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A hybrid modeling framework 
for generalizable and interpretable 
predictions of ICU mortality 
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The development of reliable mortality risk stratification models is an active research area in 
computational healthcare. Mortality risk stratification provides a standard to assist physicians in 
evaluating a patient’s condition or prognosis objectively. Particular interest lies in methods that are 
transparent to clinical interpretation and that retain predictive power once validated across diverse 
datasets they were not trained on. This study addresses the challenge of consolidating numerous 
ICD codes for predictive modeling of ICU mortality, employing a hybrid modeling approach that 
integrates mechanistic, clinical knowledge with mathematical and machine learning models . A tree-
structured network connecting independent modules that carry clinical meaning is implemented 
for interpretability. Our training strategy utilizes graph-theoretic methods for data analysis, aiming 
to identify the functions of individual black-box modules within the tree-structured network by 
harnessing solutions from specific max-cut problems. The trained model is then validated on external 
datasets from different hospitals, demonstrating successful generalization capabilities, particularly in 
binary-feature datasets where label assessment involves extrapolation.

Keywords  Machine learning, Interpretability, Generalizability, Hybrid modeling, ICU mortality prediction, 
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Hospitalization in the intensive care unit (ICU) is characterized by a variety of disease types and severity; some 
patients, for instance, might require treatment due to problems with a single organ, while others present failure 
in many. Through years of training and clinical experience, physicians develop a sense of what a “severe course” 
looks like, but precisely assessing a patient’s condition at a certain time point is difficult and case-specific. A 
more standard, quantitative estimation would enable comparative observations, clear communication between 
multidisciplinary teams, and assist in the initiation of appropriate treatment strategies. As severe courses are 
associated with high mortality rates, it would also foster more precise prognoses and improve communication 
with patients’ relatives.

Addressing this challenge, several clinical prediction models and scoring systems have been proposed to 
serve a variety of critical care applications. These include predicting mortality risk1, determining the need for 
mechanical ventilation2, or estimating the length of ICU stay3. These models and systems usually include two 
components: a risk score, which is obtained based on underlying data, and a predictive model, which assigns a 
patient to a specific risk group4. Some are calculated from data collected upon admission5,6; others are repeat-
edly computed every day and can be used to assess the severity of a patient dynamically7,8. More recently, with 
the advent of machine learning and deep learning models, clinical prediction models and risk scoring systems 
are evolving to sophisticated models incorporating not only routinely measured parameters, but heterogeneous 
types of data, such as medical notes9 or radiological images10,11. Several prognostic models and scores have been 
developed for COVID-19 as well10,12,13.

Accounting for comorbidities (multiple, coexisting diseases) in machine learning-based clinical models 
is often based on annotations that frequently appear in ICU data repositories in the form of codes from the 
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International Classification of Diseases (ICD); healthcare personnel would assign them to a patient verbatim 
or as abstract diagnoses and update them throughout the patient’s whole stay. Hospitals rely on ICD codes for a 
variety of purposes such as statistics, billing, and claims reimbursement14; research, in fact, comprises a second-
ary utilization. Numerous applications exist, however, such as retrospective diagnosis studies15, identification of 
patient subpopulations based on distance metrics16, or more generally as features in machine learning models 
that integrate diverse types of data17.

Developing clinical predictive models for ICU patients using ICD codes is a significant challenge for machine 
learning models. One of the primary obstacles lies in the vast number of unique codes within the ICD coding 
system, where each code represents a specific diagnosis or procedure. Even subsets of these codes can be viewed 
as high-dimensional data, especially when taking into account the limited amounts of ICU data usually available 
to researchers. This circumstance brings up issues related to learning in high-dimensional spaces, including the 
curse of dimensionality18,19. Additionally, ICD codes are represented as binary data, implying that any prediction 
made for unseen data is essentially an extrapolation20,21. This can potentially lead to inaccurate, inconsistent, and 
unreliable predictions, particularly in situations where a patient’s condition is rare or unique.

In light of these complexities, two characteristics become particularly desirable:

•	 Interpretability: Machine learning approaches are often referred to as “black-box models”; they are powerful 
at retrieving patterns and making predictions from data, but they do not provide information on the under-
lying mechanisms of the system they study nor on how their output is calculated. The field of interpretable 
AI aims to develop machine learning models that are easy to understand22; simple examples are decision 
trees or linear regression, but more elaborated structures incorporating deep neural networks are available 
as well23,24. The discussion is especially relevant in high-stakes scenarios22; in healthcare, physicians need to 
be able to understand what the model is capturing in order to make better-informed decisions25. A notable 
example is the Sequential Organ Failure Assessment (SOFA) score; while initially designed to assess organ 
dysfunction in sepsis patients7, it was later noticed that repeated measurements correlated with mortality8, 
it even became essential in the definition of sepsis in the frame of the Sepsis-3 consensus26. Other examples 
of interpretable clinical predictive models and scoring systems in medicine are, to name a few, for mortality 
prediction in patients with heart failure27, or mortality in general28.

•	 Generalizability: The lack of consistent performance of machine learning models in the clinical setting when 
tested across data sets of different origins, e.g. from different countries or hospitals, has become an apparent 
problem15,25,29–32. It is related (but not restricted) to difficulties in data acquisition and quality, ambiguous 
definitions of patient subpopulations or desired clinical outcomes, insufficient demographic representation 
and other data biases, clinical practice variations in time and geographical locations, and so on25,31. Different 
methods have been suggested to account for this issue33,34, as well as guidelines like the TRIPOD (Transpar-
ent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis) statement35 or the 
PROBAST tool36.

Incorporating a priori knowledge of the system into the learning task could offer a promising solution to address 
the concerns mentioned above. One effective approach to achieving this integration is through the utilization 
of structured hybrid models37. These models combine mechanistic and machine learning components in a 
structured manner, such as organizing them into a tree-shaped network of sub-networks. Each sub-network 
serves as a distinct machine learning model, rather than using a conventional fully connected neural network. 
Mechanistic models use mathematical equations based on well-known natural laws, be they physical, chemical, 
biological, etc., to describe a system. Purely mechanistic approaches tend to not be implemented on real-world 
clinical problems because the necessary prior knowledge is often incomplete. Machine learning, on the other 
hand, uses measurements or observations to build a model. Complications, for instance, are the exponential 
growth of data demand with respect to the number of variables (the curse of dimensionality) and the impos-
sibility of predicting outside of the domain of the observations (lack of extrapolation)38.

Hybrid modeling aims to overcome the limitations of each approach. The structure of the hybrid models 
makes them more interpretable, and if appropriate, helps them to achieve better estimations beyond their train-
ing domain39,40, even with limited data38. They have been particularly successful in the chemical industry41 and 
there are a few examples of applications in the clinical setting25,32,38 and systems biology42.

In this paper, we introduce a novel structured hybrid model that uses ICD codes for mortality prediction of 
mechanically ventilated, influenza and pneumonia patients in the ICU. Using graph theoretic approaches, we 
design a tree-structured network connecting independent modules, each carrying clinical meaning, that leads 
to an accurate and interpretable mortality prediction framework. We further conduct an external validation 
study of our model on data sets from different healthcare settings, reporting generalizability and consistent 
interpretations of mortality causes. Our framework represents a step forward in the development of interpretable 
and generalizable predictive models in medicine and has the potential to assist physicians in the assessment of 
critically ill patients and decision-making.

The paper is organized as follows: in “Data resources” section, we introduce the study sample. In “Results” 
section, we present our designed tree-structured network and describe how its structure integrates underlying 
medical knowledge for ICU mortality prediction. This is followed by an external validation study and then the 
consistency check of the mortality interpretations across datasets from different hospitals, concluding with 
diagnosis-based interpretations. In “Discussion” section, we introduce potential applications of our findings 
and summarize the main contributions of the paper, its limitations, and areas for future work. In “Methods” 
section, we describe the model derivation and the numerical and mathematical formulation of our novel graph 
theory-based learning algorithm.
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Data resources
Data from five German hospitals (hereinafter referred to as Derivation Hospital and Validation Hospitals 1–4) 
were retrospectively sourced and thoroughly depersonalized from ICU patients involved in the project titled 
“Algorithmic surveillance of ICU patients with acute respiratory distress syndrome” (ASIC)43. This project is an 
integral part of the SMITH consortium44, a body within the German Medical Informatics Initiative.

The patient selection criteria stipulated that the participants must be aged 18 years or over and have expe-
rienced invasive mechanical ventilation for a minimum cumulative duration of 24 h. Notably, there were no 
established exclusion criteria for the study. The data acquired from each patient encompassed routinely charted 
ICU parameters amassed throughout the entirety of their ICU stay, biometric data, and relevant ICD-10 codes. 
The ICD codes contained within the dataset encompass both those assigned at the time of admission and during 
the hospitalization period.

Table 1 outlines the characteristics, health and demographics, and prevalence of specific conditions of the 
study sample gathered from five German hospitals. The studied sample consisted of severely ill patients who were 
diagnosed with influenza and pneumonia and required invasive mechanical ventilation at least once throughout 
their ICU stay. Data from one of the five hospitals, which we refer to as the Derivation Hospital, was employed 
to train our model, thereby refining its reproducibility for new samples within the same target population. On 
the other hand, data from the remaining hospitals, termed Validation Hospitals, were utilized to evaluate the 
model’s performance beyond the derivation sample, thereby assessing the model’s generalizability.

The cohort characteristics described in Table 1 state that the Derivation Hospital hosted 1391 patients with a 
mortality rate of 31.6%. The average duration of ICU stay in this hospital was 22.5 days. Similar information for 
the four validation hospitals is also provided, with patient numbers ranging from 254 to 2171, mortality rates 

Table 1.   Characteristics of the studied patient cohorts from five German hospitals. Variable distributions are 
reported as n(%) for categorical variables and mean(SD) for continuous variables. P values are obtained using 
two-sample proportion z-tests and the Mann–Whitney U test, indicating significant differences from the 
Derivation Hospital.

