecewise and having µ as exponential order, LT can be 
explained  as28:

where the inverse LT is given as

The properties of the LT and its inverse are summarised in the following  Lemma40.

Lemma 2.3 Consider the funtions ϕ(ω, ξ) and P(ω, ξ) , which are continuous piecewise. Then the following 
properties of LT are  held28: 

1. Lξ [ηϕ(ω, ξ)+ �P(ω, ξ)] = ηϕ(ω, s)+ �P(ω, s) , ω ∈ I , s > ξ1.
2. L

−1
ξ [ηϕ(ω, s)+ �P(ω, s)] = ηϕ(ω, ξ)+ �P(ω, ξ) , ω ∈ I , ξ ≥ 0.

3. Lξ [e
ρξP(ω, ξ)] = P(ω, s − ρ) . ω ∈ I , s > ρ + ξ1.

4. lims→∞ sP(ω, s) = P(ω, 0) , ω ∈ I.where ϕ(ω, s) = Lξ [ϕ(ω, ξ)] , and P(ω, s) = Lξ [P(ω, ξ)] and η, � and ρ 
are arbitrary constants.

Lemma 2.4 Assume that P(ω, ξ) is of exponential order ξ and continuous piecewise, and P(ω, s) = Lξ [P(ω, ξ)] , 
we have 

1. Lξ [J
ζ
ξ P(ω, ξ)] = P(ω,s)

sζ
, β > 0.

2. Lξ [D
ζ
ξP(ω, ξ)] = sζP(ω, s)−

∑m−1
k=0 sζ−k−1Pk(ω, 0), m− 1 < ζ ≤ m.

3. Lξ [D
nζ
ξ P(ω, ξ)] = snζP(ω, s)−

∑n−1
k=0 s

(n−k)ζ−1D
kζ
ξ P(ω, 0), 0 < ζ ≤ 1.

(1)CDµ
P(ξ) =

1

Ŵ(m− ζ )

∫ ξ

0

(ξ −̟)m−α−1u(̟)(m)d̟ , m− 1 < ζ ≤ m, ξ > ̟ ≥ 0.

(2)P(ω, s) = Lξ [P(ω, ξ)] =

∫ ∞

0

e−sξ
P(ω, ξ)dξ , s > µ,

(3)P(ω, ξ) = L
−1
s [P](ω, s)] =

∫ l+i∞

l−i∞
esξP(ω, s)ds, l = Re(s) > l0,
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Proof The proof can be found in the Refs.1,2,39.   �

Theorem 2.5 Consider the piecewise continuous P(ω, ξ) is on I× [0,∞) . Consider that P(ω, s) = Lξ [P(ω, ξ)] 
has fractional power series (FPS)  representation28:

Then, fi(ω) = D
nζ
ξ P(ω, 0).

Remark 2.6 The inverse LT of the Eq. (4) represented as:

It is equal to the illustration of the fractional order Taylor’s formula  in41.

The following Theorem explains and establishes the FPS convergence in the 2.5 Theorem.

Theorem 2.7 Let the function P(ω, ζ ) is piecewise continuous on interval I× [0,∞) and of exponential order  ̺
can be presented as the fractional expansion in Theorem 1. If |sL[Diζ+1

ξ P(ω, ζ )]| ≤ M(θ) on I× (ξ , γ ] , where 
0 < ζ ≤ 1 , then the remainder Rn(θ , s) satisfies the below inequality Theorem which satisfy the  following28:

LRPS methodology
In this section, we will discuss the methodology of LRPSM for general form of nonlinear one dimensional 
thermo-elasticity coupled system

with initial conditions (IC’s)

w h e r e  P  a n d  R  a r e  d i s p l a c e m e n t  a n d  t e m p e r a t u r e  d i f f e r e n c e  r e s p e c t i v e l y, 
a
(

∂P
∂ω

,R

)

, c
(

∂P
∂ω

,R

)

, d(R), h(ω, ξ), m(ω, ξ) are smooth functions. Now let us assume the following

Using Eq. (9) in Eq. (7), we get

Using LT to Eq. (10) and using IC’s from Eq. (8), we get

Let the approximate solution of Eq. (11) has the following form

(4)P(ω, s) =

∞
∑

i=0

fi(ω)

s1+iζ
, 0 < ζ ≤ 1,ω ∈ I, s > ξ .

