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The functional aspects of selective 
exposure for collective 
decision‑making under social 
influence
Poong Oh 1*, Jia Wang Peh 2 & Andrew Schauf 3

Opinion diversity is crucial for collective decision-making, but maintaining it becomes challenging 
in the face of social influence. We propose selective exposure as an endogenous mechanism that 
preserves opinion diversity by forming exclusive subgroups of like-minded individuals, or echo 
chambers, which have been often perceived as an obstacle to achieving collective intelligence. We 
consider situations where a group of agents collectively make decisions about the true state of nature 
with the assumption that agents update their opinions by adopting the aggregated opinions of their 
information sources (i.e., naïve learning), or alternatively, replace incongruent sources with more 
like-minded others without adjusting their opinions (i.e., selective exposure). Individual opinions at 
steady states reached under these dynamics are then aggregated to form collective decisions, and 
their quality is assessed. The results suggest that the diversity-reducing effects of social influence 
are effectively confined within subgroups formed by selective exposure. More importantly, strong 
propensities for selective exposure maintain the quality of collective decisions at a level as high as 
that achieved in the absence of social influence. In contrast, naïve learning allows groups to reach 
consensuses, which are more accurate than initial individual opinions, but significantly undermines 
the quality of collective decisions.

The independence of individual opinions is crucial for collective decision-making because it ensures opinion 
diversity within groups1–5. However, maintaining opinion diversity is challenging because social influence among 
group members tends to reduce it6–8. Empirical studies have suggested the diversity-reducing effects of social 
influence in various settings since Asch’s seminal study on social conformity, showing that groups under social 
influence tend to arrive at biased collective decisions9–14. Nevertheless, it has been documented that real-world 
groups perform well in decision-making across a wide range of domains, for example, from crowd voting for 
product designs15 and stock price prediction16 to COVID-19 detection17 more recently. It is important to note 
that all these successful collective decisions were made in highly interactive communication environments where 
social influence was not just possible but facilitated, and where, therefore, the independence of opinions was 
hardly expected. The question then becomes, “How can groups perform well in decision-making despite social 
influence?” To address this question, we propose selective exposure as a plausible endogenous mechanism that 
can effectively manage the diversity-reducing effects of social influence to preserve opinion diversity at the global 
level, thereby maintaining the quality of collective decisions.

We consider situations where a group of agents collectively make decisions about the true state of nature by 
utilizing information distributed in the form of opinions held by individual members. Assuming that the true 
state remains unknown to individual agents, we exclude from our model self-correction, incentives, and payoffs 
based on the accuracy of opinions, whereas these factors are considered in previous studies6,8,18–22. Further, 
we assume that agents’ initial opinions are independent and distributed around the true state with non-trivial 
errors. The errors in initial opinions, however, cancel each other out when they are aggregated, for example, by 
the majority rule23, median aggregation24, or mean aggregation25. In our model, therefore, a simple aggregation 
of initial opinions held by group members can yield sufficiently accurate collective decisions, with the collective 
accuracy increasing as group size grows, thereby achieving “collective intelligence”. The accuracy achieved by a 
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simple aggregation of initial opinions is considered the null model (i.e., the quality of collective decisions that 
would have been achieved without social influence), against which we assess the qualities of both individual and 
collective decisions formed under social influence.

We formulate social influence following DeGroot’s model of opinion dynamics26, where agents naïvely update 
their opinions by repeatedly adopting the majority or average opinion of their information sources (i.e., naïve 
learning). In some previous studies, naïve learning is considered as a means for agents to minimize the discrep-
ancies with their information sources (i.e., normative social influence)27,28. At the same time, naïve learning can 
also be seen as a useful heuristic for agents to improve their opinions when access to information is limited. 
This is because an opinion updated through naïve learning is a “collective” decision in the sense that it is made 
by aggregating the opinions in one’s information pool at a small and local scale (i.e., informational social influ-
ence)29,30. However, the repetition of naïve learning necessarily reduces opinion diversity within groups over time, 
regardless of whether it exerts normative or informational social influence, illustrating the diversity-reducing 
effects of social influence. In each round, the agent with the most extreme opinion is exposed to less extreme 
opinions than its own, and its opinion becomes less extreme through naïve learning in the following round. 
Especially when the patterns of influence from information sources to recipients are represented by a directed 
network, and the network is strongly connected (i.e., every agent is connected to everyone else by at least one 
directed path), all agents end up adopting a common opinion, and so the group reaches a consensus, as DeGroot’s 
theorem states. We consider the convergence of opinions at steady states reached through naïve learning as the 
state where there is a lack of opinion diversity within groups.

A group consensus reached through naïve learning is generally not equal to the collective decision formed 
by a simple aggregation of initial opinions in the group31. Instead, it is determined by the weighted mean of ini-
tial opinions, where the weights are proportional to the eigenvector centralities of corresponding agents in the 
network32 and represent the agents’ relative influences on the consensus. Golub and Jackson33 and Acemoglu 
et al.34 show that naïve learning can still produce accurate group consensuses in the absence of “excessively” 
influential agents, modeled as hubs in wheel-shaped networks. However, the degree distributions and the distri-
butions of eigenvector centralities of real-world social networks typically follow power laws35. Further, for social 
networks that are constantly growing, central nodes tend to become more central through preferential attachment 
processes36,37 in contrast to the assumption made by Acemoglu et al.34 Therefore, a well-connected large group 
is expected to reach a consensus that significantly deviates from the simple aggregation of initial opinions. In 
addition, those studies (also Buechel et al.30 and Rauhut and Lorenz38) adopt rather “generous” assessment criteria 
(i.e., the deviation of group consensuses from the true state) without considering that the marginal improvement 
of collective accuracy necessarily decreases as group size increases39. When the effects of group size on collec-
tive accuracy are not accounted for, the effects of influential agents in large groups tend to be underestimated.