Cohort 
characteristics Derivation Hospital

Validation Hospital 
1 P value

Validation Hospital 
2 P value

Validation Hospital 
3 P value

Validation Hospital 
4 P value

No. patients 1391 (100%) 254 (100%) – 558 (100%) – 948 (100%) – 2171 (100%) –

Mortality 439 (31.6%) 78 (30.7%) 0.78 358 (64.2%) < 0.05 219 (23.1%) < 0.05 536 (24.7%) < 0.05

Days of ICU stay 22.5 (19.9) 21.9 (8.2) < 0.05 21.4 (20.2) < 0.05 22.9 (21.7) < 0.05 15.9 (17.9) < 0.05

Health and demographics

 Age, years 66.6 (12.7) 67.9 (14.5) 0.12 68.1 (13.7) 0.06 66.7 (12.8) 0.19 68.2 (14.0) 0.93

 BMI, kg/m2 28.9 (6.9) 29.3 (7.8) < 0.05 28.9 (7.2) 0.09 28.7 (7.4) < 0.05 27.5 (6.9) < 0.05

 Female gender 457 (32.9%) 99 (39.0%) < 0.05 188 (33.7%) 0.72 313 (33.0%) 0.93 832 (38.3%) < 0.05

 Diabetes mellitus 470 (33.8%) 92 (36.1%) 0.45 181 (32.4%) 0.56 261 (27.5%) < 0.05 419 (19.3%) < 0.05

 Thoracic trauma 115 (8.3%) 12 (4.7%) < 0.05 53 (9.5%) 0.38 99 (10.4%) 0.07 102 (4.7%) < 0.05

ICD codes

 Renal failure (N17–
N19) 777 (55.9%) 118 (46.5%) < 0.05 445 (79.8%) < 0.05 406 (42.8%) < 0.05 1,153 (53.1%) 0.11

 Sepsis (A41) 1006 (72.3%) 101 (39.8%) < 0.05 464 (83.2%) < 0.05 513 (54.1%) < 0.05 759 (35.0%) < 0.05

 Diseases of liver 
(K70–K77) 281 (20.2%) 51 (20.1%) 0.89 307 (55.0%) < 0.05 59 (6.2%) < 0.05 320 (14.7%) < 0.05

 Other bacterial dis-
eases (A30–A49) 826 (59.4%) 127 (50.0%) < 0.05 450 (80.7%) < 0.05 499 (52.6%) < 0.05 829 (38.2%) < 0.05

 Diseases of the geni-
tourinary system 
(N00–N99)

991 (71.2%) 159 (62.6%) < 0.05 500 (89.6%) < 0.05 552 (58.2%) < 0.05 1,409 (64.9%) < 0.05

 Mycoses (B35–B49) 230 (16.5%) 81 (31.9%) < 0.05 80 (14.3%) 0.22 214 (22.6%) < 0.05 520 (24.0%) < 0.05

 Liver failure (K72) 173 (12.4%) 33 (13.0%) 0.75 287 (51.4%) < 0.05 35 (3.7%) < 0.05 237 (10.9%) 0.27

 Mental and behav-
ioural disorders 
(F10–F19)

710 (51.0%) 98 (38.6%) < 0.05 198 (35.5%) < 0.05 604 (63.7%) < 0.05 1,039 (47.9%) 0.10

 Organic, including 
symptomatic, 
mental disorders 
(F00–F09)

548 (39.4%) 66 (26.0%) < 0.05 104 (18.6%) < 0.05 488 (51.5%) < 0.05 723 (33.3%) < 0.05

 Polyneuropathies 
and disorders of the 
peripheral nervous 
system (G60–G64)

188 (13.5%) 36 (14.2%) 0.98 82 (14.7%) 0.40 151 (15.9%) 0.09 173 (8.0%) < 0.05

 ARDS (J80) 382 (27.5%) 77 (30.3%) 0.56 343 (61.5%) < 0.05 176 (18.6%) < 0.05 352 (16.2%) < 0.05

 Respiratory diseases 
principally affecting 
the interstitium 
(J81–J84)

397 (28.5%) 82 (32.3%) 0.32 345 (61.8%) < 0.05 182 (19.2%) < 0.05 452 (20.8%) < 0.05
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between 23.1 and 64.2%, and average ICU stays from 15.9 to 22.9 days. The health and demographic information 
presented in Table 1 discloses that the average age of patients was fairly similar across all hospitals, fluctuating 
around 66–68 years. The average Body Mass Index (BMI) was around 28–29 in all hospitals except Validation 
Hospital 4, which had a slightly lower average BMI of 27.5. The proportion of female patients in all hospitals 
varied slightly between 27.8 and 35.8%.

The table also details the presence of several clinical conditions diagnosed per the ICD coding system. While 
the most recent version of the ICD codes, namely ICD-11, was introduced in January 2002, its previous version is 
the most used in practice. ICD-10 is an alphanumeric system that uses a hierarchical structure; the first 3 digits 
represent common traits and each subsequent character, up to seven, provides further specification45. For each 
of the codes, disease categories (ICD chapters) and high-level clinical conditions (ICD blocks) can be extracted. 
For instance, codes in the range A00–A09 can be mapped first onto the ICD chapter “Certain infectious and 
parasitic diseases” and then onto an ICD block “Intestinal infectious diseases”. Implementation in machine 
learning usually involves shortlisting the codes in order to delimit a specific condition of interest, which requires 
the assistance of medical experts46. Table 1 also gives prevalences of specific clinical conditions, including renal 
failure, sepsis, liver diseases, and others that were used to design our hybrid model for ICU mortality prediction. 
In some cases, these health conditions exhibit considerable variation across the five hospitals, in terms of the 
proportion of patients diagnosed with them. For instance, the occurrence of renal failure (N17–N19) ranged 
from 42.8% in Validation Hospital 3–79.8% in Validation Hospital 2.

Figure 1 depicts the extent of relatedness between the data from the Derivation Hospital and the datasets 
from the four validation hospitals. The figure illustrates the mean and the 95% confidence interval of the Jac-
card similarity between all data samples in a validation hospital and all data samples in the Derivation Hospital, 
please refer to Supplementary Information file under the “Jaccard similarity” section for more details. Through 
the analysis of results procured via the Jaccard similarity measure, one can easily comprehend the degree of 
similarity or dissimilarity in the case mix across these hospitals. This invaluable data augments our capability 
to interpret the results of external validation studies, facilitating our understanding between the reproducibility 
and the generalizability of our developed model more effectively47.

A thorough quantitative bias analysis was performed on the datasets using clinical features presented in 
Table 1. We utilized Mann–Whitney U tests, a non-parametric statistical test from the SciPy library48, to examine 
continuous variables like age, BMI, and ICU length of stay, revealing any significant differences between the 
Derivation and Validation Hospitals. Additionally, binary features such as female gender, ICD codes, and mor-
tality were subject to examination via proportions z-tests with the statsmodels library49. The resulting P values 
from both Mann–Whitney U tests and proportions z-tests are summarized in Table 1. We highlighted significant 
differences with P values < 0.05, providing a quantitative approach to detect potential biases in the datasets. 
These analyses, crucial for ensuring the model’s generalizability, are visually presented in the Supplementary 
Information file under the “Quantitative bias analysis” section.

Results
Structured hybrid model development using medical knowledge
The model in this study incorporates medical knowledge related to mortality causes of the critically ill, influenza 
and pneumonia patients in the ICU. The model derivation and the details of the training strategy are discussed 
in “Methods” section.

A tree-structured network consisting of five independent black-box modules converging into a final, output 
module is used to compute the mortality risk of a patient in the ICU. Each of the black-box modules in the first 
layer of the network represents a specific sub-process, taking a subset of the features as input and producing a 
precomputation of the mortality risk; see Fig. 2. Each first-layer module captures a distinct aspect of mortality 

Figure 1.   Average and the 95% confidence interval of the Jaccard similarity measures between data samples 
from a validation hospital and the Derivation Hospital, emphasizing the degree of relatedness between the 
Derivation Hospital and four validation hospitals.
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causes among critically ill ICU patients. Notably, certain potential causes of mortality, such as heart failure, have 
been excluded primarily due to their limited discriminative value in the study’s data. For more details, please 
refer to the Supplementary Information file under the “Heart failure module” section. The final output module 
then combines the precomputations to predict the vital status of a patient.

•	 Kidney failure module: This module focuses on the impact of sepsis-associated acute kidney injury (AKI) 
on patient mortality. Sepsis is a common complication in critically ill patients and can lead to AKI, which is 
related to increased mortality rates50–52. Hence, the Kidney Failure module is designed to study the interplay 
between “Sepsis” and “Renal failure” and to separately measure the effect of sepsis-associated AKI. By doing 
so, it assists in the identification of AKI patients at higher risk of mortality.

•	 Infectious and bacterial diseases module: This module connects several factors that have a high impact on 
mortality prediction, including “Diseases of liver”, “Other bacterial diseases”, “Diseases of the genitourinary 
system”, and “Mycoses”. Patients in the ICU are often susceptible to infections, which can worsen their 
clinical outcomes53–55; interactions with liver diseases, which are known to be correlated with mortality 
themselves56,57, have also been reported to have an increasing effect57–60. This module helps recognize patients 
at high risk due to infectious and bacterial diseases, allowing clinicians to provide appropriate interventions 
such as antimicrobial therapy, infection control measures, and supportive care.

•	 Liver failure module: “Liver failure” is a critical condition that has a significant impact on the fate of patients 
in the ICU61,62. The Liver failure module is designed to distinguish patients with and without it, allowing for 
separate measurements of its impact on mortality. This module aids clinicians in spotting patients at high risk, 
so they can provide targeted treatments such as liver support devices, nutritional support, and management 
of coexisting conditions.

•	 Mental and psychic module: The module considers two ICD codes, namely “Mental and behavioral disorders” 
and “Organic, including symptomatic, mental disorders”, as they have been identified as relevant factors 
contributing to mortality in the ICU. However, while most studies report a positive association63,64, our 
results suggest a negative one. A few studies similarly report no, or negative associations for a few specific 
patient subpopulations65,66. A notable case is that of delirium, part of the second ICD code involved and well 

Figure 2.   Proposed structured hybrid model for mortality risk stratification of critically ill, influenza and 
pneumonia patients in the ICU. The model consists of five modules: kidney failure, infectious and bacterial 
diseases, liver failure, mental and psychic, and lung failure; with their corresponding input features. The output 
module combines the precomputations of these modules to determine the overall mortality risk of a patient.
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known to positively correlate with mortality in general67. As the module weights in several types of mental 
conditions, these results suggest a highly, marked variability in the effect different mental disorders have on 
patient mortality.

•	 Lung failure module: We developed a module to analyze conditions related to lung failure, which is crucial 
in the study of influenza and pneumonia patients68,69. The module takes into account factors such as “acute 
respiratory distress syndrome (ARDS)”, “Polyneuropathies and other disorders of the peripheral nervous 
system”, and “Other respiratory diseases principally affecting the interstitium”. We included “Polyneuropathies 
and other disorders of the peripheral nervous system” as an input to this module, as it has been shown to 
impact lung functionality and contribute to longer ICU stays70–72.

The output module determines the overall mortality of a patient. By combining the precomputations of the pre-
vious modules, it captures the interplay between different factors that give rise to complex medical conditions, 
such as multi-organ dysfunction, that could not be captured by individual modules alone. Further, it is designed 
to be interpretable; understanding how the factors and their interactions contribute to the final mortality risk 
provides a clearer picture of individual patients, allowing clinicians to make better-informed decisions and tailor 
treatments.