(5)P(ω, ξ) =

∞
∑

i=0

D
ζ
ξP(ω, 0)

Ŵ(1+ iζ )
ξ i(ζ ), 0 < ζ ≤ 1, ξ ≥ 0.

(6)|Ri(ω, s)| ≤
M(ω)

S1+(i+1)ζ
, ω ∈ I, ξ < s ≤ γ .

(7)

D
ζ+1

ξ P(ω, ξ)− a

(

∂P

∂ω
,R

)

∂2

∂ω2
P(ω, ξ)+ b

(

∂P

∂ω
,R

)

∂R(ω, ξ)

∂ω
− h(ω, ξ) = 0,

c

(

∂P

∂ω
,R

)

D
ζ
ξR(ω, ξ)+

∂2P(ω, ξ)

∂ξ∂ω
− d(R)

∂2

∂ω2
R(ω, ξ)−m(ω, ξ) = 0, 0 < ζ ≤ 1, ω ∈ �, ξ > 0.

(8)P(ω, 0) = f0(ω), Pξ (ω, ξ) = f1(ω), R(ω, 0) = g0(ω),

(9)a

(

∂P

∂ω
,R

)

= c

(

∂P

∂ω
,R

)

= d(R) = 1, b

(

∂P

∂ω
,R

)

=
∂P

∂ω
R,

(10)
D
ζ+1

ξ P(ω, ξ)−
∂2

∂ω2
P(ω, ξ)+R

∂P(ω, ξ)

∂ω

∂R(ω, ξ)

∂ω
− h(ω, ξ) = 0,

D
ζ
ξR(ω, ξ)+

∂2P(ω, ξ)

∂ξ∂ω
−

∂2

∂ω2
R(ω, ξ)−m(ω, ξ) = 0, 0 < ζ ≤ 1, ξ > 0.

(11)

P(ω, s)−
f0(ω)

s
+

f1(ω)

s2
−

1

sζ+1

[

∂2

∂ω2
P(ω, s)

]

+
1

sζ
Lξ

[

L
−1
s (R(ω, s))

∂

∂ω
L
−1
s (P(ω, s))

∂

∂ω
L
−1
s (R(ω, s))

]

−
H(ω, s)

sζ+1
= 0,

R(ω, s)−
g0(ω)

s
−

1

sζ

[

∂2

∂ω2
R(ω, s)

]

+
1

sζ
Lξ

[

∂2

∂ξ∂ω
L
−1
s (P(ω, s))

]

−
M(ω, s)

sζ
= 0.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9663  | https://doi.org/10.1038/s41598-024-56891-9

www.nature.com/scientificreports/

The jth-truncated term series are

Laplace residual functions (LRFs)28 are

And the jth-LRFs as:

The following list includes some key facts regarding the Laplace residual function that are critical to determining 
the approximation of the  solution28.

• LξRes(ω, s) = 0 and limj→∞ LξResP ,j(ω, s) = LξResP (ω, s) for each s > 0.

• LξRes(ω, s) = 0 and limj→∞ LξResR,j(ω, s) = LξResR(ω, s) for each s > 0.

• lims→∞ sLξResP (ω, s) = 0 ⇒ lims→∞ sLξResP ,j(ω, s) = 0.

• lims→∞ sLξResR(ω, s) = 0 ⇒ lims→∞ sLξResR,j(ω, s) = 0.

• lims→∞ sζ+j+1LξResP ,j(ω, s) = lims→∞ sζ+j+1LξResR,j(ω, s) = 0, 0 < ζ ≤ 1, j = 1, 2, 3, . . ..
• lims→∞ sjζ+1LξRes(ω, s) = lims→∞ sjζ+1LξResR,j(ω, s) = 0, 0 < ζ ≤ 1, j = 1, 2, 3, . . ..

To find the coefficients fi(ω) and gi(ω) , we recursively solve the following system

In the last, we apply inverse LT to Eq. (13), to get the jth approximate solutions of Pj(ω, ξ) and Rj(ω, ξ).

