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Research on WSN reliable ranging 
and positioning algorithm for forest 
environment
Peng Wu 1,3, Le Yu 1,3, Xiaomei Yi 1*, Liang Xu 1, LiJuan Liu 1, YuTong Yi 2, Tengteng Jiang 1 & 
Chunling Tao 1

Wireless sensor network (WSN) location is a significant research area. In complex environments like 
forests, inaccurate signal intensity ranging is a major challenge. To address this issue, this paper 
presents a reliable WSN distance measurement-positioning algorithm for forest environments. The 
algorithm divides the positioning area into several sub-regions based on the discrete coefficient of the 
collected signal strength. Then, using the fitting method based on the signal intensity value of each 
sub-region, the algorithm derives the reference points of the logarithmic distance path loss model and 
path loss index. Finally, the algorithm locates target nodes using anchor nodes in different regions. 
Additionally, to enhance the positioning accuracy, weight values are assigned to the positioning 
result based on the discrete coefficient of the signal intensity in each sub-region. Experimental results 
demonstrate that the proposed WSN algorithm has high precision in forest environments.

Keywords  Wireless sensor network (WSN), Ranging positioning, Fitting method, Regional division, High 
precision

Positioning technology for wireless sensor networks in forests is critical for ensuring the security of forest 
resources, social stability, and the safety of people’s lives and property1,2. Accurately, quickly, and effectively moni-
toring and detecting abnormal events in forest environments has become a major concern for society. However, 
the complexity, variability, and danger of the forest environment make it difficult for traditional technologies 
such as geographic information systems (GIS), remote sensing (RS), and global positioning systems (GPS) to 
accurately locate and monitor changes in the forest environment3.

Wireless sensor networks allow nodes to reach and monitor forest environments that are inaccessible or too 
dangerous for humans, enabling more precise monitoring and positioning. Nodes in wireless sensor networks are 
typically classified into anchor nodes (Beacon) or unknown nodes (Unknown)4–6, depending on the perspective. 
Anchor nodes can obtain their location information through manual deployment, while unknown nodes acquire 
their location information through the node positioning process. Location information is crucial for monitoring 
and locating activities, and without it, nodes are meaningless.

Wireless sensor network positioning technology can be divided into two types: range-based7–9 and range-
free10,11 positioning methods. Distance-based positioning methods obtain distance or angle information between 
nodes through technologies such as Received Signal Strength Indicator (RSSI)12,13, Time Difference of Arrival 
(TDOA)14,15, and Time of Arrival (TOA)16,17 to achieve monitoring and positioning. Distance-independent 
positioning methods do not require distance or angle information between nodes, but instead use network 
connectivity and other information to achieve positioning. Common algorithms include Approximate Point-
In-Triangulation (APIT)18–20, Centroid Method21, Distance Vector Hop (DV-Hop)22–24, and others.

The RSSI ranging and positioning algorithm is widely used due to its simplicity and lack of additional hard-
ware requirements. Qi et al.25 used weighted averages to estimate environmental factor parameters, dynami-
cally modified ranging values, and combined them with the weighted Triangle Centroid Algorithm to achieve 
positioning. Singh26 discussed the challenges and potential solutions related to machine learning-based indoor 
localization systems. Literature27 proposed a new method for evaluating WSN technology for indoor localization 
using weight range localizer (WRL) and relative span exponential weight range localizer (RS-WRL)28,29 based 
on the RSSI to estimate the target node’s position. This algorithm effectively improves positioning accuracy and 
reduces errors compared to the RSSI algorithm with a fixed loss factor. However, the RSSI value is easily affected 
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by the environment, and the simple loss model’s accuracy is not high. Therefore, this paper proposes a WSN reli-
able location algorithm suitable for forest environments. The logarithmic path loss parameters are determined by 
the zonal fitting method, and the location is achieved through trilateral ranging. Finally, the RSSI discrete coef-
ficient is used to assign weight values to the location results of each region to improve the positioning accuracy. 
The signal strength RSSI variations caused by shadow fading for changing AP heights are used to estimate the 
location accuracy. The localization performance is computed in terms of the Cramer–Rao lower bound (CRLB) 
of range estimate under dynamic environments30.

The ranging model
Section “Logarithmic distance path loss model” of this chapter mainly introduces the method of calculating the 
distance based on the signal strength of the logarithmic distance path loss model, while Section “Fitting method 
to get model parameters” focuses on establishing a suitable logarithmic distance path loss model in a specific 
environment, such as the forest environment. This section mainly discusses how to fit the path loss index and 
reference point signal strength of the logarithmic distance path loss model based on measured values.