Other studies focus on individual attributes of agents, specifically stubbornness, as another potential source 
of the deviation of group consensuses from the true state. For instance, Acemoglu et al.34 show that the presence 
of “forceful” agents—those who influence others but do not change their own opinions—results in a consensus 
biased toward the initial opinions of the forceful agents, increasing the deviation. Similarly, Buechel et al.30 suggest 
that agents with low levels of conformity (i.e., high self-confidence) have high impacts on group consensus (i.e., 
enhanced opinion leadership), and Anufriev et al.27 show that agents with lower sensitivity to disagreement with 
others exert more influence on group consensuses. Similarly, Zafeiris and Vicsek40 demonstrate that collective 
decisions are optimal when the pliancy and competence of group members are negatively correlated, implying 
that the stubbornness of incompetent members contributes to further deviation. The stubbornness of agents in 
those studies functions in a similar way to the centralities of the agents in the sense that stubborn agents exert 
disproportionate influence on group consensuses, increasing the deviation. Stubborn agents can be viewed as 
those having no incoming edges at all (i.e., not being influenced by others) or much fewer incoming edges than 
outgoing edges (i.e., influencing others more than they are influenced by others) in communication networks, 
thus exhibiting higher centralities and exerting greater influence on group consensuses than others. To examine 
the isolated impacts of naïve learning in comparison to those of selective exposure, we exclude confounding 
factors that could undermine the quality of collective decisions. Specifically, we assume that edges from infor-
mation sources to recipients are formed uniformly at random as in the Erdős-Rényi random graphs41 and that 
all agents are equally responsive to the discrepancies with their information sources42 (i.e., the absence of both 
“excessively” influential and “stubborn” agents). Under this assumption, naïve learning should result in a group 
consensus that is as accurate as the collective decision made by a simple aggregation of opinions.

We then incorporate selective exposure into our model as an alternative means for agents to minimize the 
discrepancies between their own opinions and those of their information sources. In previous literature, “selective 
exposure” refers to the tendency of people to seek out information that supports their existing views and opinions 
while avoiding information that challenges their own perspectives43. This tendency is commonly observed and 
has been studied in a wide range of domains, including communication44, information processing45, attitude and 
belief formation46, as well as decision making47. Further, selective exposure has been viewed as a major driving 
force in the formation and evolution of social networks48–51. In the context of collective opinion dynamics, some 
previous studies formulate selective exposure by assigning differential weights to edges in proportion to the 
opinion similarity between agents (e.g., interaction frequency52, relational intensity53, allocated attention54, and 
incentives for homophilic edges19), while assuming the connectedness of networks to be exogenously determined 
and constant over time. However, when the network of agents remains strongly connected, the effects of selective 
exposure on opinion dynamics are highly limited. Although disagreement among agents is observed temporarily 
and the convergence of opinions is significantly delayed, groups always reach consensus regardless of the level of 
selective exposure52,53,55. In our model, in contrast, connections between agents are assumed to be binary rather 
than weighted and can be either formed or removed by agents themselves, allowing for endogenous changes 
in network structure. Specifically, agents can reconstruct their information pools by removing the connections 
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to the information sources whose opinions differ most from their own and adding new connections to others 
whose opinions are more congruent with their own than the removed ones. By doing so, agents can reduce the 
discrepancies with their information sources without adjusting their own opinions.

When endogenous changes in network structure are permitted, an immediate consequence of selective expo-
sure is the fragmentation of a group into small and exclusive subgroups of like-minded agents54,56,57, or echo 
chambers, each of which converges to its own unique consensus27,53. Whereas previous studies focus on the 
conditions for fragmentation57, the stability of the resulting fragmented structures19, the impacts of fragmented 
structures on the speed of convergence53, and the opinion diversity within groups53,58, there has been limited 
research that systematically investigates the effects of a fragmented structure on the quality of collective decisions. 
Instead, many studies view fragmented or polarized structures as inherently harmful and so as something to 
be “overcome” through various intervention measures19,56,57. Many political researchers, in particular, perceive 
selective exposure as the primary culprit of political polarization, social distrust and conflict, and intergroup 
hostility59–62. Furthermore, they argue that it reduces the chance for individuals to learn from diverse views, 
resulting in biased and poor collective decisions63,64. From this perspective, political researchers have suggested 
“cross-cutting exposure” (i.e., the exposure to and learning from diverse views) as a potential solution to these 
problems61,65,66.

Contrary to this near-unanimous belief prevailing in political research and other areas, fragmented struc-
tures—more generally modular structures—in which individuals are tightly connected to others with similar 
traits and form cohesive local clusters, are known to be beneficial for maintaining diversity and enhancing 
groups’ ability to survive and adapt in hostile and uncertain environments7,58,67–72. Along these lines, Kao and 
Couzin39 investigate the effects of modular structures on collective decisions, although neither opinion updates 
nor endogenous changes in network structure are taken into account. The authors stress that the marginal 
improvement of collective accuracy diminishes, because the amount of information available within a group 
becomes saturated as its size increases. Therefore, the group size required to achieve a certain level of collective 
accuracy (i.e., “effective group size”) is typically smaller than the actual group size. Especially when individual 
opinions are correlated with one another, a modular structure enables a large group to behave as effectively as 
smaller groups, while retaining other benefits of its large group size. In addition, minority opinions, which might 
otherwise be overlooked when opinions are simply aggregated, can be better represented within a modular 
structure, thereby upholding opinion diversity at the global level. Pescetelli et al.73 provide empirical evidence 
directly supporting this view, showing that modular groups composed of small independent subgroups con-
sistently outperform non-modular groups in real-world forecast problems. Along with this line, Mann and 
Woolley-Meza7 underscore the importance of modular structures in retaining intellectual diversity and fostering 
the generation of new knowledge within academic communities. This can be achieved by maintaining a basic 
level of isolation and independence between subfields and thereby preventing the dominance of specific models 
and methods. Adopting Kao and Couzin’s39 concept of “effective group size,” we assess the quality of collective 
decisions achieved under different dynamics against the collective accuracy that a group of the same size would 
have achieved in the absence of social influence among group members.