Numerical problems

4.1 Problem Nonlinear thermo-elasticity coupled system in one-dimensional is given as:42

(12)

P(ω, s) =

∞
∑

i=0

fi

sζ+i+1
,

R(ω, s) =

∞
∑

i=0

gi

siζ+1
, s > 0.

(13)

Pk(ω, s) =
f0(ω)

s
−

f1(ω)

s2
+

j
∑

i=1

fi

sζ+i+1
,

Rk(ω, s) =
g0(ω)

s
+

j
∑

i=1

gi

siζ+1
.

(14)

LξResP = P(ω, s)−
f0(ω)

s
+

f1(ω)

s2
−

1

sζ+1

[

∂2

∂ω2
P(ω, s)

]

+
1

sζ+1
Lξ

[

L
−1
s (R(ω, s))

∂

∂ω
L
−1
s (P(ω, s))

∂

∂ω
L
−1
s (R(ω, s))

]

+
H(ω, s)

sζ+1
,

LξResR = R(ω, s)−
g0(ω)

s
−

1

sζ

[

∂2

∂ω2
R(ω, s)

]

+
1

sζ
Lξ

[

L
−1
s (R(ω, s))

∂

∂ω
L
−1
s (P(ω, s))

∂2

∂ξ∂ω
L
−1
s (P(ω, s))

]

+
M(ω, s)

sζ
.

(15)

LξResP ,j(ω, s) = Pj(ω, s)−
f0(ω)

s
+

f1(ω)

s2
−

1

sζ+1

[

∂2

∂ω2
Pj(ω, s)

]

+
1

sζ+1
Lξ

[

L
−1
s

(

Rj(ω, s)
) ∂

∂ω
L
−1
s

(

Pj(ω, s)
) ∂

∂ω
L
−1
s

(

Rj(ω, s)
)

]

−
H(ω, s)

sζ+1
,

LξResR,j = Rj(ω, s)−
g0(ω)

s
−

1

sζ

[

∂2

∂ω2
Rj(ω, s)

]

+
1

sζ
Lξ

[

∂2

∂ξ∂ω
L
−1
s

(

Pj(ω, s)
)

]

−
M(ω, s)

sζ
.

(16)
lim
s→∞

sζ+j+1
LξResP ,j(ω, s) = 0, j = 1, 2, . . . ,

lim
s→∞

sjζ+1
LξResR,j(ω, s) = 0, j = 1, 2, . . . .



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9663  | https://doi.org/10.1038/s41598-024-56891-9

www.nature.com/scientificreports/

Subject to the ICs

Exact solution for the Eq. (17) is

Using LT to Eq. (17) and using IC’s from Eq. (18), we get

The jth-truncated term series are

And the jth-LRFs as:

Putting the jth truncated term series of Eq. (21) into the jth truncated Laplace residual function of Eq. (22), 
multiplying the resulting expression by sjζ+1 and then solve the systems limj→∞ sjζ+1LResP ,j(ω, s) = 0 and 
limj→∞ sjζ+1LResR,j(ω, s) = 0 to find the unknown coefficients κj(ω) and ̺ j(ω) for j = 1, 2, 3, . . . , the following 
are the first few terms of the approximate solutions

Substituting κj(ω) and ̺ j(ω) for j = 1, 2, 3, . . . in Eq. (21), we have

(17)
D
ζ+1

ξ P(ω, ξ)−
∂2

∂ω2
P(ω, ξ)+R

∂P(ω, ξ)

∂ω

∂R(ω, ξ)

∂ω
+ e−ω+ξ = 0,

D
ζ
ξR(ω, ξ)+R(ω, ξ)

∂P

∂ω

∂2P(ω, ξ)

∂ξ∂ω
−

∂2

∂ω2
R(ω, ξ)+ eω−ξ = 0, 0 < ζ ≤ 1, ξ > 0.

(18)P(ω, 0) = eω , Pξ (ω, ξ) = −eω , R(ω, 0) = e−ω .