Logarithmic distance path loss model
In the forest environment, obstacles are complex and the signal strength (RSSI) is greatly affected. However, 
the logarithmic distance path loss model fully considers the influence of obstacles and uses the path loss index 
to represent the complexity of obstacles. Therefore, the logarithmic distance path loss model is widely used to 
calculate the loss of signal strength RSSI and the corresponding distance in this environment. Equation (1) 
shows the specific model:

In Eq. (1), d0 is the reference distance, usually 1 m; d is the distance of signal propagation, that is, the distance 
from the signal source; P0(d0) is the power path loss at the reference distance d0 ; P(d) is the power path loss at 
the signal propagation distance d ; n is the path loss index, n represents the rate at which the signal loss changes 
with the propagation distance, and its value is mainly related to the complexity of environmental obstacles. is 
the Gaussian error. Convert Eq. (1) to signal strength RSSI as shown in Eq. (2).

In Eq. (2), RSSI(d) is the signal strength path loss value at the distance source d ; RSSI(d0) is the signal strength 
path loss value from the signal source d0.

The signal strength at the distance from source d is shown in Eq. (3).

In Eq. (3), RSSId is the signal strength value at the distance source d ; RSSI0 is the signal strength value at the 
transmitting source; RSSI(d) is the path loss value at the distance source d.

The path loss value for the signal strength from the reference point at source d0 is shown in Eq. (4).

In Eq. (4), A is the signal strength value of the reference point at the distance source d0 ; RSSI(d0) is the signal 
path loss value at the reference point; RSSI0 is the signal strength value at the transmitting source.

Substituting Eqs. (3) and (4) into Eq. (2) yields the conversion formula for signal strength to distance, as 
shown in Eq. (5).

In Eq. (5), d0 is t  distance; A is the signal strength value at the reference point; n is the path loss index; In 
order to calculate the distance based on the signal strength more accurately,  RSSId takes the average RSSId  of 
the multiple signal strengths at d.

Fitting method to get model parameters
Section “Logarithmic distance path loss model” of this chapter explains how to calculate the distance from a sig-
nal source using the signal strength and the logarithmic distance path loss model, which is expressed by Eq. (5). 
The accuracy of this model depends on the values of the model parameters, including the path loss index ( n ), 
the reference point ( d0 ), and the signal strength of the reference point ( A ). Thus, this section discusses how to 
determine these parameters accurately for a specific environment.

In the forest environment, the density of trees varies across different areas, leading to varying signal propa-
gation losses in regions with different densities. Consequently, the path loss index ( n ) and reference point ( d0 ) 
in the logarithmic distance path loss model also vary. To address this issue, this paper uses the RSSI’s discrete 
coefficient, which varies significantly in regions with different densities, to divide the forest area into regions. To 
illustrate, the paper presents the actual measured RSSI and distance values in Fig. 1.

In Fig. 1a, the relationship between the signal intensity (RSSI) and distance (d) is shown for two different 
environments: an open area and a forest environment (bamboo forest). In open areas, the discrete coefficient 
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of signal strength is relatively stable at around − 0.018. However, in the forest environment, the signal intensity 
(RSSI) is more dispersed, and there are significant fluctuations in RSSI values at 5.5 m, 12.5 m, and 19.5 m from 
the signal source. These fluctuations are caused by the varying density of trees in different regions. By using the 
dispersion coefficient of RSSI, the positioning area can be effectively divided, and the path loss index (n) and 
reference point ( d0 ) of the logarithmic distance path loss model can be calculated for each region.

To calculate the path loss index (n) and reference point ( d0 ) for each region, a fitting method is used. The 
RSSI values measured in each region are used as the ordinate and distance (d) is used as the abscissa in the fit-
ting process. Equation (5) is used as the custom fitting function, and the n linfit nonlinear fitting function of 
MATLAB is used to fit the parameters d0 , A, and n in Eq. (5). The localization region is divided into four sub-
regions, and the model parameters corresponding to each sub-region are calculated as follows: d01, A1, and n1 for 
sub-region 1, d02, A2, and n2 for sub-region 2, d03, A3, and n3 for sub-region 3, and d04, A4, and n4 for sub-region 4. 
The logarithmic distance path loss model obtained by fitting can measure the distance more accurately, leading 
to improved positioning accuracy in ranging and positioning applications.