External validation and generalizability
In order to evaluate the efficiency and generalizability of our developed hybrid model, we performed an external 
validation study, leveraging our data resources from five distinct hospitals. First, the data obtained from the 
Derivation Hospital served as the training set, which allowed us to determine the black-box module functions 
within the hybrid model, see Fig. 2. This process was integral to refining the model’s reproducibility. Next, we 
proceeded to assess the model’s performance beyond the derivation sample, using data from the four validation 
hospitals. This was a critical step in evaluating the model’s generalizability.

As a benchmark, we compared the results of the external validation study against XGBoost73, a widely used 
machine learning model known for its predictive capabilities. We employed 5-fold stratified cross-validation 
using the data from the Derivation Hospital as a hyper-parameter tuning method for the XGBoost model, see 
Supplementary Table S5 for more details.

In terms of evaluation and comparison, we used a spectrum of key performance indicators to determine the 
classification efficacy of our developed hybrid models and the XGBoost. The indicators chosen were accuracy, 
recall, precision, F1 Score, and receiver operating characteristic area under the curve (ROC AUC). These metrics 
collectively offer a comprehensive measure of each model’s performance across various aspects, including overall 
correctness, sensitivity, specificity, harmonic mean of precision and recall, and discriminative ability, respectively.

Based on the provided averages of the classification metrics in Table 2, the XGBoost model shows slightly 
better performance during the training phase, indicating its reproducibility. Moreover, it also demonstrates 
slightly better performance for Validation Hospital 2, which notably shares more similarities with the Derivation 
Hospital compared to the other validation hospitals, see Fig. 1.

In contrast, our hybrid model demonstrates superior performance over the XGBoost model in the remaining 
validation hospitals (Validation Hospitals 1, 3, and 4), where their similarities with the Derivation Hospital are 
less pronounced. Remarkably, our hybrid model displayed a gradual reduction in overfitting as compared to 
the XGBoost approach and achieved superior metrics including accuracy, recall, precision, F1 score, and ROC 
AUC for the remaining validation samples. These results underline the improved generalizability of our hybrid 
model, suggesting its effective application on diverse datasets that extend beyond the original derivation sample.

Moreover, Fig. 3 depicts the AUC–ROC curves, a visual representation of the discriminative ability of the 
models. These curves serve as an evaluation metric for the models’ effectiveness in distinguishing between 
deceased and alive patients. A value of 1 indicates flawless discrimination, while a value of 0.5 signifies random 
predictions. The x-axis represents the false positive rate, reflecting falsely predicted deceased patients among the 
actual alive patients, while the y-axis represents the true positive rate, indicating correctly predicted deceased 
patients among the actual deceased patients. Analyzing the proximity of the curve to the top-left corner provides 

Table 2.   Comparison of the averages of the classification metrics for the developed hybrid model and the 
XGBoost approach across different hospitals.

Hospital Model Accuracy Recall Precision F1 Score ROC AUC​

Derivation Hospital
XGBoost 0.937 0.815 0.984 0.892 0.930

Hybrid 0.899 0.784 0.884 0.831 0.921

Validation Hospital 1
XGBoost 0.843 0.756 0.738 0.747 0.842

Hybrid 0.874 0.821 0.780 0.800 0.863

Validation Hospital 2
XGBoost 0.918 0.964 0.913 0.938 0.933

Hybrid 0.894 0.930 0.907 0.919 0.933

Validation Hospital 3
XGBoost 0.898 0.744 0.799 0.771 0.852

Hybrid 0.902 0.753 0.809 0.780 0.881

Validation Hospital 4
XGBoost 0.886 0.802 0.877 0.860 0.864

Hybrid 0.904 0.826 0.880 0.896 0.892
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insights into the models’ classification performance. It was observed that our hybrid model outperforms the 
XGBoost model specifically for the Validation hospitals 1, 3, and 4, which do not share many similarities with 
the Derivation Hospital.

Consistent interpretations of mortality causes
After building and validating our hybrid model, we sought to interpret its predictions. The interpretability of 
the hybrid model stems both from the structure of the network in Fig. 2 and the learned module functions, each 
serving as an independent, preliminary mortality estimation for a relevant medical condition. Further details on 
the approximation of the module functions can be found in “Methods” section. A related concept to interpret-
ability, namely explainability differs mainly in that its goal is to understand an already constructed black box, 
instead of building a transparent model from the start. Further discussion on the differences and relationships 
between both concepts can be found in Ref.74.

In our study, we employed the use of SHapley Additive exPlanations (SHAP) values, as detailed in Refs.28,75, 
to conduct a comparative analysis of the interpretability between our hybrid model and the XGBoost model. 
SHAP values provide a unified measure of feature importance in complex machine learning models, augment-
ing their interpretability. This is achieved by considering both the primary effects of a feature and its interaction 
effects with other features.

SHAP values are derived from a concept in cooperative game theory known as the Shapley value. This value 
assigns a payout to each player in a game based on their contribution to the total payout. When we translate 
this concept into the realm of machine learning model interpretation, the “players” become the input variables 
or features of the model, and the “game” is the prediction that the model generates. When the model executes a 
prediction—or in other words, when the “game” is played—each feature, like a player in the game, is assigned a 
Shapley value. This value, similar to a payout, quantifies the specific feature’s contribution to the final prediction. 
This analogy serves to enhance our understanding of the impact of individual features on the model’s predictive 
decisions.

In this study and in the case of the XGBoost model, the use of SHAP values provides an insightful understand-
ing of how each input, or the 12 ICD codes, influences the mortality risk. For instance, let’s assume “Sepsis” with a 
high feature value (here 1 since the feature is binary). If the associated SHAP value is a high positive (or negative) 
number, it means that the presence of Sepsis plays a significant role in determining the high (or low) mortality 
risk of a patient. Accordingly, Fig. 4 offers an in-depth examination of the impact of SHAP values associated with 

Figure 3.   AUC–ROC curves comparing the discriminative ability of our hybrid model and the XGBoost model 
in distinguishing deceased and alive patients. The hybrid model outperformed XGBoost for Validation hospitals 
1, 3, and 4, where their similarities with the Derivation Hospital are less pronounced, highlighting the hybrid 
model’s generalizability.
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the 12 ICD codes we employed in the XGBoost model. The results elucidate how the health conditions diagnosed 
per the ICD coding system contribute to predicting mortality while demonstrating inconsistency in the related 
feature importance across the five hospitals involved in the study.

Figure 5 illustrates a detailed view of the distribution of SHAP values corresponding to the black-box mod-
ules (instead of 12 ICD code inputs) of our hybrid model across the five hospitals under study. For example, 
consider the “Lung failure” module with a high feature value (here 1 since the outputs of the modules are binary) 
demonstrated by a red dot. If the associated SHAP value is a high positive (or negative) number, it means that 
the presence of lung failure, i.e. when the output of the Lung failure module in the hybrid model equals 1, plays 
a significant role in determining the high (or low) mortality risk of a patient. The results of Fig. 5 showcase the 
consistency of the distribution of SHAP values and their related feature importance across multiple hospitals 
reinforcing the reliability and stability of our hybrid model’s interpretations. By focusing on these modules that 
carry clinical meaning, we not only simplify the interpretability of our model but also enhance the consistency 
of the interpretations of the causes of mortality across various healthcare settings.

The consistency of the interpretations provided by SHAP values can be quantitatively measured by a statistical 
test. To implement this, our initial step involved the partitioning of the validation sample-encompassing 3931 
patients from the four Validation Hospitals-into randomly sampled 80 validation data subsets. Subsequently, 
we calculated for each subset the mean of the absolute SHAP values (notated as |SHAP value| ) for the features 
that were used to obtain the interpretations of our Hybrid model and the XGBoost model, both of which were 
trained using data sourced from the Derivation Hospital. Next, we independently tested for statistical differences 
between the distributions of |SHAP value| related to the features of each model. This statistical analysis facilitated 
the assessment of the consistency of the interpretations derived from each model.

We used the Friedman test with the Holm post-hoc test, whose null hypothesis (H0) states that the means of 
a pair of |SHAP value| distributions resulting from the interpretations of a model (either our hybrid model or 
the XGBoost model) are the same. Subsequently, the Holm post-hoc test was employed to adjust the P values 
obtained from the multiple comparisons across all features. The choice of these tests was motivated by two main 
factors. Firstly, the distributions of |SHAP value| did not exhibit properties of a normal distribution, therefore a 
non-parametric test was required. Secondly, we needed to compare more than two distributions in each case-five, 

Figure 4.   SHAP values distribution for 12 ICD codes in the XGBoost model, used to interpret ICU mortality 
causes. The figure showcases inconsistency in the feature importance across the five hospitals involved in the 
study.
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one per network module in the case of the hybrid model; and the five most important ICD codes in discrimi-
nation in the case of the XGBoost model. Supplementary Figure S4 online provides further details regarding 
the decision process and methodology employed in the statistical test using Statistical Tests for Algorithms 
Comparison (STAC)76.

Table 3 presents the test results with a significance level of α = 0.1 , for the comparison of the |SHAP value| 
distribution for each pair of the hybrid model modules. In most cases, except for one, the null hypothesis is 
rejected in favor of the alternative hypothesis, which states that the distribution of |SHAP value| for a pair 
of hybrid model modules is different. This observation suggests that there is a distinguishable distribution of 
|SHAP value| for each module of the hybrid model, highlighting robust feature importance and consistent 
interpretation of our model across the 80 validation data subsets in the validation sample.

On the other hand, Table 4 presents the test results with a significance level of α = 0.1 for the comparison 
of the |SHAP value| distribution for each pair of the five most important features in discrimination, using the 
XGBoost model. In half of the cases, the null hypothesis is rejected in favor of the alternative hypothesis. This 
observation suggests that there is a non-robust feature importance and inconsistent interpretation of the XGBoost 
model across the 80 validation data subsets in the validation sample.

Figure 5.   SHAP value distribution for the hybrid model’s black-box modules across five hospitals. The 
consistency across hospitals showcases the hybrid model’s interpretability, reliability, and stability in mortality 
prediction across diverse healthcare settings.

Table 3.   Friedman test results illustrating distribution differences in the mean absolute SHAP values of the 
hybrid model modules across 80 validation data subsets in the validation sample.