(19)
P(ω, ξ) =eω−ξ ,

R(ω, ξ) =eξ−ω .

(20)

P(ω, s)−
eω

s
+

eω

s2
+

1

sζ+1
Lξ

[

−
∂2

∂ω2
L
−1
s (P(ω, s))+ L

−1
s (R(ω, s))

∂

∂ω
L
−1
s (P(ω, s))

×
∂

∂ω
L
−1
s (R(ω, s))+ e−ω+ξ

]

= 0,

R(ω, s)−
e−ω

s
+

1

sζ
Lξ

[

−
∂2

∂ω2
L
−1
s (R(ω, s))+ L

−1
s (R(ω, s))

∂

∂ω
L
−1
s (P(ω, s))

×
∂2

∂ξ∂ω
L
−1
s (P(ω, s))+ eω−ξ

]

= 0.

(21)

Pk(ω, s) =
eω

s
−

eω

s2
+

j
∑

i=1

fi(ω)

sζ+i+1
,

Rk(ω, s) =
e−ω

s
+

j
∑

i=1

gi(ω)

siζ+1
.

(22)

LξResP ,j = Pj(ω, s)−
eω

s
+

eω

s2
+

1

sζ+1
Lξ

[

−
∂2

∂ω2
L
−1
s

(

Pj(ω, s)
)

+ L
−1
s

(

Rj(ω, s)
) ∂

∂ω
L
−1
s

(

Pj(ω, s)
)

×
∂

∂ω
L
−1
s

(

Rj(ω, s)
)

+ e−ω+ξ

]

,

LξResR,j = Rj(ω, s)−
e−ω

s
−

1

sζ
Lξ

[

−
∂2

∂ω2
L
−1
s

(

Rj(ω, s)
)

+ L
−1
s

(

Rj(ω, s)
) ∂

∂ω
L
−1
s

(

Pj(ω, s)
)

×
∂2

∂ξ∂ω
L
−1
s

(

Pj(ω, s)
)

+ eω−ξ

]

.

(23)

κ1(ω) =eω , ̺1(ω) = eω ,

κ2(ω) =− eω , ̺2(ω) = eω ,

κ3(ω) =eω , ̺3(ω) = eω ,

κ4(ω) =− eω , ̺4(ω) = eω ,

.

.

.,

(24)
P(ω, s) =

eω

s
−

eω

s2
+

eω

sζ+2
−

eω

sζ+3
+

eω

sζ+4
+ · · · ,

R(ω, s) =
e−ω

s
+

e−ω

sζ+1
+

e−ω

s2ζ+1
+

e−ω

s3ζ+1
+

e−ω

s4ζ+1
+ · · · .
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Utilizing inverse LT on Eq. (24)

Putting ζ = 1 in Eq. (25), we get the exact solution given in Eq. (19) (Figs. 1, 2, 3, 4, 5, 6, 7, 8).

4.2 Problem Nonlinear one-dimensional coupled system thermo-elasticity given  by42

Subject to the ICs

(25)
P(ω, ξ) =eω − ξeω +

eωξζ+1

Ŵ(ζ + 2)
−

eωξζ+2

Ŵ(ζ + 3)
+

eωξζ+3

Ŵ(ζ + 4)
+ · · · ,

R(ω, ξ) =e−ω +
e−ωξζ

Ŵ(ζ + 1)
+

e−ωξ 2ζ

Ŵ(2ζ + 1)
+

e−ωξ 3ζ

Ŵ(3ζ + 1)
+

e−ωξ 4ζ

Ŵ(4ζ + 1)
+ · · · .

(26)
D
ζ+1

ξ P(ω, ξ)−
∂

∂ω

(

R(ω, ξ)
∂

∂ω
P(ω, ξ)

)

+
∂R(ω, ξ)

∂ω
− 2ω + 6ω2 + 2ξ 2 + 2 = 0,

D
ζ
ξR(ω, ξ)−

∂

∂ω

(

P(ω, ξ)
∂

∂ω
R(ω, ξ)

)

+
∂2P(ω, ξ)

∂ξ∂ω
+ 6ω2 − 2ξ 2 − 2ξ = 0, 0 < ζ ≤ 1, t > 0.