Positioning method
Section “Partition positioning” of this chapter focuses on the collaborative localization of unknown nodes using 
anchor nodes in each region through weight-based triangulation. The goal is to improve the accuracy of localiza-
tion. In this method, anchor nodes with known locations are used to form a reference network. Each unknown 
node measures its distance to the anchor nodes using the received signal strength indicator (RSSI) and then sends 
these measurements to a central processor. The central processor then calculates the location of the unknown 
node using the weight-based triangulation method. This method takes into account the distances and the cor-
responding weights assigned to each anchor node, and calculates the weighted average of their locations to obtain 
the location of the unknown node. The RSS signal strength measurements are made in LOS and OLOS regions 
to construct and validate the models. The shadow fading component for quasi-realistic and realistic conditions 
is statistically modeled with the dependency on AP heights31.

(a)Signal strength in open areas

(b)Signal strength in bamboo forests
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Figure 1.   Signal strength measurement results.
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Section “Fitting method to get model parameters” explains how the discrete coefficient of signal strength is 
used to assign weight values to each sub-region positioning result, in order to further improve the accuracy of 
positioning. The weight value is calculated by taking into account the dispersion coefficient of the RSSI in each 
sub-region. This means that regions with more dispersed RSSI values have lower weight values assigned to their 
positioning results, and vice versa. By using this method, the positioning accuracy is improved, especially in 
areas with complex environments such as forests, where the RSSI values are greatly affected by the obstacles.

Partition positioning
To improve the positioning accuracy, this paper divides the positioning area into sub-regions based on the dis-
crete coefficient of RSSI, as shown in Fig. 2. Each sub-region is equipped with several anchor nodes. A multi-area 
anchor node collaborative positioning method is adopted, where the unknown node is located using the anchor 
nodes in its closest sub-regions. The triangles represent unknown nodes, and the circles represent anchor nodes.

The initial stage involves the selection of anchor nodes proximate to the unknown node within each sub-
region for precise positioning. The criteria for selecting these anchor nodes are based on both proximity and 
signal strength. Specifically, the distance between the unknown node and potential anchor nodes is determined 
using Received Signal Strength Indicator (RSSI). The anchor nodes with the strongest and most reliable RSSI 
values in each sub-region are chosen as the anchors for subsequent triangulation ranging.

To illustrate, in area 1, anchor nodes A, B, and C are selected based on their close proximity to the unknown 
node and their superior RSSI values. Similarly, in area 3, anchor nodes D, E, and F are chosen following the same 
criteria. This rigorous selection process ensures that the selected anchor nodes are not only geographically close 
but also exhibit robust signal strength, contributing to the accuracy of the triangulation ranging process. In our 
approach, we utilize a discrete coefficient derived from the collected signal strength data to delineate sub-regions. 
The discrete coefficient acts as a measure of signal variability within the environment, aiding in the identification 
of areas with distinct signal characteristics. The algorithm dynamically adapts to variations in signal strength by 
adjusting the boundaries of these sub-regions.

Taking region 1 as an example, assuming the coordinates of the unknown node are (x1, y1), the coordinates 
of anchor nodes A, B, and C in area 1 are (xa, ya), (xb, yb), and (xc, yc), and the signal strength reaching the 
unknown node is RSSIA, RSSIB, and RSSIC. The distance between the anchor node and the unknown node can 
be calculated using the signal strength, i.e., da, db, and dc. Finally, the coordinates of the unknown node can be 
obtained using formula (6).

Improve positioning accuracy
Although the logarithmic distance path loss model proposed in this paper can measure ranging more accurately, 
there are still errors, especially in regions with large RSSI discrete coefficients. In these regions, the RSSI values 
are unstable and tend to lead to large ranging errors. To improve the positioning accuracy, this paper proposes 
using the RSSI discrete coefficient to assign weight values to the positioning results of each region.
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Figure 2.   Partition location map.
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Assuming that the localization area is divided into s sub-regions with discrete coefficients of signal strength 
RSSI denoted as D1, D2, …, Di, …, and Ds for each region, the larger the dispersion coefficient, the less reliable 
the positioning results of the anchor nodes in that region are to unknown nodes. On the other hand, the smaller 
the dispersion coefficient, the more confident the anchor nodes in that region are in the positioning results of 
the unknown nodes. The weight assignment formula is shown in Eq. (7).