Comparison between |SHAP value| distributions z statistic Adjusted P value Test result

Lung failure vs. liver failure 11.05000 0.00000 H0 is rejected

Kidney failure vs. liver failure 8.25000 0.00000 H0 is rejected

Liver failure vs. infectious and bacterial diseases 8.00000 0.00000 H0 is rejected

Liver failure vs. mental and psychic disorder 5.95000 0.00000 H0 is rejected

Lung failure vs. mental and psychic disorder 5.10000 0.00000 H0 is rejected

Lung failure vs. infectious and bacterial diseases 3.05000 0.01144 H0 is rejected

Kidney failure vs. lung failure 2.80000 0.02044 H0 is rejected

Kidney failure vs. mental and psychic disorder 2.30000 0.06434 H0 is rejected

Mental and psychic disorder vs. infectious and bacterial diseases 2.05000 0.08073 H0 is rejected

Kidney failure vs. infectious and bacterial diseases 0.25000 0.40259 H0 is accepted
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A fluctuation in feature importance rankings could imply inconsistent interpretations of mortality causes 
across the different validation data subsets. Tables 5 and 6 showcase the ranking of feature importance determined 
by the average ranks of the absolute value of the SHAP value of each feature across all 80 validation data subsets 
for our hybrid models and the XGBoost model, respectively. As illustrated in Table 5, the average feature rank-
ing in the hybrid model is well-separated, thereby demonstrating consistency in the interpretations of mortality 
causes across the various validation data subsets. On the contrary, the average feature ranking in the XGBoost 
model presented in Table 6 is not well-separated. This inconsistency suggests variable interpretations of mortal-
ity causes across the validation data subsets, thereby making it difficult to draw reliable conclusions about the 
key discriminative features.

Diagnosis‑based interpretations
In addition to interpreting causes of mortality through the parameters employed in a predictive model, incor-
porating diagnosis-based interpretations is essential to enhance the reliability of the model predictions. While 
the health history of patients and demographic features may not be discriminative enough for inclusion in the 
model, they still can play a significant role in risk interpretation. This is because they can either exert a misleading 
influence on the model’s parameters or encompass aspects that cannot be captured by them.

To facilitate diagnosis-based mortality risk interpretations, we incorporated two health conditions, diabetes 
mellitus and thoracic trauma, as well as two demographic features, age and gender. The focus of these interpreta-
tions is to comprehend the influence of health conditions and demographic features on the decisions made by 
the predictive model.

Table 7 presents the statistical significance of variations in the prevalence of health and demographic features 
between the false positive (FP) and true positive (TP) cohorts predicted by our hybrid modeling framework. We 
computed the prevalence of diabetes mellitus, thoracic trauma, and female gender, alongside the average age 

Table 4.   Friedman test results illustrating distribution differences in the mean absolute SHAP values of the 
five most important features in discrimination in the XGBoost model across 80 validation data subsets in the 
validation sample.

Comparison between |SHAP value| distributions z statistic Adjusted P value Test result

Mental and behavioral disorders vs. liver failure 6.97500 0.00000 H0 is rejected

Mental and behavioral disorders vs. mycoses 6.90000 0.00000 H0 is rejected

Respiratory diseases principally affecting the interstitium vs. liver failure 6.60000 0.00000 H0 is rejected

Respiratory diseases principally affecting the interstitium vs. mycoses 6.52500 0.00000 H0 is rejected

Mental and behavioral disorders vs. renal failure 5.12500 0.00000 H0 is rejected

Respiratory diseases principally affecting the interstitium vs. renal failure 2.24000 0.18625 H0 is accepted

Liver failure vs. renal failure 1.85000 0.25725 H0 is accepted

Mycoses vs. renal failure 1.77500 0.25725 H0 is accepted

Mental and behavioral disorders vs. respiratory diseases principally affecting the interstitium 0.37500 1.00000 H0 is accepted

Liver failure vs. mycoses 0.07500 1.00000 H0 is accepted

Table 5.   Feature importance ranking for the hybrid model: the well-separated rankings underscore consistent 
interpretations of mortality causes across the validation data subsets.

Hybrid model modules Average importance rank

Lung failure 1.4750

Kidney failure 2.1200

Infectious and bacterial diseases 3.0625

Mental and psychic disorder 3.8750

Liver failure 4.6625

Table 6.   Feature importance ranking for the XGBoost model: the lack of well-separated rankings indicates 
inconsistent interpretations of mortality causes across the validation data subsets.

Most important features in XGBoost Average importance rank

Mental and behavioral disorders 2.03125

Respiratory diseases principally affecting the interstitium 2.12500

Renal failure 3.31250

Mycoses 3.75625

Liver failure 3.77500
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for each cohort in each hospital. The risk difference was then calculated as the disparity in prevalence, or in the 
case of age, the average difference. We used two-sample proportion z-tests to assess the statistical significance of 
differences in the proportions of diabetes mellitus, thoracic trauma, and female gender between the two cohorts 
for each hospital. The analysis comparing ages between FP and FN cohorts employed the Mann–Whitney U 
test. The resulting P values are presented for each feature, with a critical evaluation of significance levels at 0.05.

As an illustrative case, Table 7 presents a consistently elevated prevalence of diabetes mellitus in the FP cohort 
across all hospitals when compared to the TP cohort, with a particularly significant difference observed in Vali-
dation Hospital 3. Interpreting this observation from a diagnosis-based perspective suggests that the presence 
of diabetes mellitus increases the likelihood of FP predictions by the model. One plausible explanation for this 
observation is that patients with diabetes mellitus may exhibit high-risk factors in the model parameters, leading 
to an elevated predicted mortality risk. However, with proper management during the treatment phase in the 
ICU, their outcomes could potentially be more favorable than predicted by the model.

The same analytical approach was employed for the false negative (FN) and true negative (TN) cohorts, 
with the results summarized in Table 8. When examining the risk difference of thoracic trauma between these 
cohorts, a higher prevalence of thoracic trauma is observed in the FN group across most hospitals, especially a 
significant difference in Hospital 3.

One plausible explanation for this finding is that the severe conditions associated with thoracic trauma may 
not be adequately captured by the predictive model parameters, leading to higher mortality among patients 
with thoracic trauma that goes unnoticed by the model. Due to the infrequent occurrence of events like tho-
racic trauma, the feature may not be substantial enough to serve as a discriminative parameter in the predictive 
model. Hence, incorporating diagnosis-based interpretations in these cases could provide valuable insights. These 
interpretations could assist physicians in making more informed decisions by leveraging the model’s predictions, 
potentially enhancing the reliability of the predictive model in clinical settings.

Finally, in terms of demographic features, as shown in Table 8, there is a significant difference in the increased 
prevalence of Female gender in Validation Hospital 2 and the average age in Derivation Hospital and Valida-
tion Hospital 1 within the FN cohort when compared to the TN cohort. Interpreting this observation from a 
diagnosis-based perspective suggests potential unreliability in the model’s ability to make accurate predictions 
for cohorts consisting of elderly female patients in this study. This awareness is crucial for physicians in making 
well-informed and targeted decisions.

Table 7.   Risk differences and significance in health and demographic factors between FP and TP cohorts by 
Hospital. Risk differences are calculated by subtracting the prevalence in the FP cohort from that in the TP 
cohort, and statistical significance is assessed through two-sample proportion z-tests and the Mann–Whitney 
U test, with the results indicating P values < 0.05.

Health and demographic features Significance Derivation Hospital Validation Hospital 1 Validation Hospital 2 Validation Hospital 3 Validation Hospital 4

Diabetes mellitus
Risk difference 0.045 0.108 0.048 0.192 0.009

P value 0.545 0.380 0.564 < 0.05 0.849

Thoracic trauma
Risk difference − 0.020 − 0.062 − 0.045 − 0.046 − 0.014

P value 0.609 0.276 0.396 0.365 0.565

Female gender
Risk difference 0.079 − 0.191 0.125 − 0.152 0.042

P value 0.295 0.147 0.139 0.070 0.496

Age
Mean difference 0.039 − 2.459 − 2.210 − 1.086 − 0.557

P value 0.983 0.452 0.409 0.671 0.734

Table 8.   Risk differences and significance in health and demographic factors between FN and TN cohorts by 
Hospital. Risk differences are calculated by subtracting the prevalence in the FN cohort from that in the TN 
cohort, and statistical significance is assessed through two-sample proportion z-tests and the Mann–Whitney 
U test, with the results indicating P values < 0.05.

Health and demographic features Significance Derivation Hospital Validation Hospital 1 Validation Hospital 2 Validation Hospital 3 Validation Hospital 4

Diabetes mellitus
Risk difference − 0.034 0.042 − 0.030 − 0.003 − 0.058

P value 0.511 0.754 0.771 0.957 0.111

Thoracic trauma
Risk difference 0.039 0.051 0.055 0.142 − 0.021

P value 0.205 0.388 0.376 < 0.05 0.292

Female gender
Risk difference 0.077 0.061 0.203 0.026 0.030

P value 0.123 0.648 < 0.05 0.697 0.490

Age
Mean difference 4.832 9.353 0.835 1.747 1.304

P value < 0.05 < 0.05 0.778 0.415 0.308
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Discussion
In this paper, we introduce an interpretable and generalizable hybrid model for stratifying mortality risk in influ-
enza and pneumonia patients in the ICU. The main goal is to leverage this model for clinical decision support 
applications. Our approach involves using a subset of relevant ICD codes describing a patient’s condition taken as 
(binary) inputs of the whole model. These are then assigned to five different modules, each specifically designed 
to sub-stratify mortality risk for a distinct medical condition. The design of these modules and the selection of 
features are rooted in mechanistic, clinical knowledge as well as previous clinical experiences on the adverse 
events for ICU patients particularly with respect to multiorgan dysfunction. To ascertain the sub-stratification 
functions for each module, we implemented a graph theory-based learning strategy to be described in “Methods” 
section. The results produced by these modules are subsequently collated into a final module, which ultimately 
calculates the patient’s mortality risk.

We would like to highlight a few aspects of our contribution:
First, by utilizing a structured hybrid model as the core of our stratification system, we gain certain advantages 

that are not feasible in either a purely mechanistic or solely data-driven approach. On the one hand, a purely 
mechanistic model faces challenges due to the lack of comprehensive knowledge about all factors affecting patient 
mortality, including the precise nature of their interactions. On the other hand, solely data-driven approaches 
encounter significant hurdles when using ICD codes for predictions. The abundance of categories in the ICD 
coding system, each representing a distinct diagnosis or procedure, poses a considerable challenge for data-driven 
methods. Dealing with subsets of ICD codes in the context of limited clinical data can lead to problems related to 
learning in high-dimensional spaces, such as the curse of dimensionality18,19. Additionally, since the ICD codes 
are binary, any predictions beyond the scope of the provided training data are considered extrapolations20,21, 
which can lead to inaccurate, uncertain predictions, particularly in cases where a patient’s condition is rare or 
unique. A formalism based on hybrid models allows us to make use of the existent clinical knowledge at hand, in 
this case, the design of the modules and the choice of their respective features, to guide and reduce the learning 
task to smaller black-box models that might not be complex enough to fall into the problems mentioned above.