Figure 1.  2D graph shows the comparison of LRPSM and exact solutions for P(ω, ξ) at various fractional order 
of Example 4.1.

Figure 2.  3D surfaces compares the LRSPM and exact solution for P(ω, ξ) at ζ = 1 for problem 4.1.
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Figure 3.  2D graph shows the comparison of P(ω, ξ) LRPSM solution at various fractional order of Example 
4.1.

Figure 4.  LRPSM solution in 3D surfaces for P(ω, ξ) at distinct values of ζ for problem 4.1.

Figure 5.  2D graph shows the comparison of LRPSM and exact solutions for R(ω, ξ) at various fractional order 
of Example 4.1.
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The exact solution of Eq. (26) is

Using LT to Eq. (26) and using IC’s from Eq. (27), we get

(27)P(ω, 0) = ω2, Pξ (ω, ξ) = 0, R(ω, 0) = ω2.

(28)
P(ω, ξ) =ω2 − ξ 2,

R(ω, ξ) =ω2 + ξ 2.

Figure 6.  3D surfaces compares the LRSPM and exact solution for R(ω, ξ) at ζ = 1 for problem 4.1.

Figure 7.  2D graph shows the R(ω, ξ) LRPSM solution at various fractional order of Example 4.1.
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The jth-truncated term series are

And the jth-LRFs as:

Putting the jth truncated term series of Eq. (39) into the jth truncated Laplace residual function of Eq. (40), 
multiplying the resulting expression by sjζ+1 and then solve the systems limj→∞ sjζ+1LResP ,j(ω, s) = 0 and 
limj→∞ sjζ+1LResR,j(ω, s) = 0 to find the unknown coefficients κj(ω) and ̺ j(ω) for j = 1, 2, 3, . . . , the following 
are the first few terms of the approximate solutions

Substituting κj(ω) and ̺ j(ω) for j = 1, 2, 3, . . . in Eq. (39), we have

(29)

P(ω, s)−
ω2

s
+

1

sζ+1
Lξ

[

−
∂

∂ω

(

R(ω, ξ)
∂

∂ω
P(ω, ξ)

)

+
∂R(ω, ξ)

∂ω
− 2ω + 6ω2 + 2ξ 2 + 2

]

= 0,

R(ω, s)−
ω2

s
+

1

sζ
Lξ

[

−
∂

∂ω

(

P(ω, ξ)
∂

∂ω
R(ω, ξ)

)

+
∂2P(ω, ξ)

∂ξ∂ω
+ 6ω2 − 2ξ 2 − 2ξ

]

= 0.

(30)

Pk(ω, s) =
ω2

s
+

j
∑

i=1

fi(ω)

sζ+i+1
,

Rk(ω, s) =
ω2

s
+

j
∑

i=1

gi(ω)

siζ+1
.

(31)

LξResP ,j =Pj(ω, s)−
ω2

s
+

1

sζ+1
Lξ

[

−
∂

∂ω

(

L
−1
s

(

Rj(ω, ξ)
) ∂

∂ω
L
−1
s

(

Pj(ω, ξ)
)

)

+
∂

∂ω
L
−1
s

(

Rj(ω, ξ)
)

− 2ω + 6ω2 + 2ξ 2 + 2

]

,

LξResR,j =Rj(ω, s)−
ω2

s
+

1

sζ
Lξ

[

−
∂

∂ω

(

L
−1
s

(

Pj(ω, ξ)
) ∂

∂ω
L
−1
s

(

Rj(ω, ξ)
)

)

+
∂2

∂ξ∂ω
L
−1
s

(

Pj(ω, ξ)
)

+ 6ω2 − 2ξ 2 − 2ξ

]

.

(32)

κ1(ω) =− 2,

̺1(ω) =0,

κ2(ω) =2,

̺2(ω) =0,

κ3(ω) =0,

̺3(ω) =0,

.

.

.,

Figure 8.  LRPSM solution in 3D surfaces for R(ω, ξ) at distinct values of ζ for problem 4.1.
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Utilizing inverse LT on Eq. (42), we get the approximate solution as

Putting ζ = 1 , we get the exact solution which is given in Eq. (26).