Assuming that the anchor node of sub-region i locates the unknown node with coordinates (xi, yi), i ∈ (1, s) , 
then the cooperative positioning result of all sub-regions to unknown nodes is obtained by using a weighted 
average based on the weight values assigned to each sub-region. The coordinates ( x, y) of the collaborative posi-
tioning result can be calculated using Eq. (8): The weight-based multi-region collaborative positioning method 
proposed in this paper can effectively reduce positioning errors and improve positioning accuracy. By consider-
ing the signal strength dispersion of each sub-region, the method assigns appropriate weights to the positioning 
results of anchor nodes in each sub-region, which can effectively eliminate the influence of unstable RSSI and 
improve the accuracy of positioning results.

Experiments and analysis
In the experiment, a sensor network was established using Telosb sensor nodes. The sensor nodes were evenly 
deployed in a bamboo forest with a radius of 20 m. The density of the bamboo forest was not uniform, and there 
were a total of 20 anchor nodes and 10 unknown nodes. The sensor node was installed on a 1.2 m high bracket. 
During the experiment, the sensor network transmitted the data required for positioning to a PC, which then 
performed the positioning calculations. Figure 3 shows the experimental setup.

Distance measurement
This experiment aimed to verify the accuracy of the proposed ranging method. A signal transmitting node was 
deployed in the bamboo forest, and a signal receiving node was placed at multiple locations to measure the 
signal strength (RSSI) and the distance between the nodes. The 1.2 subsection method was used to obtain the 
parameters (d0, A, n) in the logarithmic distance path loss model, which was then used to construct a path loss 
model specific to the environment. The ranging experiment was carried out using the established model, and 
the results are presented in Fig. 4. The x-axis represents the actual distance between the receiving node and the 
transmitting node, while the y-axis represents the distance between the receiving node and the transmitting 
node calculated by the logarithmic distance path loss model proposed in this paper. The results indicate that the 
proposed ranging method can accurately measure the distance between nodes in the bamboo forest.

In this experiment, ranging was carried out in four different directions from the transmitting node. The results 
showed that the proposed method of obtaining the parameters for the ranging model can construct the model 
more accurately, leading to more accurate ranging in specific environments. The ranging error for the model was 
found to be approximately 5.3%, which meets the positioning requirements in the complex forest environment. 
The experiment successfully verifies the effectiveness and accuracy of the ranging method proposed in this paper.
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Figure 3.   Experimental scene.
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Multi region collaborative positioning experiment
In this experiment, the aim was to compare the positioning accuracy of regional cooperative positioning and non-
regional positioning. The positioning area was divided into four sub-regions using the 2.1 subsection method. 
The path loss index n for each sub-region was 2.95, 1.63, 2.41, and 1.87, and the reference distance d0 between 
the reference point and the transmitting node was 1.53 m, 2.17 m, 1.84 m, and 2.06 m, respectively. The signal 
intensity values A at the reference point positions were − 48.67, − 55.14, − 50.32, and − 53.46, respectively.

For the non-regional positioning method, the path loss index n was 2.48, d0 was 2.23 m, and A was − 56.85, 
obtained by fitting the model without considering the sub-regions, and the unknown node was located by ran-
domly selecting three anchor nodes.

The weight-based positioning optimization results (“partition positioning-weight”) and positioning aver-
age results (“partition positioning-average”) under the situation of regional cooperative positioning were also 
compared.

The experimental results, which are the average positioning error of 10 unknown nodes, are shown in Fig. 5. 
The abscissa represents the number of experiments, and the ordinate represents the average positioning error.

In this experiment, a comparison was made between regional cooperative positioning and non-regional 
positioning. The positioning area was divided into sub-regions using the 2.1 subsection method. The path loss 
index (n) of each sub-region was 2.95, 1.63, 2.41, and 1.87, and the distance (d0) between the reference point 
and the transmitting node was 1.53 m, 2.17 m, 1.84 m, and 2.06 m, respectively. In addition, the signal intensity 
values (A) at the reference point positions were − 48.67, − 55.14, − 50.32, and − 53.46, respectively. The path loss 
index (n) was 2.48, d0 was 2.23 m, and A was − 56.85 by fitting the zonal positioning method, and the unknown 
node was located by randomly selecting three anchor nodes (“non-zonal positioning”).

Figure 4.   Ranging experiment diagram.