Second, in this work, we devised a proof-of-concept model leveraging the ICD codes to predict specific out-
comes for patients in the ICU. While our model has been developed using ICD codes assigned both on admission 
and during the patients’ ICU stay, it can indeed be extended to use ICD codes assigned solely at admission, and 
even to use discretized baseline values of continuous variables to enhance its predictive capabilities.

Third, the tree structure of the hybrid model inherently makes the model interpretable. The final prediction is 
an aggregation of five sub-stratification, while each is a black box, it is clear which aspect of the health status of a 
patient they evaluate. The prediction and their aggregations differ for each patient, so it is possible for clinicians 
to evaluate both the relevance of the modules and their interactions in individual cases.

Fourth, the ability of our hybrid model to provide consistent and robust interpretations across different exter-
nal hospitals is crucial in medical decision-making. It ensures that the identified risk factors and their impact 
on mortality risk can be relied upon when assessing patients’ health and planning appropriate interventions. By 
leveraging the strengths of our hybrid model and comparing its interpretations provided by SHAP values with 
the XGBoost model, we gain confidence in the reliability and transferability of our approach.

Significantly, Fig. 4 illustrates a degree of inconsistency in the distribution of SHAP values and their related 
feature importance across multiple hospitals when considering the XGBoost model. This issue can be understood 
by considering the calculation method of SHAP values, which involves approximating them through permuta-
tions of feature values and subsequently generating predictions based on these altered combinations. When 
using the XGBoost model with 12 ICD codes serving as inputs, there are 212 potential feature permutations. 
KernelSHAP, a tool employed in the SHAP library28, undertakes selective sampling from these permutations for 
each SHAP value approximation. This approach, however, can lead to inconsistent outcomes, a consequence of 
the large permutation space and the random selection process. Furthermore, while calculating SHAP values in 
this scenario, we permute features across all possible ICD code configurations. Such a process might introduce 
permutations that are either unrealistic or violate physical constraints, resulting in unreliable or even detrimental 
results.

To address the aforementioned challenge, we implemented our hybrid model that structurally leverages pre-
liminary mortality risk assessments generated by the black-box modules in the first layer of the network of Fig. 2. 
This modification transforms the “players” in the mortality prediction game from ICD codes to the consequential 
outputs of the relevant black-box modules of the hybrid model, thereby reducing the permutation space for SHAP 
value calculation from 212 to 25 . Consequently, we observe a notable improvement in the consistency of SHAP 
values and their associated feature importance across multiple hospitals, as depicted in Fig. 5.

Fifth, the unambiguous and consistent interpretations yielded by our method possess significant potential as 
a valuable tool for clinicians. For example, the consistent patterns of the SHAP value distribution for the “Mental 
psychic disorder” and “Liver failure” modules across all hospitals could serve as an essential tool for elucidat-
ing mortality causes in ICU patients. More specifically, the positive outcomes (when module output equals 0) 
of these modules do not contribute significantly to mortality risk. However, the adverse outcomes (also when 
module output equals 1) of the “Mental psychic disorder” and “Liver failure” modules respectively contribute in 
a notable negative and positive manner to an increased risk of mortality.

Sixth, in addressing the practical implementation of our model in clinical settings, we emphasize its minimal 
computational requirements during training, allowing it to run on standard equipment. For instance, the training 
phase of this study was executed on a GNU/Linux system equipped with an Intel(R) Core(TM) CPU (i7-8565U @ 
1.80 GHz). Recognizing potential integration challenges in diverse clinical settings, such as interoperability with 
healthcare systems, we acknowledge the need for focused research and development. Future efforts will address 
these challenges to ensure seamless integration into real-world clinical workflows. Moreover, to enhance practical 
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use, we are actively developing a Python package featuring a clear API and comprehensive documentation. The 
upcoming release aims to enhance accessibility for a broad range of users in healthcare settings.

This study is subject to some limitations that merit exploration in future research. The initial limitation lies 
in the scope of the framework presented in this paper which is currently confined to binary input data. We are 
convinced that our methodology can be extended to encompass continuous input data, as the input for any net-
work is invariably defined within a certain precision, allowing for discretization and binarization. In response to 
this constraint, our future work involves developing a rigorous data binarization procedure prior to the training 
phase in order to utilize other types of clinical data in the risk stratification.

The second limitation stems from the graph theory-based training strategy used to identify black-box mod-
ules. This strategy faces a constraint in computational time when the number of input variables exceeds 6–8. 
Consequently, this becomes a barrier when attempting to design more complex structured networks, which 
involve incorporating additional features into the study. To overcome this limitation, future research could 
focus on developing heuristic approaches for identifying black-box modules or adapting the existing strategy to 
leverage exponential computational power.

Moreover, increasing the complexity of the designed structured network can impact the consistency of inter-
pretations. Striking a balance between the number of input features and the number of black-box modules in the 
structured network is essential to achieve consistent interpretations. This aspect warrants further investigation 
in our learning strategy, leaving room for future work.

The third limitation stems from the inherent constraints of the patient datasets used in this study, recorded 
within a relatively short timeframe from March 1, 2020, to December 13, 2021. These constraints impede the 
comprehensive long-term validation of our model, limiting our ability to gain insights into its effectiveness over 
extended periods.

To finalize, restricting our scope to a subset of relevant factors that are in general agreed on by the medical 
community might be advantageous in the search for generalizability, instead of basing the selection on the results 
given by individual data sets. This in turn reduces the identification problem of the data-driven approach from 
a huge black box to several, in this case five, significantly smaller ones. This bias, however, has its own risks, as 
other relevant, underappreciated factors might be ignored. It also complicates the discovery of new influential 
features. Furthermore, while one of the key ideas of this project is to leverage the applicability of a simple data 
set such as the ICD codes by means of creative modeling, an implementation relying on more detailed, perhaps 
time-course, information might be of relevance.

Methods
In this section, we present the development of our hybrid modeling framework designed for the stratification 
of mortality risk among ICU patients. The “Model” subsection covers the fundamentals of our developed struc-
tured hybrid model, followed by an interdisciplinary review on the model’s practicality and interpretability in 
real ICU settings, along with an overview of our proposed learning strategy. Moving to the “Learning algorithm” 
subsection, we present the numerical formulation of our function identification strategy, articulated through a 
presentation of pseudo-code. In the dedicated “Mathematical formulation of the learning strategy” subsection, 
our focus centers on the mathematical formulations employed for the function identification of each black-box 
module within the structured hybrid model.

Model
Our model integrates data patterns with medical knowledge pertaining to mortality causes commonly observed 
in ICU patients. It consists of a structured network that takes ICD codes as input features and maps them to a 
mortality probability. In the end, our model presents high accuracy, generalizability and is interpretable.

Figure 2 illustrates the proposed tree-structured network F : {0, 1}12 �−→ {0, 1} mapping 12 binary ICD 
codes to the mortality probability of mechanically ventilated influenza and pneumonia patients. This network 
comprises two layers: the first layer consists of independent black-box modules, known as first-layer modules, 
while the second layer contains one output module. Each first-layer module operates independently on a subset 
of input features and produces a binary output, performing sub-computations for the main classification task. 
The output module, situated in the second layer, processes the outputs of the first-layer modules to generate the 
final outcome of the model.

The interpretability of our developed framework in real ICU settings becomes clear when we recognize that 
the final model outcome is a combination of five sub-stratifications. Each of these sub-stratifications produces a 
specific sub-outcome, evaluating distinct aspects of a patient’s health status. This aggregation of sub-outcomes 
closely mirrors established clinical practices, such as the resemblance observed with the SOFA score7, which itself 
aggregates six distinct scores. Despite being generated by a black-box module, practitioners can easily discern 
which aspect of a patient’s health status each sub-outcome assesses.

The practicality of our developed framework in real ICU settings revolves around the feature selection process, 
a crucial aspect within the mechanistic modeling part of our hybrid model. From the extensive pool of available 
ICD codes pertaining to ICU patients, 12 were selected as the most relevant by a combined strategy of a black 
box predicting model and medical expertise. Initially, a random forest classifier was employed, utilizing all codes 
as features to predict mortality. Instead of relying solely on a predetermined threshold of feature importance, we 
integrated domain knowledge from a medical professional. This input helped us not only shortlist the clinically 
more relevant features but also organize them into groups that reflect clinical interplay in a structured manner. 
These organized features then serve as inputs for the black-box modules in the first layer of our hybrid model, 
see Fig. 2.
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The primary contribution of this paper, in the modeling part, lies in formulating the identification of indi-
vidual first-layer modules as specific maximum-cut (max-cut) problems. Our strategy involves converting the 
training data information into a conflict graph for each of the first-layer modules. Given a conflict graph G(V, E) 
for a first-layer module, the max-cut problem on G aims to find a mapping f : V �→ {0, 1} that approximates the 
binary function of the module.

In general, a conflict graph G(V, E) consists of a set V of vertices and a set E of pairs of vertices, called edges. 
We say two vertices u ∈ V  and v ∈ V  are adjacent and conflict with each other if there is an edge uv ∈ E between 
them. The basic idea of binary function identification by solving a max-cut problem is to represent the inputs of 
the binary function as vertices V in a graph, and the output of the function as the partition of the vertices into 
two sets V ′ and V ′′ . The max-cut problem is used to find the best partition of vertices that maximizes the sum of 
the weights of the edges connecting the two sets. In other words, for a graph G(V, E) with weights wuv for edge 
uv ∈ E between vertices u and v, the max-cut problem is defined as finding a partition of the vertices V into two 
sets V ′ and V ′′ such that the sum of the weights of the edges connecting V ′ and V ′′ is maximized. Associating 
binary variables xi to every vertex in a graph G(V, E) such that xu = 1 if u ∈ V ′ and xu = 0 if u ∈ V ′′ , the 0-1 
quadratic programming formulation of the max-cut problem is given by:

where n is the number of vertices, and wuv = 0 if there is no edge between vertices u and v.
This strategy allows us to identify the input/output (I/O) function of every first-layer module within our 

hybrid model. We use them to determine the inputs of the output module, which produces a mortality probability. 
The I/O function of the output module is then identified by a majority voting scheme.

In the next subsection, we introduce our risk stratification algorithm by delving into the process of function 
identification for the interior black-box modules incorporated within our structured hybrid model. Our aim 
is to offer a comprehensive description of how both the first-layer and output modules are identified, as this 
plays a vital role in effectively addressing the classification problem. Furthermore, we outline the algorithm with 
pseudo-code, providing a clear understanding of its implementation in Python.