4.3 Problem Consider the singular one-dimensional linear thermo-elasticity coupled  system42

Subject to the ICs

Eq. (35) exact solution is as follows:

Using LT to Eq. (35) and using IC’s from Eq. (36), we get

The jth-truncated term series are

And the jth-LRFs as:

Putting the jth truncated term series of Eq. (39) into the jth truncated Laplace residual function of Eq. (40), 
multiplying the resulting expression by sjζ+1 and then solve the systems limj→∞ sjζ+1LResP ,j(ω, s) = 0 and 
limj→∞ sjζ+1LResR,j(ω, s) = 0 to find the unknown coefficients κj(ω) and ̺ j(ω) for j = 1, 2, 3, . . . , the following 
are the first few terms of the approximate solutions

(33)
P(ω, s) =

ω2

s
+

−2

sζ+2
+ 0+ 0+ · · · ,

R(ω, s) =
ω2

s
+

2

sζ+1
+ 0+ 0+ · · · .

(34)
P(ω, ξ) =ω2 −

2ξζ+1

Ŵ(ζ + 2)
,

R(ω, ξ) =ω2 +
2ξζ

Ŵ(ζ + 1)
.

(35)
D
ζ+1

ξ P(ω, ξ)−
1

ω2

(

ω2 ∂

∂ω
P(ω, ξ)

)

+ ω
∂R(ω, ξ)

∂ω
− 2ω2ξ − 6− ξ = 0,

D
ζ
ξR(ω, ξ)−

1

ω2

(

ω2 ∂

∂ω
R(ω, ξ)

)

+ ω
∂2P(ω, ξ)

∂ξ∂ω
− 3ω2 + 6ξ = 0, 0 < ζ ≤ 1, t > 0.

(36)P(ω, 0) = ω2, Pξ (ω, 0) = ω2, R(ω, 0) = 0.

(37)
P(ω, ξ) =ω2 + ω2ξ ,

R(ω, ξ) =ω2ξ 2.

(38)
P(ω, s)−

ω2

s
−

ω2

s2
+

1

sζ+1
Lξ

[

−
1

ω2

(

ω2 ∂

∂ω
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)
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∂ω
− 2ωξ − 6− ξ

]
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R(ω, s)+
1

sζ
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[

−
1

ω2

(

ω2 ∂
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R(ω, ξ)

)

+ ω
∂2P(ω, ξ)

∂ξ∂ω
− 3ω2 + 6ξ

]

= 0.

(39)

Pk(ω, s) =
ω2

s
+

ω2

s2
+

j
∑

i=1

fi(ω)

siζ+2
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Rk(ω, s) =

j
∑

i=1
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siζ+1
.

(40)
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(
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(
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)

)

+ ω
∂
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L
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(
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)

− 2ωξ − 6− ξ

]

,
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−
1
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∂
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(

ω2 ∂
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(
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)
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(
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)
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Substituting κj(ω) and ̺ j(ω) for j = 1, 2, 3, . . . in Eq. (39), we have

Utilizing inverse LT on Eq. (42), we get the approximate solution as

Putting ζ = 1 , we get the exact solution which is given in Eq. (37).

Results and disscusions
In this section, the numerical solutions of the coupled system considered in Problem 4.1 are discussed, which 
is given in Tables 1 and 2. Further, in Tables 1 and 2. The effectiveness of the technique is indicated, as the 
number of iterations increases, the solution approaches to the exact solution. We can see from the tables, the 
present technique has the higher accuracy. The 2D and 3D plots are presented to highlighted the LRPSM results 
at different values of parameters. The 2D plots of problem 4.1 at various fractional-order for P(ω, ξ) is shown 
in Fig. 1 and for R(ω, ξ) is shown in Fig. 5 and the solution in 3D surfaces are shown in Figs. 3 and 7. The 
comparison of LRPSM and exact solutions are plotted in Figs. 2, 4, 6 and 8 as 2D and 3D respectively. Similarly, 
the 2D and 3D plots of Problems 4.2 and 4.3 at various fractional-order are discussed in Figs. 9, 10, 11, 12, 13, 14 
and 15, respectively. Meanwhile, the response of the LRPSM solution in term of AE for various arbitrary orders 
are shown in Tables 3, 4, 5 and 6 respectively for Problem 4.2 and Problem 4.3. Also for Problem 4.3, the solutions 
are plotted in 2D and 3D graphs in Figs. 16, 17, 18, 19, 20, 21, and 22. With the help of FC, we can study and 
analyze the physical behavior of non-linear problem by simulating and displaying its physical properties. The 
suggested technique is more suitable and efficient in analyzing complex coupled fractional-order problems. All 
the numerical calculations are done by Maple 2020.