We perform a series of numerical experiments focusing on the comparative statics of different levels of pro-
pensities for selective exposure with respect to group structure, opinion diversity, and the qualities of individual 
and collective decisions. The numerical experiments yield qualitatively consistent results across all the different 
settings examined. First, selective exposure fosters exclusive subgroups of like-minded individuals, leading to 
the emergence of modular and homophilic structures, confirming the findings of previous studies. Also, under 
strong propensities of selective exposure, opinion diversity within subgroups is completely eradicated as each 
subgroup converges to a local consensus that differs from those of other subgroups, as shown in previous stud-
ies. However, opinion diversity at the global level is perfectly preserved, suggesting that the diversity-reducing 
effects of social influence are effectively confined within each subgroup, with no further spread beyond it. Most 
importantly, the preserved opinion diversity, in turn, maintains the quality of collective decisions at a level as 
high as that achieved by a simple aggregation of initial opinions. In contrast, naïve learning allows a group to 
stay connected and thereby reach a consensus that turns out to be more accurate than initial individual opin-
ions, as predicted by previous studies. However, when the effects of group size on the marginal improvement 
in collective accuracy are taken into consideration, the group consensus is significantly less accurate than both 
collective decisions made by a simple aggregation and those made under strong propensities for selective expo-
sure across all the simulation settings. This is because naïve learning eradicates opinion diversity at the global 
level at a faster rate than that of the improvement of individual opinions. That is, the improvement of individual 
opinions through naïve learning comes at the expense of opinion diversity and collective accuracy, illustrating 
the trade-off between individual and collective performances.

A unique contribution of the current study is that it examines the causal path from selective exposure to the 
quality of collective decisions through the changes in group structure and opinion diversity in comparison to an 
alternative mechanism, naïve learning. The causal path is identified based upon a framework that integrates 
previously disparate concepts and findings, although none of them were completely unprecedented in previous 
literature. Despite the simplicity of our models, numerical experiments successfully replicate previous findings, 
indicating that the results we present do not contradict the findings of previous studies. Instead, the current 
results complement previous studies, providing a new insight into the understanding of the role that selective 
exposure plays in collective decision-making, which has been often perceived as a frustrating obstacle to achiev-
ing collective intelligence. The implication of the current results is straightforward: A fragmented group structure 
resulting from selective exposure prevents both information and influence from flowing across subgroups, while 
naïve learning allows both to flow. This is because communication channels between agents cannot separate 
information from the influence it carries. In that sense, the current findings simply suggest that blocking both 
information and influence (i.e., preserving diversity at the expense of additional information) is more beneficial 



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6412  | https://doi.org/10.1038/s41598-024-56868-8

www.nature.com/scientificreports/

for collective decisions than allowing both to flow (i.e., gaining additional information at the cost of opinion 
diversity), reconfirming the crucial role of opinion diversity in collective decision-making.

The rest of this paper is organized as follows. The next section introduces the agent-based models examined 
in this study, with detailed descriptions of simulation settings and measures. The results from numerical experi-
ments are then summarized in the subsequent section. The paper concludes with a discussion of the main findings 
and proposals for future research.

Methods
Classical models of collective decision‑making
The conditions for achieving collective intelligence have been extensively studied. One of the earliest models is 
Condorcet’s jury theorem23. The theorem considers a group of n members tasked with deciding between two 
alternatives, one of which is objectively better than the other but unknown to the members. Each member is 
assumed to choose the better decision with a probability of p > .5 , which is at least slightly better than a random 
guess. Further, all decisions are assumed to be made independently and then aggregated into the group’s deci-
sion by the majority rule. Under these assumptions, the probability of a group arriving at the correct decision 
PG is always greater than individual competence p . Moreover, PG increases monotonically and approaches 1 in 
the limit as group size increases.

Galton’s field experiment24 provides similar results. In his experiment, participants were asked to guess the 
weight of a live ox, and the median estimate of valid guesses (i.e., “valid” in the sense of being uninfluenced by 
others’ guesses) was accurate within a 1% margin of the ox’s true weight. Later, he found the mean estimate even 
more accurate25. Based on these observations, he argued that a simple aggregation of independent judgments can 
produce a sufficiently accurate collective outcome because the errors in individual judgments tend to cancel each 
other out when aggregated. Also, it can be intuitively conceived that the errors in collective outcomes decrease 
as group size increases, as indicated by the central limit theorem.

Even though Condorcet and Galton consider different types of opinions (i.e., binary or continuous opinions) 
and different methods for aggregating individual decisions (i.e., the majority rule or the median and mean 
aggregation), they both reach the same conclusion: Groups outperform individuals in decision-making, and 
the quality of collective decisions monotonically increases as a function of group size (see Section S1 in Supple-
mentary Materials for more details). However, both share the unrealistic assumption that individuals in groups 
make their decisions independently without influencing or being influenced by others.

To formulate a model of opinion dynamics under social influence, DeGroot’s model26 assumes that individuals 
update their opinions by repeatedly adopting the average of others’ opinions, which is formulated as a Markov 
process as follows. Individual opinions x(t) at a time point t ∈ {1, 2, 3, . . . } are determined as the weighted means 
of others’ opinions at t − 1:

where wij denotes the relative influence of j’s opinion on the update of i’s opinion (i.e., 0 ≤ wij ≤ 1 ), and W is a 
row-stochastic transition matrix (i.e., 

∑
jwij = 1 for all i ) that can be interpreted as the adjacency matrix of the 

network that describes the patterns of social influence among individuals in a group. Under these dynamics, 
individual opinions x(t) converge to a steady-state distribution x∗ in the limit:

where v1 is the eigenvector corresponding to the leading eigenvalue of W.
The theorem identifies the two conditions under which a group reaches a consensus (i.e., all the entries of 

x
∗ become equal). First, the Markov process is capable of transitioning from any state to any other state with 

a non-zero probability, having no isolated subset of states (i.e., irreducibility). Second, the process does not 
exhibit a regular, repeating pattern in its transition (i.e., aperiodicity). Put simply, the group always reaches a 
consensus, so far as the influence network remains strongly connected33. Further, the entries of v1 are equivalent 
to the eigenvector centralities of corresponding agents in the network32. Thus, the group consensus v1x(0) is 
not necessarily the “middlemost” opinion that evenly reflects the diverse opinions initially held by individual 
members, and thus the errors in initial opinions cannot be effectively canceled out when aggregated. Instead, 
the group consensus is determined—or at least, highly influenced—by a few individuals who occupy the most 
central positions in the group, which necessarily results in a deviation from the collective decision formed by a 
simple aggregation and the true state of nature.

However, the introduction of selective exposure into opinion dynamics will prevent a group from reaching 
a global consensus. This is because selective exposure results in the fragmentation of the group into smaller 
subgroups (i.e., strongly connected components). In that case, the conditions for reaching a global consensus 
(i.e., irreducibility and aperiodicity) will no longer be met. Yet, each subgroup independently reaches a distinct 
local consensus. In this way, opinion diversity can be preserved at the global level.