The learning algorithm
Here, we present the numerical formulation of the developed mortality risk stratification hybrid model that has 
been implemented in Python. To make the description more tractable, we focus on a simple case with a series 
of simplifying assumptions: a two-layered tree-structured network Fsimple : {0, 1}

7 �−→ {0, 1} with 3 first-layer 
modules, see Fig. 6.

Given a set of training data {(xs, ys)|s = 1, . . . , S} , the risk stratification algorithm receives three parameters: 
X, y , and n . X is a matrix of size nsamples × nfeatures containing all binary-represented input data to Fsimple . In the 
simple case, nsamples = S and nfeatures = 7 , which are the number of data samples and the number of features in 
the training data, respectively. y is a vector with nsamples elements arranged in a single column holding the binary 
labels of all data samples. Lastly, n is a row vector with 3 elements holding the number of input features to each 
first-layer module of the network: n = [3, 2, 2].

We define a label function L as follows: assume a tree-structured network F : {0, 1}N �−→ {0, 1} with M first-
layer modules. The label function L : (X, y) �→ T0,T1 receives all binary-represented input data X alongside their 
associated labels y and returns two rank M tensors T0 and T1 each containing 2N elements. Each element of T0 
and T1 embodies a binary input configuration to F and respectively holds the number of 0 and 1 labels for that 
input configuration in given training data.

In the simple case, the label function Lsimple returns two rank 3 tensors, T0 and T1 , since there are three first-
layer modules in Fsimple . Each index of T0 and T1 runs along an axis corresponding to a first-layer module and are 
constrained by 2nm , where nm is the dimension of the binary input space of the mth module, and 

∑3
m=1 nm = 7 . 

Figure 7 schematically illustrates T0 for the simple case. Each element of T0 can be accessed by three indexes, 

(1)max
∑

all (u,v), u<v

wuv(xu + xv − 2xuxv), xu ∈ {0, 1} , u = 1, . . . , n,

Figure 6.   Simple case: a tree-structured network with three first-layer modules mapping 7-dimensional binary 
input variable to binary outputs.
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e.g., by a set of binary values (0 1 0, 1 0, 0 1) or their corresponding decimal values (3, 3, 2) using the following 
relation:

Algorithm 1 shows the pseudo-code of the risk stratification algorithm for the simple case of Fig. 6, 
Fsimple : {0, 1}

7 �−→ {0, 1} with 3 first-layer modules. Lines 3–19 of Algorithm 1 describe nested for loops for 
function identification of the three first-layer modules of Fsimple . The algorithm can be simply generalized for 
a higher number of first-layer modules by using recursive functions for implementing the for loops between 
lines 3 and 19.

Algorithm 1.   Risk stratification algorithm.

(2)Decimal(x1x2 . . . xnm) = 1+

i=nm
∑

i=1

2nm−i × xi .
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To determine weights of the conflict graphs G(V, E) for the first-layer modules, circular permutations are 
used to set inputs of two of the first-layer modules fixed and examine the impact of the other first-layer module 
on the overall output of Fsimple . The circular permutation is a permutation of an ordered set that the elements 
are shifted by the same amount to the right:

For example, when (I , J ,K) = σ0(1, 2, 3) = (1, 2, 3) in line 4, the nested for loops in Lines 6–17 select all pairs of 
samples in given training data and examine all possible variations of inputs to Module-1 (iterated on I) for all 

(3)
σ1({A,B,C}) = {C,A,B}

σ2({A,B,C}) = {B,C,A}

Figure 7.   The schematic representation of T0 for the simple case, which contains 27 elements holding the 
number of 0 labels for each input configuration in given training data.

Figure 8.   (a) All 27 possible binary inputs of Fsimple . Each row runs along 8 input configuration 
V1 = {1, 2, . . . , 8} of Module-1 and depicts the inputs variables of Fsimple with fixed inputs to Module-2 and 
Module-3. The blue cells in the same row depict all 16 possible pairs of input variables for which the decimal 
representation of the inputs to the 3 first-layer modules are like (1, j, k) and (4, j, k). (b) To determine the 
weights of the conflict graph G1(V1,E1) of Module-1, we compare the labels of input variables within the same 
row. (c) The conflict graph G1(V1,E1) of Module-1 with both binary and decimal representations of vertices. In 
the risk stratification algorithm, the value of edge w14 results from Eq. (4) iterated over all j ∈ V2 = {1, 2, 3, 4} 
and k ∈ V3 = {1, 2, 3, 4}.
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fixed inputs to Module-2 and Module-3 (iterated on J and K, respectively) to specify the weights of the conflict 
graph G1(V1,E1) for Module-1.

Figure 8 provides a graphical representation of the weight specification for the conflict graph G1(V1,E1) of 
Module-1 in the case of Fsimple . In Module-1, which consists of 3 input features, we have 23 possible binary input 
configurations. These configurations are represented in decimal form and form the vertex set V1 of the conflict 
graph for Module-1, denoted as V1 = {1, 2, . . . , 8} . The elements of V1 serve as the vertices of the conflict graph 
G1(V1,E1) for Module-1.

To determine the weight between two vertices, such as w14 ∈ E1 , we consider pairs of samples from the given 
training data. Specifically, we focus on pairs where the decimal representations of the inputs to the first-layer 
modules are of the form (1, j, k) and (4, j, k), with j ∈ V2 = {1, 2, 3, 4} and k ∈ V3 = {1, 2, 3, 4} . Next, we calculate 
the number of such pairs that have different labels. This computation involves the following expression:

Then, we add the result of Eq. (4) to the value of w14 , see Line 11 of Algorithm 1.
The solveMaxCut function, located in line 18 of Algorithm 1, identifies the I/O function of a first-layer module 

and stores the result in funcF[α + 1] , where α ∈ {0, 1, 2} is a counter for the three first-layer modules in Fsimple . 
The solveMaxCut function achieves this by solving a max-cut problem for the module’s associated conflict graph 
G(V, E). The primary objective of the solveMaxCut function is to discover a partition of the conflict graph’s ver-
tices into two sets. This partition aims to maximize the number of edges that exist between the two sets. To solve 
the max-cut problem efficiently, we employed the CVXPY Python package77,78. Specifically, we implemented the 
Goemans–Williamson randomized approximation algorithm by using CVXPY. This algorithm provides a lower 
bound for the solution of the max-cut problem, estimated at 0.87 times the optimal value.

Now, with access to the I/O function of the first-layer modules, we determine the inputs destined for the 
output module for each training data sample. The two variables counter0 and counter1 respectively hold the 
number of 0 and 1 labels in the given training data for each input of the output module, see lines 20 and 21 in 
Algorithm 1. The size of counter0 and counter1 equals 23 as there are three first-layer modules in the simple case. 
Lines 22–32 in Algorithm 1 perform counting the number of 0 and 1 labels in the training data for each input 
configuration to the output module.

Proceeding to the last phase, we assign a probability (in this work, the risk of developing a condition—spe-
cifically, mortality) to each input of the output module, which subsequently extends to the inputs of Fsimple . 
This process is captured in lines 33–35 of Algorithm 1, where we define the variable Risk that contains the 
probabilities assigned to each of the 23 inputs directed towards the output module. This is calculated using the 
following formula:

where, the index i ∈ {1, . . . , 8} refers to a particular input configuration to the output module. Once we’ve estab-
lished this, we can identify the I/O function of the output module using a majority voting system. By compar-
ing the value of counter0 and counter1 for each input of the output module, the more probable outcome in the 
training data is assigned as the output of the output module and stored in the funcO variable, see lines 36–40 in 
Algorithm 1. Finally, the variables funcF, Risk, and funcO represent the outputs of Algorithm 1. These variables 
determine the I/O functions of the first-layer modules, the mortality risk for the inputs of Fsimple , and the I/O 
functions of the output module, respectively.

Mathematical formulation of the learning strategy
This section provides an in-depth exploration of the function identification strategy embedded within each 
black-box module of the proposed hybrid modeling framework. We begin by introducing the function F of a 
two-layered tree-structured network with M first-layer modules (see Fig. 2 as a practical example):

where x ∈ {0, 1}N represents the N-dimensional binary input vector, and y ∈ {0, 1} is the associated output or 
label. The objective is to deduce the I/O function of all M first-layer modules and the output module accurately 
labeling data points not in the training set, using a given training set of S examples {(xs , ys)|s = 1, . . . , S}.

The set of N input features to the tree-structured network in Eq. (6) can be decomposed into M vectors, which 
first-layer modules separately perform computations on:

Accordingly, [xim]
i=nm
i=1  is the subset of input features forwarded to the mth first-layer module, where nm is the 

size of the subset or the dimension of the binary input space of the mth first-layer module, 
∑M

m=1 nm = N , and 
each xim ∈ {0, 1}.

The mth first-layer module involves the conversion of an nm-dimensional binary variable to its associated 
decimal representation, as illustrated by Eq. (2), before its incorporation. Consequently, an N-dimensional binary 
input vector x ∈ {0, 1}N can be portrayed as an M-dimensional vector X ∈ N

M:

(4)T0[1, j, k] × T1[4, j, k] + T0[4, j, k] × T1[1, j, k].

(5)Risk[i] =
counter1[i]

counter0[i] + counter1[i]
,

(6)F : x ∈ {0, 1}N �−→ y ∈ {0, 1},

[

[x11 , . . . , x
n1
1 ], . . . , [x1M , . . . , xnMM ]

]

.

(7)X =

[

Decimal
(

[xi1]
i=n1
i=1

)

, . . . ,Decimal
(

[xiM ]
i=nM
i=1

)]

.
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The decimal subset Vm = {vkm}
k=2nm
k=1

 of the mth first-layer module is defined as a set that 
holds the decimal representations of all 2nm binary configurations of [xim]

i=nm
i=1  . In other words, 

Vm = {v1m, v
2
m, v

3
m, . . . , v

2nm
m } = {1, 2, 3, . . . , 2nm} . Therefore, the function Fm of the mth first-layer module, receives 

a decimal value in Vm and forwards a binary value fm ∈ {0, 1} to the output module:

where m ∈ {1, 2, . . . ,M} . Then, the output module receives an M-dimensional binary variable from all M first-
layer modules. After converting it to a decimal value, which is in the decimal subset VO = {1, 2, 3, . . . , 2M} of 
the output module, the function of the output module FO returns the predicted label:

We define a characteristic graph G(V, E) for each first-layer module of the tree-structured network under 
consideration. This allows us to employ graph-theoretic methods to deduce its I/O function. Specifically, we 
utilize a provided set of training data and map the identification of individual interior black-box modules to the 
solving of max-cut problems.