Conclusion
The current research explores a broader and more practical concept within the fractional analogue of certain 
thermo-elasticity systems. Initially, the thermo-elasticity systems are expressed in their Caputo fractional 
definition and then effectively examined for their practical dynamics using a precise approach. The technique 
directly addresses non-linearity, a rarity in other existing methods. Employing Laplace transformation to simplify 
the given problems, the residual power series method is then utilized to attain the complete solution. The results 
demonstrate full compatibility with the actual dynamics of the suggested problems. Fractional solutions, in 
particular, offer numerous options for describing the practical dynamics of problems. This study can significantly 
contribute to the analysis of other highly non-linear complex phenomena.

(41)

κ1(ω) =0,

̺1(ω) =ω2,

κ2(ω) =0,

̺2(ω) =0,

.

.

.,

(42)
P(ω, s) =

ω2

s
+

ω2

s2
+

0

sζ+2
+

0

s2ζ+2
+ · · · ,

R(ω, s) =
ω2

sζ+1
+

0

sζ+2
+ · · · .

(43)
P(ω, ξ) =ω2 + ω2ξ ,

R(ω, ξ) =
ω2ξζ

Ŵ(ζ + 1)
.

Table 1.  Numerical simualtion for P(ω, ξ) at ζ = 1 of Example 4.1.

ine ξ ω |Pexact −P (4)| |Pexact −P (5)| |Pexact −P (6)|

ine
0.2 1.00 × 10−7 2.0 × 10−9 0

0.4 1.22 × 10−7 2.0 × 10−9 0

0.1

0.6 1.49 × 10−7 3.0 × 10−9 0

0.8 1.83 × 10−7 2.0 × 10−9 1.0 × 10−9

1 2.22 × 10−7 5.0 × 10−9 1.0 × 10−9

ine
0.2 9.5399 × 10−6 3.999 × 10−7 1.43 × 10−8

0.4 1.1653 × 10−5 4.88 × 10−7 1.8 × 10−8

0.25

0.6 1.4231 × 10−5 5.97 × 10−7 2.10 × 10−8

0.8 1.7382 × 10−5 7.29 × 10−7 2.6×10−8

1 2.1231 × 10−5 8.90 × 10−7 3.2 × 10−8
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Table 2.  Numerical simualtion for R(ω, ξ) at β = 1 of Example 4.1.

ine ξ ω |Rexact −R(4)| |Rexact −R(5)| |Rexact −R(6)|

ine
0.2 3.4807 × 10−6 6.93 × 10−8 1.1 × 10−9

0.4 2.8499 × 10−6 5.69 × 10−8 1.0 × 10−9

0.1

0.6 2.3332 × 10−6 4.65 × 10−8 8.0 × 10−9

0.8 1.9103 × 10−6 3.81 × 10−8 7.0 × 10−9

1 1.5640 × 10−6 3.12 × 10−8 5.0 × 10−9

ine
0.2 1.40208 × 10−4 6.951 × 10−6 2.88 × 10−7

0.4 1.147924 × 10−4 5.6908 × 10−6 2.357 × 10−7

0.25

0.6 9.39840 × 10−5 4.6592 × 10−6 1.930 × 10−7

0.8 7.69477 × 10−5 3.8147 × 10−6 1.581 × 10−7

1 6.29993 × 10−5 3.1231 × 10−6 1.293 × 10−7

Figure 9.  2D plots of P(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.2.