Agent‑based models
We extend DeGroot’s model by allowing endogenous changes in networks through selective exposure and then 
examine its impacts on group structure, opinion diversity, and the quality of collective decisions in comparison 
to naïve learning. To this end, we consider four agent-based models, including Condorcet and Galton Models, 
which simulate the settings depicted in Condorcet’s theorem and Galton’s experiment, respectively, and Bimodal 
and Exponential Models, which simulate initially polarized and skewed opinion distributions, respectively. The 
aspects shared by all these models are described first and followed by the details specific to each model, including 

x(t) = Wx(t − 1) or x(t) = W
t
x(0), whereW =

[
wij

]
,

x
∗ = lim

t→∞
x(t) = lim

t→∞
W

t
x(0) = v1x(0),
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the distributions of initial opinions, the rules used to aggregate individual decisions into collective decisions, 
and the expected qualities of the collective decisions formed in the absence of social interactions, which are to 
be compared against the simulation results from each model.

Common settings
All four models consider a group of n agents. Each agent starts with its own opinion xi . The initial opinion xi is 
an i.i.d. random variable that follows a probability distribution specified in each model. This ensures that every 
agent begins with an independent opinion, and so the group starts with sufficient opinion diversity. Also, each 
agent is initially connected to k other agents that serve as its information sources. The connections between agents 
are directed and not necessarily reciprocal. The number of connections k is constant and finite, following the 
assumption that individuals have a limited capacity of interactions18,19,52,54. The initial connections between agents 
are formed uniformly at random and independent of their initial opinions, ensuring that agents are exposed to 
diverse opinions at the beginning. The communication network of agents G is a random directed graph with 
a fixed in-degree, and its adjacency matrix Aij represents the directions of information flow from agents i to j. 
However, out-degrees follow a binomial distribution as in the Erdős–Rényi random graph model41. The set of 
agent i’s information sources, or its “information pool,” is denoted by G(i) =

{
j
∣∣aij = 1}.

In each round of simulations, agents attempt to minimize the discrepancies between their own opinions and 
those of their information sources in a random order, following the models used in previous studies30,42. Dis-
crepancy is measured as the sum of differences between an agent’s opinion and those of its information sources ∑

j∈G(i)
∣∣xi − xj

∣∣ (i.e., the sum of absolute deviations). We consider two ways of reducing discrepancy. The first 
is naïve learning, by which an agent simply adopts the opinion x′i such that it minimizes the discrepancies with 
its information sources:

whereas previous studies assume agents to adopt the “mean” opinion of others, we assume agents to adopt the 
“median” opinion in their information pool for several reasons. First, when the amount of discrepancy is meas-
ured as the sum of “absolute” deviations rather than “squared” deviations, the median minimizes discrepancy74. 
Second, the statistical behavior of sample median is asymptotically equivalent to that of sample mean, regard-
less of the original distribution from which a sample is drawn75. Third, when the distribution of initial opinions 
is skewed, the median is robust against outliers76,77, producing more stable results. Fourth, the “mean” opin-
ion is obtained by the linear combination of others’ opinions, which makes mathematical analysis convenient 
and allows for straightforward calculations and interpretation. However, using the “mean” opinion drastically 
increases the computational time for a simulation to reach its steady state. In theory, no simulation of DeGroot’s 
model can reach its steady state within a finite amount of time. Even when an arbitrary stopping rule is applied, 
a simulation can approach “closely enough” to its steady state at best. On the other hand, when the “median” 
opinion is used, simulations can be completed within a reasonable amount of time, while generating practically 
identical and stable results.

Alternatively, agents can reduce discrepancy via selective exposure, by which an agent removes its connection 
to the information source whose opinion differs most from its own and adds a new connection to a randomly 
selected agent whose opinion is more congruent with its own than the removed one. In each round, each agent 
chooses either selective exposure with a probability of β or naïve learning with its complement of 1− β . A set 
of 51 evenly spaced values between 0 and 1 is used to quantify the parameter describing agents’ propensity for 
selective exposure: β ∈ {.00, .02, .04., . . . , 1.00} . For each value of β , a total of 30,000 simulations are performed.

Model specific settings
First, group sizes in the Condorcet Model are set as an odd number, n = 101 , to avoid the need for tie-breaking 
rules. Adopting the assumption of Condorcet’s theorem, the initial individual opinion xi ∈ {True, False} for 
i = 1, 2, 3, . . . , n is an i.i.d Bernoulli random variable, and individual competence is set as p = .55 (Fig. 1a). When 
initial opinions are aggregated, the number of correct decisions 

∑n
i xi in a group follows a binomial distribution 

y =
∑n

i xi ∼ Bin
(
n = 101, p = .55

)
 . In that case, the probability of the group reaching the correct decision by 

the majority rule is defined as the sum of probability mass P(Y > n/2) = .844 (Fig. 1e).
Second, group sizes in the Galton Model are set as n = 100 and the initial individual opinions as an i.i.d 

standard normal random variable xi ∼ N(µ = 0, σ 2 = 1) , where the true state is µ = 0 (Fig. 1b). The collective 
decision x is determined as the mean of individual opinions. Thus, collective decisions follow a normal distribu-
tion with mean µ = 0 and variance σ 2

x = 0.01 by the central limit theorem (Fig. 1f): x ∼ N(µ = 0, σ 2
x = 0.01).

As an extension of the Galton Model, we consider the Bimodal Model in which initial individual opinions 
follow a mixture of two normal distributions, both sharing a common variance but having different means, 
such that the overall distribution has two peaks (Fig. 1c). This model is intended to reflect the polarized opinion 
distributions commonly observed in political contexts78,79. To generate the initial opinion xi , a local mean µj is 
chosen between −2 and 2 with an equal probability, and then, a normal random variable with local mean µj and 
common variance σ 2

j = 1 is generated:

The distribution of initial individual opinions is symmetric around the global mean µ = 0 ( = q
∑2

j=1µj ) and 
has two peaks at the local means. By the law of total variance, the variance of the distribution is σ 2 = 5:

x′i = argmin
∑

j∈G(i)

∣∣xi − xj
∣∣.