Figure 5.   Positioning error diagram.
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The weight-based multi-region collaborative positioning method (“partition positioning-weight”) and the 
positioning average method (“partition positioning-average”) were compared to non-zonal positioning. The 
experimental results, which represent the average positioning error of 10 unknown nodes, are shown in Fig. 5. 
The abscissa represents the number of experiments, and the ordinate represents the average positioning error.

The “partition positioning-weight” method proposed in this paper had the smallest positioning error for 10 
unknown nodes, with an error of about 1.55 m. The positioning error of “partition positioning-average” was 
about 2.4 m, but the error of “non-zonal positioning” was large, about 3.7 m. The logarithmic distance path loss 
model constructed using the “partition positioning-weight” and “partition positioning-average” methods was 
more suitable for the positioning environment, and the ranging results were more accurate, resulting in a smaller 
positioning error compared to “non-zonal positioning”.

Furthermore, the “partition positioning-weight” method optimized the positioning results based on the 
weight of the signal strength discrete coefficient, making the distance measurement using signal strength more 
stable. Therefore, the positioning error was smaller than that of the “partition positioning-average” method.

Comparison of positioning methods
In this study, two ranging models were compared to investigate their impact on the accuracy of the proposed 
positioning algorithm. The first model was constructed using a fitting method, which is more accurate and bet-
ter suited to the actual environment than the traditional model that selects a reference point 1 m away from the 
signal source and uses empirical values for the path loss index. Literature32 propose the algorithm that adapts the 
area location estimation by considering both the packet lost rate and the received signal strength. This adaptive 
approach aims to enhance the accuracy and reliability of the location estimation in wireless sensor networks. 
The experiment evaluated the difference in positioning accuracy between the two ranging models, as well as 
compared the proposed R&PLR-LA positioning algorithm to the one proposed.

The results show that the ranging model constructed using the fitting method has a smaller positioning error, 
with an average error of about 1.76 m (“method in this paper—fitting”), compared to the traditional model with 
an average error of about 2.86 m (“method in this paper—traditional”). Additionally, the R&PLR-LA position-
ing algorithm proposed in this study has a smaller positioning error compared to the algorithm proposed in 
literature32. The average positioning error of the R&PLR-LA algorithm is about 1.76 m, while the average error 
of the algorithm proposed in literature32 is about 2.41 m. These results demonstrate the effectiveness of the 
proposed ranging model and the R&PLR-LA algorithm in improving the accuracy of positioning in complex 
environments. The experimental results are summarized in Fig. 6, where the abscissa represents the number of 
experiments, and the ordinate represents the positioning error.

The results of the experiment show that the proposed positioning method using the fitting method 
(“Method—Fitting in this paper”) has a positioning error of about 1.6 m, while the positioning error of the 
positioning method combining the traditional logarithmic distance path loss model is about 3.2 m. In compari-
son, the R&PLR-LA positioning method proposed in literature 14 has a positioning error of about 2.3 m. Since 
the path loss model constructed by “Method—Fitting in this paper” conforms more accurately to the specific 
environment, the ranging results are more accurate, resulting in a lower positioning error than that of “Method in 
this paper—Traditional”. On the other hand, the R&PLR-LA positioning method does not differentiate between 
the positioning areas, resulting in a higher localization error compared to “Method—Fitting in this paper”. The 
results indicate that the proposed method can achieve higher positioning accuracy in complex environments. 
The experimental results are shown in Fig. 6, where the abscissa represents the number of experiments, and the 
ordinate represents the positioning error.

Figure 6.   Positioning diagram of the ranging model.
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Conclusion
In summary, this paper introduces a robust Wireless Sensor Network (WSN) ranging and positioning algorithm 
tailored for forest environments. Initially, the algorithm strategically divides the positioning area into sub-regions 
based on the collected signal intensity values. Subsequently, employing a fitting method, it establishes a logarith-
mic distance path loss model for each sub-region. Crucially, to optimize the positioning accuracy, the algorithm 
assigns weight values to the results of each region using the signal intensity discrete coefficient.The experimental 
findings affirm the efficacy of the proposed positioning method in accurately locating nodes within forest envi-
ronments characterized by obstacles. Notably, our ongoing research will focus on refining the ranging model, 
aiming to quantifiably enhance the accuracy of signal strength-based ranging in challenging forest conditions. 
By providing a more quantitative assessment of the improvement in ranging accuracy, we strive to contribute 
further to the advancement of WSN applications in complex environmental settings.

Data availability
The data that support the findings of this study are available from the corresponding author, Xiaomei Yi, upon 
reasonable request.
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