Figure 10.  3D surfaces of P(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.2.
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Figure 11.  2D plots of P(ω, ξ) LRPSM solution with different values of ζ for problem 4.2.

Figure 12.  3D surfaces of P(ω, ξ) LRPSM solution with different values of ζ for problem 4.2.

Figure 13.  2D plots of R(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.2.
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Figure 14.  3D surfaces of R(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.2.

Figure 15.  2D plots of R(ω, ξ) LRPSM solution with different values of ζ for problem 4.2.

Figure 16.  3D surfaces of R(ω, ξ) LRPSM solution with different values of ζ for problem 4.2.
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Table 3.  AE for P(ω, ξ) at ζ = 1 of Example 4.1.

ξ ω AE at ζ = 0.5 AE at ζ = 0.7 AE at ζ = 0.9 AE at ζ = 1

0.1

0 0.03757664309 0.01583389133 0.00377866212 0

0.1 0.03757664309 0.01583389133 0.00377866212 0

0.2 0.03757664309 0.01583389133 0.00377866212 0

0.3 0.0375766431 0.0158338913 0.0037786621 0

0.4 0.0375766431 0.0158338913 0.0037786621 0

0.5 0.0375766431 0.0158338913 0.0037786621 0

0.6 0.0375766431 0.0158338913 0.0037786621 0

0.7 0.0375766431 0.0158338913 0.0037786621 0

0.8 0.0375766431 0.0158338913 0.0037786621 0

0.9 0.0375766431 0.0158338913 0.0037786621 0

1 0.0375766431 0.0158338913 0.0037786621 0

Table 4.  AE for R(ω, ξ) at ζ = 1 of Example 4.1.

ξ ω AE at ζ = 0.5 AE at ζ = 0.7 AE at ζ = 0.9 AE at ζ = 1

0.1

0 0.03757664309 0.01583389133 0.00377866212 0

0.1 0.03757664309 0.01583389133 0.00377866212 0

0.2 0.03757664309 0.01583389133 0.00377866212 0

0.3 0.0375766431 0.0158338913 0.0037786621 0

0.4 0.0375766431 0.0158338913 0.0037786621 0

0.5 0.0375766431 0.0158338913 0.0037786621 0

0.6 0.0375766431 0.0158338913 0.0037786621 0

0.7 0.0375766431 0.0158338913 0.0037786621 0

0.8 0.0375766431 0.0158338913 0.0037786621 0

0.9 0.0375766431 0.0158338913 0.0037786621 0

1 0.0375766431 0.0158338913 0.0037786621 0

Table 5.  AE for R(ω, ξ) at ζ = 1 of Example 4.3.

ξ ω LRPSM Solution at ζ = 1 Exact Solution |LRPSM-Exact|

0.1

0 0 0 0

0.1 0.011 0.011 0

0.2 0.044 0.044 0

0.3 0.099 0.099 0

0.4 0.176 0.176 0

0.5 0.275 0.275 0

0.6 0.396 0.396 0

0.7 0.539 0.539 0

0.8 0.704 0.704 0

0.9 0.891 0.891 0

1 1.100 1.100 0
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Table 6.  AE for R(ω, ξ) at ζ = 1 of Example 4.3.

ξ ω LRPSM Solution at ζ = 1 Exact Solution |LRPSM-Exact|

0.1

0 0 0 0

0.1 0.001 0.001 0

0.2 0.004 0.004 0

0.3 0.009 0.009 0

0.4 0.016 0.016 0

0.5 0.025 0.025 0

0.6 0.036 0.036 0

0.7 0.049 0.049 0

0.8 0.064 0.064 0

0.9 0.081 0.081 0

1 0.100 0.100 0

Figure 17.  2D plots of P(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.3.
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Figure 18.  3D surfaces of P(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.3.

Figure 19.  2D plots of R(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.3.
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Figure 20.  3D surfaces of R(ω, ξ) LRPSM and exact solutions for ζ = 1 for problem 4.3.

Figure 21.  2D plots of R(ω, ξ) LRPSM solution with different values of ζ for problem 4.3.

Figure 22.  3D surfaces of R(ω, ξ) LRPSM solution with different values of ζ for problem 4.3.
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