µj ∼ Ber
(
q
)
and xi ∼ N(µj , σ

2
j ), where q = .5,µj ∈ {−2, 2}, and σ 2

j = 1.
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Group size is set as n = 100 , and collective decisions are represented by the mean of individual opinions as 
in the Galton model. Under the condition of independence, collective decisions are normally distributed with 
mean µ = 0 and variance σ 2 = 0.05 by the central limit theorem (Fig. 1g): x ∼ N(µ = 0, σ 2

x = 0.05).
Lastly, the Exponential Model assumes that initial individual opinions are highly skewed, following an expo-

nential distribution with rate parameter � = 1 (Fig. 1d). Unlike the previous models, collective decisions are 
represented by the median of individual opinions (i.e., median aggregation). Because the median is robust against 
outliers, it is the preferred measure of central tendency for skewed distributions76,77. Accordingly, the true state 
of nature is set as the median of the distribution, µ̃ = ln2/� = 0.693.

The statistical behavior of sample median x̃  is known as follows75: When a sample of n random variables 
{x1, x2, . . . , xn} , where n = 2m+ 1 and m is a positive integer, are independently and identically drawn from a 
probability distribution with a density function f (x) , the distribution of sample medians is approximately normal 
with mean µ̃ (i.e., the median of the parent distribution) and variance 1

8f (µ̃)
2
m

 for large n. To utilize this statistical 
property of sample median, we set group size as n = 101 (or m = 50 ). In that case, collective decisions approxi-
mately follow a normal distribution with mean µ̃ = ln2 = 0.6931 and variance 0.01, as f

(
µ̃
)
= e−ln2 = 1/2 and 

8f
(
µ̃
)2
m = 8 · (1/2)2 · 50 (Fig. 1h).

In addition to the results presented below, we also examined each of the four models under different paramet-
ric settings to establish the robustness of our results. These additional settings include different initial network 
structures (i.e., scale-free and regular networks), numbers of information sources ( k = 3 and k = 9 ), and group 
sizes ( n = 400 for the Galton and Bimodal Models and n = 401 for the Condorcet and Exponential Models). These 
results are presented in Supplementary Materials (Section S2), where they can be seen to reproduce qualitatively 
similar outcomes.

Measures
Each simulation is terminated and considered to have arrived at its steady state when no further change occurs 
either in connections between agents or in their opinions. Individual opinions at steady states are considered as 
the final decisions that individual agents eventually arrive at, denoted by x∗i  , and then aggregated to form col-
lective decisions, denoted by x∗ (or x̃∗ for the Exponential Model).

In the Condorcet Model, individual performance pi is measured as the proportion of agents whose final deci-
sions are True . Similarly, collective performance PG is measured by the proportion of groups whose majority decide 
True at steady states. Given that group size n = 101 , it is expected that pi = .55 and PG = P

(
1
n

∑n
i x

∗
i > .5

)
= .844 

in the absence of social influence.

σ 2 =
2∑

j=1

q
(
µj − µ

)2 +
2∑

j=1

qσ 2
j .

Figure 1.   The distributions of initial individual opinions (a through d) and aggregated initial opinions (e 
through h). The shades indicate “Good Decisions,” operationally defined as True decisions for the Condorcet 
model and as those that fall within a range of two standard errors from the true state of nature in the other 
models.
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To measure individual and collective performances in the other models that assume continuous opinions, we 
first operationalize “Good Decisions” and then measure individual performance pi and collective performance 
PG as the fractions of “good decisions” found at steady states. “Good decisions” are defined as those that fall 
within a range of two standard errors from the true state of nature, adopting the conventional decision criterion 
in statistical analysis. That is,

where the standard error is σx = σ/
√
n , and µ is the true state ( ̃µ for the Exponential Model) specified by a 

model. Then,

where n is the group size, and N is the total number of simulations for each value of β.
Previous studies measure collective performance, as alluded to in references such as “wise society”33, “wise 

crowd”30 and “(mis)information”34, by the (squared) deviation of a collective decision from the true state of nature 
and show that the deviation approaches zero (i.e., achieving collective intelligence) in the absence of “excessively” 
influential agents as group size approaches infinity. However, it should be noted that the deviation is inversely pro-
portional to the square root of group size 

√
n , and therefore the infinitely large size of groups is sufficient for the 

deviation to converge to zero, as indicated by the central limit theorem. Also, the sublinear relationship between 
the deviation and group size demonstrates the diminishing marginal improvement of collective performance, as 
pointed out by Kao and Couzin39. Therefore, when the effects of group size are not properly controlled for, the 
deviation alone tends to overestimate collective performance and thereby underestimate the negative effects of 
influential agents. For this reason, we include standard error σx  to define the range of “good decisions,” which 
allows for direct and more precise comparison between collective performances under different settings across 
models. This is because the ranges of “good decisions” are all standardized. In the absence of social influence 
(i.e., a simple aggregation of initial opinions), a group is expected to make a “good” collective decision with a 
probability of 0.954 

[
= P

(∣∣x∗i − µ
∣∣ < 2σx

)]
 , since (x∗ − µ)/σx  follows the standard normal distribution N(0, 1) , 

regardless of the distributions of initial opinions. Also, in the case of an infinitely large group, our definition 
becomes equivalent to those in previous studies {x∗||x∗ − µ| = 0} , since σx  converges to zero.

In addition, we measure the opinion diversity in groups σx , the size of the giant components |C1| , and the modu-
larity Q of networks at steady states to examine the impacts of local dynamics on the global structure. Opinion 
diversity σx is measured by the standard deviation of individual opinions at steady states. The size of the giant 
component |C1| is measured by the proportion of nodes that belong to the largest strongly connected component 
of a communication network G , within which every node is reachable from every other node. Modularity Q is 
measured as

where d represents the dichotomized categories of individual opinions (i.e., True or False; above or below the true 
state), m is the total number of edges, Ld is the total number of edges within category d , and kind  and koutd  are the 
sums of in-degrees and out-degrees of the nodes in category d , respectively80. Both the size of the giant compo-
nents |C1| and modularity Q are used to measure the degree to which the communication network is fragmented. 
Low values of |C1| and high values of Q indicate the presence of echo chambers within groups.

Results
Sampled results: replication of previous findings
Figure 2 visualizes the sampled results from numerical experiments and compares opinion distributions and 
group structures at the initial states with those at steady states under the maximal propensities for naïve learn-
ing ( β = 0 ) and selective exposure ( β = 1 ). In each plot, nodes represent individual agents, and their colors 
and sizes indicate the opinions and eigenvector centralities of the corresponding agents, respectively. Nodes are 
placed closely to one another if they are connected.