The characteristic graph Gm(Vm,Em) for the mth first-layer module is defined by considering Vm as the deci-
mal subset of the mth first-layer module. In this graph, an edge vkmvlm belongs to Em with a weight of wkl

m to repre-
sent the dissimilarity between the function Fm of the mth first-layer module for the associated vertices vkm and vlm.

Hereafter, we explore how to discern disparities in the output s of a first-layer module for two distinct vertices 
in the corresponding characteristic graph, e.i., Fm(vkm)  = Fm(v

l
m) . Furthermore, we explore the process of deter-

mining edge weights wkl
m within a characteristic graph. This step lays the groundwork for leveraging solutions to 

a max-cut problem to identify the function associated with the first-layer module.
Consider two input samples p, q ∈ {0, 1}N to the Eq. (6), for which the inputs to all first-layer modules except 

for the mth first-layer module are identical:

For vkm = Decimal
(

[pim]
i=nm
i=1

)

 and vlm = Decimal
(

[qim]
i=nm
i=1

)

 , Fm(vkm)  = Fm(v
l
m) if and only if p and q have 

different labels yp  = yq . In simpler terms, according to Eq. (8), Fm(vkm) and Fm(vlm) yield either 0 or 1. These, 
along with the outputs of the remaining M − 1 first-layer modules, are then directed to the output module for 
the final computation towards the labels. As per the mathematical definition, a function produces a unique output 
for a given input. Therefore, if two input samples p and q share identical inputs for all first-layer modules except 
the mth one, the corresponding outputs of the first-layer modules must also be identical. Any disparity in the 
output module results, i.e., yp  = yq , implies differing inputs to the output module. This dissimilarity can be 
attributed solely to the output of the mth first-layer module: Fm(vkm)  = Fm(v

l
m) , as the outputs of the remaining 

M − 1 first-layer modules must be consistent.
Finally, we provide a concise explanation of the process for assigning weights to the edges of characteristic 

graphs. In a graph G(V, E), edges E can be endowed with weights W to indicate the significance or strength of 
the connection between the two vertices linked by the edge.

As elucidated earlier, an edge in a characteristic graph signifies that the outputs of the first-layer module differ 
for the respective vertices serving as inputs. We employed a pair of input samples to establish an edge between 

two vertices in a characteristic graph. However, this process can be extended to encompass all 
(

S
2

)

 pairs of input 

samples p and q within a given training dataset. If the chosen pairs exhibit distinct labels and satisfy the condi-
tion (10), the weight of the corresponding edge in Gm(Vm,Em) is incremented by one. In other words, we define 
a 2nm × 2nm weight matrix Wm for the mth first-layer module by:

where P,Q ∈ N
M are M-dimensional decimal representations of binary input vectors p, q ∈ {0, 1}N with labels 

yp, yq ∈ {0, 1} , δ is the Kronecker delta function, and ei are elements of the standard basis of vector space R2nm:

Once the weight matrices of all M characteristic graphs have been determined using the available training 
data, we proceed to identify the functions associated with the first-layer modules by partitioning the vertices of 
the characteristic graphs into two sets. The solution to the max-cut problem illustrated in Eq. (1) is employed to 
determine the optimal partition of vertices, maximizing the sum of weights for edges connecting the two sets. 
The function of the output module is then identified by a majority voting scheme as shown in Eq. (5).

Ethical approval
All experimental protocols were approved by the Ethics Committee of the RWTH Aachen Faculty of Medicine 
(local Ethics Committee reference number: EK 102/19, date of approval: 26.03.2019). As well, the Ethics Com-
mittee of the RWTH Aachen Faculty of Medicine (local Ethics Committee reference number: EK 102/19, date of 
approval: 26.03.2019) waived the need to obtain Informed consent for the collection and retrospective analysis 

(8)fm = Fm(Decimal
(

[xim]
i=nm
i=1

)

), xim , fm ∈ {0, 1}, Fm : Vm �−→ fm,

(9)y = FO(Decimal
(

[fi]
i=M
i=1

)

), fi , y ∈ {0, 1}, FO : VO �−→ y.

(10)∃! m ∈ {1, . . . ,M} ∋ [pim]
i=nm
i=1 �= [qim]

i=nm
i=1 .

(11)Wm = 02nm ,2nm +
∑

all pairs (p,q)

|yp − yq| ×

i=M
∏

i=1 , i �=m

δ(P[i] −Q[i])× eP[i]e
T
Q[i],

(12)e1 = [1, 0, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , . . . , e2nm = [0, 0, 0, . . . , 1]T .
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of the de-identified data as well as the publication of the results of the analysis. All methods were performed in 
accordance with the relevant guidelines and regulations.

Data availability
The data included in this study, contain sensitive health-related information. Due to the small data set, anonymi-
sation techniques, like e.g. k-anonymity, cannot be applied usefully without a relevant loss of information. Thus, 
according to the Health Data Protection Act North Rhine-Westphalia (Gesundheitsdatenschutzgesetz NRW) 
and the internal guidelines of the Data Protection Officer of the University Hospital RWTH Aachen, the raw 
patient data must not be made publicly available, since a total anonymisation cannot be guaranteed. However, 
researchers who are interested in the data, may send their informal request to the Department of Intensive Care 
Medicine (Email: oim@ukaachen.de) of the University Hospital RWTH Aachen with a statement which research 
questions they aim at and which data are necessary for this purpose. Then, in a bilateral process, a solution for 
the data exchange can be found in compliance with legal and ethical restrictions.

Received: 5 August 2023; Accepted: 26 February 2024

References
	 1.	 Sekulic, A. D., Trpkovic, S. V., Pavlovic, A. P., Marinkovic, O. M. & Ilic, A. N. Scoring systems in assessing survival of critically ill 

ICU patients. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 21, 2621 (2015).
	 2.	 Kafan, S. et al. Predicting risk score for mechanical ventilation in hospitalized adult patients suffering from covid-19. Anesthesiol. 

Pain Med. 11, 25 (2021).
	 3.	 Verburg, I. W. M. et al. Which models can i use to predict adult ICU length of stay? A systematic review. Crit. Care Med. 45, 

e222–e231 (2017).
	 4.	 Rapsang, A. G. & Shyam, D. C. Scoring systems in the intensive care unit: A compendium. Indian J. Crit. Care Med. Peer Rev. 18, 

220 (2014).
	 5.	 Knaus, W. A., Zimmerman, J. E., Wagner, D. P., Draper, E. A. & Lawrence, D. E. Apache-acute physiology and chronic health 

evaluation: A physiologically based classification system. Crit. Care Med. 9, 591–597 (1981).
	 6.	 Le Gall, J.-R. et al. A simplified acute physiology score for ICU patients. Crit. Care Med. 12, 975–977 (1984).
	 7.	 Vincent, J. L. et al. The sofa (sepsis-related organ failure assessment) score to describe organ dysfunction/failure: On behalf of the 

working group on sepsis-related problems of the European society of intensive care medicine (see contributors to the project in 
the appendix) (1996).

	 8.	 Ferreira, F. L., Bota, D. P., Bross, A., Mélot, C. & Vincent, J.-L. Serial evaluation of the sofa score to predict outcome in critically 
ill patients. JAMA 286, 1754–1758 (2001).

	 9.	 Huang, X. et al. Risk assessment of ICU patients through deep learning technique: A big data approach. J. Glob. Health 12, 25 
(2022).

	10.	 Wasilewski, P. et al. Covid-19 severity scoring systems in radiological imaging—a review. Pol. J. Radiol. 85, 361–368 (2020).
	11.	 Barnett, A. J. et al. Iaia-bl: A case-based interpretable deep learning model for classification of mass lesions in digital mammography. 

arXiv:​2103.​12308 (arXiv preprint) (2021).
	12.	 Garcia, P. D. W. et al. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with 

covid-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine 25, 100449 
(2020).

	13.	 Ryan, L. et al. Mortality prediction model for the triage of covid-19, pneumonia, and mechanically ventilated ICU patients: A 
retrospective study. Ann. Med. Surg. 59, 207–216 (2020).

	14.	 O’malley, K. J. et al. Icd code accuracy. Measuring diagnoses. Health Serv. Res. 40, 1620–1639 (2005).
	15.	 Schinkel, M., Paranjape, K., Panday, R. N., Skyttberg, N. & Nanayakkara, P. W. Clinical applications of artificial intelligence in 

sepsis: A narrative review. Comput. Biol. Med. 115, 103488 (2019).
	16.	 Alcaide, D. & Aerts, J. A visual analytic approach for the identification of ICU patient subpopulations using ICD diagnostic codes. 

PeerJ Comput. Sci. 7, e430 (2021).
	17.	 Harerimana, G., Kim, J. W. & Jang, B. A deep attention model to forecast the length of stay and the in-hospital mortality right on 

admission from ICD codes and demographic data. J. Biomed. Inform. 118, 103778 (2021).
	18.	 Chen, L. Curse of Dimensionality 545–546 (Springer, 2009).
	19.	 Altman, N. & Krzywinski, M. The curse (s) of dimensionality. Nat. Methods 15, 399–400 (2018).
	20.	 Bartley, M. L., Hanks, E. M., Schliep, E. M., Soranno, P. A. & Wagner, T. Identifying and characterizing extrapolation in multivariate 

response data. PLoS ONE 14, e0225715 (2019).
	21.	 Barbiero, P., Squillero, G. & Tonda, A. Modeling generalization in machine learning: A methodological and computational study. 

arXiv:​2006.​15680 (arXiv preprint) (2020).
	22.	 Rudin, C. et al. Interpretable machine learning: Fundamental principles and 10 grand challenges. Stat. Surv. 16, 1–85 (2022).
	23.	 Barnett, A. J. et al. A case-based interpretable deep learning model for classification of mass lesions in digital mammography. Nat. 