Across all four models, groups initially contain diverse opinions, and agents with different opinions are 
connected to one another (Figs. 2a–d). However, the two different dynamics—naïve learning and selective expo-
sure—yield drastically different outcomes. Under the maximal propensity for naïve learning ( β = 0 , Figs. 2e–h), 
all agents end up adopting the same opinion, and thus, groups reach a consensus, as DeGroot’s model predicts. 
As a result, the opinion diversity at the global level vanishes completely ( σx = 0 ), demonstrating the diversity-
reducing effects of social influence. Under the maximal propensity for selective exposure ( β = 1 , Figs. 2i–l), 
agents alter their local networks without adjusting their opinions at all. As a result, agents with similar opinions 
end up being densely clustered and form exclusive subgroups between which no edges are found. Opinions 
within each subgroup are nearly identical, indicating the loss of opinion diversity within subgroups. However, 

Good Individual Decisions Hi =
{
x∗i |

∣∣x∗i − µ
∣∣ < 2σx

}
and

Good Collective Decisions HG =
{
x∗|

∣∣x∗ − µ
∣∣ < 2σx

}
,

Individual Performance pi =
|Hi|
n

and

Collective Performance PG =
|HG|
N

,

Q =
∑

d

[
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m
−
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each subgroup reaches its own unique consensus distinguished from those reached by others, and therefore, the 
global-level opinion diversity σx is perfectly preserved. These results confirm the findings of previous studies, 
validating our approaches.

The effects of selective exposure
Figure 3 presents 3D histograms in which the heights of bars represent the relative frequencies of collective deci-
sions obtained from 30,000 simulations for each of the intermediate levels of propensity for selective exposure 
β ∈ {.00, .02, .04., . . . , 1.00} across the four models.

Across all the models, the distributions of collective decisions formed under the maximal propensity for selec-
tive exposure ( β = 1 ; the blue histograms projected on the front in Fig. 3) are nearly identical to those made by a 
simple aggregation of initial opinions (Figs. 1e–h). In terms of collective performance, 84.4% of groups arrive at 
the correct decision in the Condorcet models, and 95.4% of groups make “good” decisions in the other models, 
suggesting that collective performance is maintained at a level as high as that achieved by a simple aggregation 
of initial opinions. On the other hand, as naïve learning becomes more dominant, the distributions become more 
dispersed with longer and thicker tails, indicating that collective decisions are more likely to deviate from the true 
state. These deviations are most salient in the Condorcet model due to the binary nature of the opinions it models 
(i.e., True or False). When naïve learning is dominant over selective exposure ( β < .50 ), groups produce only two 
collective outcomes: Either all agents make the correct decision, or all make the wrong decision. Effectively, each 
group is constrained to behave like a single individual.

Although their results are not as extreme as those observed in the Condorcet Model, similar patterns are 
observed in the other models that assume continuous opinions. In the Bimodal Model, when naïve learning is 
dominant, the distribution of collective decisions resembles that of initial individual opinions characterized by 
the two peaks, implying that collective decisions are effectively determined by a few agents who happen to occupy 

Figure 2.   Sampled results from the simulations of the four models: Initial opinion distributions and network 
structure of groups (a through d) and those at steady states under the maximal propensities for naïve learning 
( β = 0 , e through h) and selective exposure ( β = 1 , i through l). Node size and color indicate the eigenvector 
centralities and the opinions of corresponding agents, respectively.
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central positions in the communication network and so exert more influence on the collective decisions. In the 
Exponential Model, collective decisions reached under the maximal propensity for naïve learning are skewed to 
the right, reflecting the initial distribution of individual opinions, even though the method of median aggrega-
tion is robust against outliers. This also illustrates that collective decisions tend to be determined by a few central 
agents when naïve learning is dominant.

Figure 4 summarizes individual performance pi , giant component size |C1| , modularity Q , opinion diversity 
σx , and collective performance PG at different levels of selective exposure, each of which displays nearly identical 
patterns across all the four models. First, selective exposure sharply decreases the size of the giant component |C1| 
and increases modularity Q , which together suggest that selective exposure leads to the emergence of exclusive 
and disconnected subgroups of like-minded individuals. Second, selective exposure preserves opinion diversity 
σx at the global level, suggesting that the diversity-reducing effect of social influence has been effectively confined 
within subgroups. Most importantly, selective exposure allows groups to maintain their collective performance 
at a level as high as that achieved by a simple aggregation of initial opinions, as already shown in Fig. 3.

One important observation is that whereas individual performance pi remains unchanged under strong pro-
pensities for selective exposure, it is substantially improved under strong propensities for naïve learning across all 
the models (the yellow layers in Fig. 4), which is consistent with previous findings33,34. For instance, when agents 
naïvely adopt the majority opinion in their information pools, 75.3% of agents end up making the correct decision 
at the steady states in the Condorcet Model ( pi = .753 when β = 0 ). This proportion is substantially higher than 
the initial individual competence p = .550 , which can be explained as follows. A naïve learner adopts the “major-
ity” or “median” opinion of its information pools. Therefore, the updated opinion is effectively a “collective” deci-
sion made by simply aggregating the opinions of its information sources, as in Condorcet’s theorem and Galton’s 
experiment. Even though the size of this “group” is small ( k = 5 in our simulation settings), the updated opinion 
should be statistically more accurate than any of the individual opinions held by one’s information sources. In 
that sense, individual opinions are expected to progressively improve through each round of naïve learning.

Contrary to the findings of previous studies33,34, however, collective decisions formed through naïve learn-
ing significantly deviate from the true state despite the improvement in individual decisions (the purple layers 

Figure 3.   3D histograms of the collective decisions formed at different levels of selective exposure across 
the four models. The red and blue histograms projected on the front represent the distributions of collective 
decisions reached under the maximal propensities for naïve learning ( β = 0 ) and selective exposure ( β = 1 ), 
respectively.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6412  | https://doi.org/10.1038/s41598-024-56868-8

www.nature.com/scientificreports/

in Fig. 4). This cannot be attributed to the presence of “excessively” influential agents, which is unlikely in 
our models because all the connections between agents are formed uniformly at random. Instead, the current 
results suggest that the negative effects of (even “moderately”) influential agents are much greater than predicted 
by previous studies (see also Section S2.3 in Supplementary Materials). Further, the lower collective accuracy, 
despite improved individual accuracy, suggests the importance of opinion diversity for collective decision-making 
relative to individual competence. Naïve learning, operating as collective decision-making at a small and local 
scale, progressively improves individual opinions, but the rate of improvement drastically decreases because the 
opinions within information pools become homogenous over time at a faster rate than that of improvement. At 
steady states, the aggregation of opinions in one’s information pool cannot yield any improvements in collective 
accuracy, simply because not only the information sources but also all other agents adopt a common opinion. 
That is, the whole group effectively behaves as if it were a single “moderately competent” individual. According to 
our simulation results, for example, individual agents make the correct decisions with a probability of 0.753 under 
the maximal propensity for naïve learning in the Condorcet Model ( pi = .753 ), while collectively making the 
correct decisions with a probability of 0.749 (Fig. 4a). The minor gap between the two probabilities is due to the 
failure of groups to remain strongly connected and thus to reach consensus [i.e., P(|C1| < 1) = 1− .994 ]. Either 
probability is significantly lower than the probability of a group making the correct decision by a simple aggre-
gation of initial opinions (0.844 in Fig. 1e). Not surprisingly, similar patterns are observed in the other models.

The results presented above are all successfully reproduced in extended numerical experiments performed 
over a wider range of simulation settings, confirming the robustness of the results above (see Supplementary 
Materials Section S2 for more details). In addition, the results from the extended numerical experiments allow 
us to identify the conditions under which naïve learning can also function to maintain the quality of collective 
decisions despite the utter absence of opinion diversity within groups. First, when each agent has access to a 
large pool of information, both individual and collective decisions improve (Section S2.2). Ideally, if every agent 
can be exposed to and has a chance to learn from everyone else’s opinions (i.e., k = n− 1 ; complete networks), 
collective decisions under naïve learning are expected to be as good as those made under the maximal propen-
sity for selective exposure or in the absence of social influence. Second, the group structure should be perfectly 

Figure 4.   The effects of selective exposure on individual performance pi , giant component size |C1| , modularity 
Q , opinion diversity σx , and collective performance PG.
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decentralized (i.e., regular networks). That is, every group member must exert exactly an equal amount of influ-
ence on everyone else’s decision, and there must be neither “leaders” nor “followers” in the group (Section S2.3). 
Although these conditions can be implemented in our agent-based models, they are hardly feasible or expected 
to be met in real-world collective decision-making.

Collective decision‑making under time constraints
In real-world decision-making, both individual and collective decisions are typically subject to time constraints. 
Rather than having unlimited time to deliberate, individuals and groups are often forced to make decisions before 
arriving at a steady state. In that sense, transient opinion dynamics may be more relevant. From this perspective, 
we examine the effects of selective exposure and naïve learning during the early stages of dynamics (Fig. 5).

Figure 5 visualizes the changes in performance and group structure for the first ten rounds, during which most 
major changes occur. Even after the very first round, selective exposure (as well as naïve learning) already shows 
non-trivial impacts on both performance and group structure. Subsequently, all the measures remain nearly the 
same until steady states are reached (the darkened layer in each plot). These results suggest that the effects of 
selective exposure become observable almost immediately, further reinforcing the robustness of our findings. 
Even if decisions must be made over truncated time scales, selective exposure still affects both individual and col-
lective performances and group structure in a manner consistent with the steady-state results reported above. It 
should be noted that these “immediate” effects observed in the early stage of simulations are “relative” to the time 
scale, and thus they can be seen as an artifact of the parameter settings specified in our numerical experiments.

Furthermore, the changes observed over consecutive rounds help explicate the causal relationships among 
the local behavior of agents, global structural properties, and individual and collective performances, allowing 
for a better understanding of the steady-state results reported above. Naïve learning substantially improves 
individual performance for the first few rounds (the first column in Fig. 5), as agents update their opinions by 
aggregating diverse opinions in their information pools (i.e., collective decision-making at small and local scales), 
but the rate of improvement sharply declines. This is because the repetition of naïve learning eradicates opinion 
diversity (the fourth column in Fig. 5). On the other hand, selective exposure fragments groups into subgroups, 
which become more homogeneous (the third column in Fig. 5) and smaller (the second column in Fig. 5). 

Figure 5.   Changes in performance and group structure for the first ten rounds at different levels of propensity 
of selective exposure. The darkened layer in each plot represents the corresponding measures at steady states. 
Note: “Rounds” for individual performance pi and modularity Q are arranged in reverse order for a clearer visual 
presentation.
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However, selective exposure leads to no changes in opinion diversity at the global level (the fourth column in 
Fig. 5), thereby maintaining the quality of collective decisions over time (the fifth column in Fig. 5). It is worth 
noting that, under strong propensities for selective exposure, the decrease in giant component size |C1| is delayed 
compared to the changes in other measures. This is because, during the early stage, the whole network remains 
robust against the modification of local structures due to the high initial connectivity among agents ( k = 5)81.

Discussion
In this study, we have examined the impacts of selective exposure on the quality of collective decisions through 
an extension of DeGroot’s model26 by allowing for endogenous changes in the communication networks of 
agents. A series of numerical experiments suggest that our models successfully replicate previous findings. The 
results confirm that naïve learning leads to the convergence of opinions in well-connected groups, and further, 
collective decisions formed under naïve learning are more accurate than initial individual opinions30,33,34. Also, 
our results are consistent with previous findings, showing that selective exposure leads to the fragmentation of a 
group into exclusive and homogenous subgroups53,54,56,57, each of which converges to a unique consensus27. These 
successful replications of previous findings by our models validate our approach and indicate that the results we 
present are not in contradiction with the findings of previous studies.

In addition, the present study offers important insights into the understanding of the role selective exposure 
plays in collective decision-making in comparison to naïve learning, complementing previous findings. The 
major findings of the current study can be summarized as follows. A group consensus reached through naïve 
learning is more accurate than initial individual opinions but significantly deviates from the true state of nature, 
even in the absence of “excessively” influential individuals. Naïve learning progressively improves individual 
opinions, because the learning process is conceptually equivalent to a collective decision-making process at a 
small and local scale. However, the rate of improvement decreases, as naïve learning eradicates opinion diversity 
at both local and global levels at a faster rate than that of improvement. This suggests that the improvement in 
individual opinion is achieved at the cost of opinion diversity, and that learning from others’ opinions can be 
beneficial only if those opinions are sufficiently diverse. On the other hand, the diversity-reducing effects of 
social influence are effectively confined within exclusive subgroups formed by selective exposure, while global-
level opinion diversity is well preserved. As a result, the collective decisions made under strong propensities for 
selective exposure are as accurate as a simple aggregation of independent opinions initially held by individual 
members. This suggests that selective exposure can function to manage the diversity-reducing effects of social 
influence in highly interactive communication environments, providing a plausible answer to our motivating 
question, “How can groups perform well in decision-making despite social influence?”.