Mach. Intell. 3, 1061–1070 (2021).
	24.	 Chen, C. et al. This looks like that: Deep learning for interpretable image recognition. Adv. Neural. Inf. Process. Syst. 32, 25 (2019).
	25.	 Fröhlich, H. et al. From hype to reality: Data science enabling personalized medicine. BMC Med. 16, 1–15 (2018).
	26.	 Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810 (2016).
	27.	 Li, J. et al. Predicting mortality in intensive care unit patients with heart failure using an interpretable machine learning model: 

Retrospective cohort study. J. Med. Internet Res. 24, e38082 (2022).
	28.	 Qiu, W. et al. Interpretable machine learning prediction of all-cause mortality. Commun. Med. 2, 125 (2022).
	29.	 Quanjel, M. J. et al. Replication of a mortality prediction model in Dutch patients with covid-19. Nat. Mach. Intell. 3, 23–24 (2021).
	30.	 Barish, M., Bolourani, S., Lau, L. F., Shah, S. & Zanos, T. P. External validation demonstrates limited clinical utility of the interpret-

able mortality prediction model for patients with covid-19. Nat. Mach. Intell. 3, 25–27 (2021).
	31.	 Singh, H., Mhasawade, V. & Chunara, R. Generalizability challenges of mortality risk prediction models: A retrospective analysis 

on a multi-center database. PLoS Digital Health 1, e0000023 (2022).
	32.	 Sharafutdinov, K. et al. Computational simulation of virtual patients reduces dataset bias and improves machine learning-based 

detection of ARDS from noisy heterogeneous ICU datasets. IEEE Open J. Eng. Med. Biol. 20, 20 (2023).
	33.	 Sharafutdinov, K. et al. Application of convex hull analysis for the evaluation of data heterogeneity between patient populations 

of different origin and implications of hospital bias in downstream machine-learning-based data processing: A comparison of 4 
critical-care patient datasets. Front. Big Data 102, 25 (2022).

http://arxiv.org/abs/2103.12308
http://arxiv.org/abs/2006.15680


20

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5725  | https://doi.org/10.1038/s41598-024-55577-6

www.nature.com/scientificreports/

	34.	 Chu, J. et al. Knowledge-aware multi-center clinical dataset adaptation: Problem, method, and application. J. Biomed. Inform. 115, 
103710 (2021).

	35.	 Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (tripod): The tripod statement. Ann. Intern. Med. 162, 55–63 (2015).

	36.	 Wolff, R. F. et al. Probast: A tool to assess the risk of bias and applicability of prediction model studies. Ann. Intern. Med. 170, 
51–58 (2019).

	37.	 Von Stosch, M., Oliveira, R., Peres, J. & de Azevedo, S. F. Hybrid semi-parametric modeling in process systems engineering: Past, 
present and future. Comput. Chem. Eng. 60, 86–101 (2014).

	38.	 Samadi, E., Kiefer, M., Fritsch, S., Bickenbach, S. J. & Schuppert, A. A training strategy for hybrid models to break the curse of 
dimensionality. PLoS One 17, e0274569 (2022).

	39.	 Schuppert, A. A. Extrapolability of structured hybrid models: A key to optimization of complex processes. In Equadiff 99: (In 2 
Volumes) 1135–1151 (World Scientific, 2000).

	40.	 Fiedler, B. & Schuppert, A. Local identification of scalar hybrid models with tree structure. IMA J. Appl. Math. 73, 449–476 (2008).
	41.	 Glassey, J. & Von Stosch, M. Hybrid Modeling in Process Industries (CRC Press, 2018).
	42.	 Procopio, A. et al. Combined mechanistic modeling and machine-learning approaches in systems biology—a systematic literature 

review. Comput. Methods Programs Biomed. 10, 107681 (2023).
	43.	 Marx, G. et al. Algorithmic surveillance of ICU patients with acute respiratory distress syndrome (ASIC): Protocol for a multicentre 

stepped-wedge cluster randomised quality improvement strategy. BMJ Open 11, e045589 (2021).
	44.	 Winter, A. et al. journalSmart medical information technology for healthcare (smith). Methods Inf. Med. 57, e92–e105 (2018).
	45.	 Hirsch, J. et al. Icd-10: History and context. Am. J. Neuroradiol. 37, 596–599 (2016).
	46.	 Gupta, M. et al. An extensive data processing pipeline for mimic-iv. In Machine Learning for Health 311–325 (PMLR, 2022).
	47.	 Debray, T. P. et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J. 

Clin. Epidemiol. 68, 279–289 (2015).
	48.	 Virtanen, P. et al. SciPy 1.0. Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
	49.	 Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference 

(2010).
	50.	 Poston, J. T. & Koyner, J. L. Sepsis associated acute kidney injury. BMJ 364, 25 (2019).
	51.	 Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H. & Kellum, J. A. Acute kidney injury from sepsis: Current concepts, 

epidemiology, pathophysiology, prevention and treatment. Kidney Int. 96, 1083–1099 (2019).
	52.	 Zarbock, A. et al. Sepsis-associated acute kidney injury: Consensus report of the 28th acute disease quality initiative workgroup. 

Nat. Rev. Nephrol. 20, 1–17 (2023).
	53.	 Bajpai, V. K. et al. Invasive fungal infections and their epidemiology: Measures in the clinical scenario. Biotechnol. Bioprocess Eng. 

24, 436–444 (2019).
	54.	 Saied, W. I. et al. A comparison of the mortality risk associated with ventilator-acquired bacterial pneumonia and nonventilator 

ICU-acquired bacterial pneumonia. Crit. Care Med. 47, 345–352 (2019).
	55.	 Nasir, N. et al. Comparison of risk factors and outcome of patients with and without covid-19-associated pulmonary aspergillosis 

from Pakistan: A case–control study. Mycoses 66, 69–74 (2023).
	56.	 Huang, Y.-F. et al. A population-based cohort study of mortality of intensive care unit patients with liver cirrhosis. BMC Gastro-

enterol. 20, 1–10 (2020).
	57.	 Kartoun, U. et al. The meld-plus: A generalizable prediction risk score in cirrhosis. PLoS One 12, e0186301 (2017).
	58.	 Bajaj, J. S., O’Leary, J. G., Wong, F., Reddy, K. R. & Kamath, P. S. Bacterial infections in end-stage liver disease: Current challenges 

and future directions. Gut 61, 1219–1225 (2012).
	59.	 Verma, N. et al. Factors determining the mortality in cirrhosis patients with invasive candidiasis: A systematic review and meta-

analysis. Med. Mycol. 60, myab069 (2022).
	60.	 Rosenthal, V. D. et al. The impact of healthcare-associated infections on mortality in ICU: A prospective study in Asia, Africa, 

Eastern Europe, Latin America, and the middle east. Am. J. Infect. Control 20, 20 (2022).
	61.	 Gupta, M. & Maiwall, R. Acute on chronic liver failure: An update. In Peri-operative Anesthetic Management in Liver Transplanta-

tion 573–594 (Springer, 2023).
	62.	 Essing, T. et al. Clinical determinants of hospital mortality in liver failure: A comprehensive analysis of 62,717 patients. Z. Gastro-

enterol. 20, 20 (2023).
	63.	 Diez-Quevedo, C. et al. Mental disorders, psychopharmacological treatments, and mortality in 2150 covid-19 Spanish inpatients. 

Acta Psychiatr. Scand. 143, 526–534 (2021).
	64.	 Liu, N. H. et al. Excess mortality in persons with severe mental disorders: A multilevel intervention framework and priorities for 

clinical practice, policy and research agendas. World Psychiatry 16, 30–40 (2017).
	65.	 Vai, B. et al. Mental disorders and risk of covid-19-related mortality, hospitalisation, and intensive care unit admission: A systematic 

review and meta-analysis. Lancet Psychiatry 8, 797–812 (2021).
	66.	 Oud, L. & Garza, J. Impact of history of mental disorders on short-term mortality among hospitalized patients with sepsis: A 

population-based cohort study. PLoS One 17, e0265240 (2022).
	67.	 Kotfis, K., Marra, A. & Ely, E. W. ICU delirium—a diagnostic and therapeutic challenge in the intensive care unit. Anaesthesiol. 

Intensive Ther. 50, 25 (2018).
	68.	 Huapaya, J. A., Wilfong, E. M., Harden, C. T., Brower, R. G. & Danoff, S. K. Risk factors for mortality and mortality rates in inter-

stitial lung disease patients in the intensive care unit. Eur. Respir. Rev. 27, 25 (2018).
	69.	 Fuchs, L. et al. The effect of ARDS on survival: Do patients die from ARDS or with ARDS?. J. Intensive Care Med. 34, 374–382 

(2019).
	70.	 DiSilvio, B. et al. Complications and outcomes of acute respiratory distress syndrome. Crit. Care Nurs. Q. 42, 349–361 (2019).
	71.	 Tuan, W.-J., Lennon, R. P., Zhang, A., Macherla, A. & Zgierska, A. E. Risks of severe covid-19 outcomes among patients with 

diabetic polyneuropathy in the united states. J. Public Health Manage. Pract. 28, 674–681 (2022).
	72.	 Amaya-Villar, R., Garnacho-Montero, J., Ortìz-Leyba, C. & Márquez-Vácaro, J. A. Polyneuropathy and discontinuation from 

mechanical ventilation. Clin. Pulmonary Med. 13, 348–352 (2006).
	73.	 Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, 785–794 (2016).
	74.	 Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. 

Mach. Intell. 1, 206–215 (2019).
	75.	 Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 25 (2017).
	76.	 Rodríguez-Fdez, I., Canosa, A., Mucientes, M. & Bugarín, A. STAC: A web platform for the comparison of algorithms using 

statistical tests. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2015).
	77.	 Agrawal, A., Verschueren, R., Diamond, S. & Boyd, S. A rewriting system for convex optimization problems. J. Control Decis. 5, 

42–60 (2018).
	78.	 Diamond, S. & Boyd, S. CVXPY: A Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17, 1–5 

(2016).



21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5725  | https://doi.org/10.1038/s41598-024-55577-6

www.nature.com/scientificreports/

Acknowledgements
Moein E. Samadi’s and Jorge Guzman-Maldonado’s contribution to this work was performed as part of the Helm-
holtz School for Data Science in Life, Earth and Energy (HDS-LEE) and received funding from the Helmholtz 
Association of German Research Centres.

Funding
Open Access funding enabled and organized by Projekt DEAL. Moein E. Samadi and Jorge Guzman-Maldonado 
received funding from the Helmholtz Association of German Research Centres (https://www.helmholtz.de/). 
Konstantin Sharafutdinov and Kateryna Nikulina’s contribution to this work was supported by the German 
Federal Ministry of Education and Research (Grant Nos. 01ZZ1803B and 01ZZ1803M). The funders had no 
role in the study design, the decision to publish, or the preparation of the manuscript. There was no additional 
external funding received for this study.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​55577-6.

Correspondence and requests for materials should be addressed to M.E.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://www.helmholtz.de/
https://doi.org/10.1038/s41598-024-55577-6
https://doi.org/10.1038/s41598-024-55577-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A hybrid modeling framework for generalizable and interpretable predictions of ICU mortality across multiple hospitals
	Data resources
	Results
	Structured hybrid model development using medical knowledge
	External validation and generalizability
	Consistent interpretations of mortality causes
	Diagnosis-based interpretations

	Discussion
	Methods
	Model
	The learning algorithm
	Mathematical formulation of the learning strategy
	Ethical approval

	References
	Acknowledgements