However, it should be noted that our models examined the effects of selective exposure only in terms of the 
accuracy of collective decisions without considering any potential costs associated with coordinating and inte-
grating individuals with diverse or even opposing opinions as well as other negative consequences of structural 
fragmentation, such as intergroup hostility and conflicts. Perhaps, those costs might exceed the benefits of 
producing more accurate and unbiased decisions in real-world contexts. Therefore, the current findings should 
not be interpreted to imply that selective exposure is necessarily superior to other alternative means of reducing 
disagreement among group members, utilizing local information, or managing the diversity-reducing effects 
of social influence. Likewise, it is equally undesirable to blindly believe that learning from diverse views or the 
equivalent would be a “panacea” for a wide range of social and political problems because it leads to poorer and 
more biased collective decisions than groups could have possibly produced otherwise. This trade-off between 
the “melting pot” ideal of harmonious consensus and the “salad bowl” concept of preserving diversity deserves 
further examination. Therefore, future research is required to present more balanced perspectives and theoretical 
frameworks on opinion dynamics and collective decision-making.

It is important to acknowledge the limitations of our models and discuss the directions of future research to 
extend the current findings. First, although naïve learning has been widely adopted as a model of opinion dynam-
ics, a problem with its fundamental assumption needs to be carefully considered. Naïve learning is a rational 
opinion update rule when agents reside in a sparse network, as in such cases, their neighbors’ opinions can be 
assumed to be effectively independent. However, when the connectivity among neighbors exceeds a certain 
level, this independence assumption cannot be held. Thus, the failure to recognize and adjust for the excessive 
connectivity leads to suboptimal social responses and poorer decisions5. Nonetheless, the adoption of naïve 
learning can be defended by assuming that agents lack the cognitive ability to handle the complexity inherent in 
the densely interconnected networks, they do not have access to the information about the correlation structure 
among neighbors, and/or they are overly accustomed to situations in which the connectivity among neighbors 
can be ignored. Alternatively, other formulations of opinion updating can be considered. For example, agents 
can be assumed to be (Bayesian) rational decision-makers who update their (private) prior opinions based on 
the observed decisions previously made by others (i.e., sequential decision-making problems). In that case, a 
high connectivity of network structures leads to the phenomenon known as information cascades, where the 
rational decision-making process is simplified to merely tallying each option chosen by others, and the decision 
made by a few initial agents takes over the entire group82–87. In this scenario, we expect that selective exposure 
might still function by isolating cascades within the subgroups from which they originate. Also, when selective 
exposure is viewed as a response to normative social influence by adjusting one’s local structure rather than 
opinions, its impacts need to be compared to those of alternative ways by which agents avoid disagreement 
with neighbors without adjusting their own opinions, such as remaining silent88,89 or even falsely stating their 
opinions27,30. Buechel et al.,30 for instance, consider the possibility that agents intentionally misrepresent their 
opinions either by conforming or counter-conforming with their neighbors. They show that the misrepresenta-
tion of opinions does not necessarily undermine collective accuracy but may even enhance it. According to this 
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framework, “dishonest” agents can uphold their initial opinions despite the normative social influence of their 
information sources, specifically to the extent that their true opinions differ from their stated opinions. Accord-
ingly, the aggregate of these differences can be seen as the total amount of preserved diversity at the global level. 
However, the stated opinion of an agent can still influence the opinion formation of other agents who rely on the 
agent as their information sources. That is, normative social influence is simply “passed along” to other agents 
instead of being “stopped.” Therefore, it would be interesting to see how the introduction of “dishonest” agents 
affects the current results.

Second, our models assume that agents initially hold independent opinions, the aggregation of which is sta-
tistically equal to the true state of nature. However, this independence assumption is not applicable to real-world 
groups, because individual opinions tend to be correlated with each other even before any social interaction 
starts. Previous studies show that collective decisions made by a simple aggregation are more accurate when the 
average correlation among agents’ opinions is negative than when it is positive90,91. Although it is impossible for 
every agent to be mutually contrarian to each other within a group of three or more agents, it is still conceivable 
that some agents’ opinions are perfectly negatively correlated with some others, or that every agent’s opinion is 
moderately negatively correlated with every other. More specifically, the lower bound of the average correlation 
among n agents’ opinions is ρ ≥ −1/(n− 1) 90. Further, when agents’ opinions are maximally negatively corre-
lated, the generalized variance of the joint distribution of n opinions (i.e., multivariate dispersion) is accordingly 
maximized, maintaining opinion diversity within groups. Therefore, collective accuracy can be significantly 
improved by incentivizing individuals to be in the minority6. Further, whereas our model assumes no changes 
in opinions after selective exposure, the reinforcement model55,92—a framework proposed to account for the 
personalization-polarization hypothesis93—predicts that individuals tend to develop more extreme views after 
interacting with like-minded others. If that is the case, selective exposure widens the gaps between opinions that 
are initially leaning toward different ends, and the correlation between them grows in the negative direction, 
enhancing the quality of collective decisions rather than merely maintaining it. Perhaps, a positive correlation 
among individual opinions is more common to real-world groups, even though their effects on collective accu-
racy become negligible as group size increases94. In particular, the external factors of correlated opinions (i.e., 
“induced homophily” as opposed to preference-based “choice homophily”95), such as spatial constraints39 and 
the reliance on common information sources45, should be duly incorporated into our models. One possible way 
is to include those factors as a set of pseudo-agents with no incoming edges but with a disproportionately large 
number of out-going edges, forming a bipartite network in which one mode is composed of the pseudo-agents 
and the other consists of the “ordinary” agents. These relatively straightforward extensions could help clarify 
how these additional factors affect the causal path from selective exposure to the quality of collective decisions 
through group structure and opinion diversity.

Data availability
The datasets generated by numerical experiments and Python scripts used for simulations are available from the 
corresponding author on reasonable request.
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