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The objective of this study is to develop the ¥ &.¥ .o/ 2% epidemic model for €(07". &-19 utilizing
the V-Caputo fractional derivative. The reproduction number (o) is calculated utilizing the next

generation matrix method. The equilibrium points of the model are computed, and both the local

and global stability of the disease-free equilibrium point are demonstrated. Sensitivity analysis is
discussed to describe the importance of the parameters and to demonstrate the existence of a unique
solution for the model by applying a fixed point theorem. Utilizing the fractional Euler procedure,

an approximate solution to the model is obtained. To study the transmission dynamics of infection,
numerical simulations are conducted by using MatLab. Both numerical methods and simulations can
provide valuable insights into the behavior of the system and help in understanding the existence
and properties of solutions. By placing the values t, In(t) and +/t instead of ¥, the derivatives of the
Caputo and Caputo—-Hadamard and Katugampola appear, respectively, to compare the results of each
with real data. Besides, these simulations specifically with different fractional orders to examine the
transmission dynamics. At the end, we come to the conclusion that the simulation utilizing Caputo
derivative with the order of 0.95 shows the prevalence of the disease better. Our results are new which
provide a good contribution to the current research on this field of research.

The initial cases of the novel corona virus (nCoV) were identified in China in December 2019, and the virus
quickly spread to other countries around the world, resulting in a significant number of casualties'. The WHO
declared it a pandemic on March 11, 2020. Many scientists are trying to find the best way to stop the infection
from spreading because it has caused a lot of damage to the world. The %#-19 pandemic is a severe acute respira-
tory disease which no definitive treatment has been found till now! 3, The droplets, airborne, and closed contact
transmission leads to virus spreads from person to person*~’. With the outbreak of the pandemic, predicting the
number of infected cases and the termination of the infection are important.

It should be noted that mathematical modeling plays a critical role in understanding, predicting, and control-
ling the spread of diseases. Unlike integer-order models, which only consider the current state of the system,
fractional-order models take into account past states and interactions. This memory effect allows for a more
accurate representation of the disease dynamics, as it considers the cumulative impact of previous events and
interventions on the current state of the disease.

In this scientific research, we consider an ¥ & # .o/ # & dynamics model (1) in Fig. 1, such that it indi-
viduals are divided into five classes: (.¥’) susceptible individuals; (&) exposed individuals; (.#) individuals with
symptoms; (/) individuals without symptoms; (%) recovered individuals.

P = A-BIS I S A —cS + R,

E' =BS I —(V+0)E +prS A,

F(E) =pu8 —(@+0+d)I, (1)
o =1 —-pvé — (y+0)d,

R'=af —(6+)R +yd.
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Figure 1. Proposed model.¥ & . .o/ # & for €-19.

New ways of using math of fractional-order have been created to help predict and control the spread of diseases.
These models can help us understand how many people will get sick and die, and also help us slow down the
spread of the disease®!*. Some mathematicians have also focused their efforts on analyzing the different non-
linear dynamics of infection-related problems such as epidemics'*>’. Khan et al. described a mathematical model
for dynamics of a novel nCoV (2019) and then developed the it with quarantine and isolation**?*. A fractional
mathematical model to analyze the pandemic trend of the infection was discussed in*®. Naik investigated and
analyzed a nonlinear fractional-order & .# % epidemic model with Crowley—Martin type functional response
and Holling type-II treatment rate were established along the memory?*?. Mathematical modeling and analysis of
the %-19 epidemic with reinfection and with vaccine availability were examined in?’-*. The authors in®!, provided
a9 & .9 A epidemic model, Fig. 2, as form

L' =opd — (J1é + paS)s,

& =16 + Bt )Y —(h+wé , 2
I =1 —(t+u+é6).7,

R =19 — U,

for the spread of 4-19 using the CFD where w = n x N, N is the total number of individuals and n is the birth
rate, i is the death rate of people, B, B, are the transmission rate of infection from & to ., . to ., respectively,
A is the transmission rate of people from & to .#, § is the mortality rate due to the disease, and 7 is the rate of
recovery of infected people.
Infectious diseases mathematical model is a crucial tool that has been used to study the spreading mechanism
of many diseases’**. Gharahasanlou et al. considered the following mathematical biology and dynamical system
7' =itax (1= 22 )dx —hx 9,97, -
Y =X, Y VY —BY —yH L, V=t -0V, L =W Y —wZ,

under initial conditions ' (0) > 0, % (0) > 0, Z (0) > 0 and 7~ (0) > 0*. Recently, in one of the valuable
research works, Peter et al.*® studied transmission dynamics model, Fig. 3 of -19 by the following system of
the nonlinear differential equation:

S =0—-AF — W+ +1 1,
V=S —(T+s+mWr 1,
Vo=V 1— M+ W7 2,
E'=AF —(e+ W),

A = (1 — )& — (1 + )t ()
I '=exd +V(1—-0)d —(W+d+w)SF,
H' = ol —b)I —(L+d+d)H,

R =owbd +Vodd +dH +0V 72— nZR .

Musa et al. analyzed a new deterministic co-infection model of €-19%. We accept that use these references
to influence this phenomena and the consolidation of this marvel and its impacts on the co-dynamics of both
illnesses will be of awesome intrigued not as it were to open wellbeing specialists but too to analysts within the
field of scientific modeling®?*30:3>34,

The rest of this paper is sorted out within the taking after way. In section “Preliminary definitions”, we
review fractional integral and derivative. Then, in section “Model formulation”, the &’ & . .o/ # %’ demonstrate
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Figure2. ¥ & ¥ # model of 4-19 in’".
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Figure3. & V"1V & of I H# A model for €-19 in*.

of fractional order for the infection transmission is displayed and the balance focuses and their stability are
investigated. The existence and asymptotically stability of the equilibrium points are investigated. The sufficient

conditions for the persistence of the disease are provided. First, % is obtained which determines the stability
of equilibria, then model equilibria are determined and their stability analysis is considered by using fractional
Routh-Hurwitz stability criterion. The fractional derivative is taken in Caputo sense and the numerical solution
of the model is obtained by (8) scheme which involves the memory trace that can capture and integrate all past
activity. Meanwhile, by using Lyapunov functional approach, the global dynamics of the endemic equilibrium
point is discussed. Further, some numerical simulations are performed to illustrate the effectiveness of the theo-
retical results obtained. The outcome of the study reveals that the applied (8) scheme is computationally very
strong and effective to analyze fractional-order differential equations arising in disease dynamics. The results
show that order of the fractional derivative has a significant effect on the dynamic process. The reproduction
number is also calculated and its sensitivity is explored. In section “Existence and uniqueness of solution”, we
investigate whether there is only one solution for the system. In section “Numerical results”, we use a math
method to solve the model and show a math simulation. Eventually, in last section, conclusion is presented.

Preliminary definitions

Let ] := [i1,12] and consider increasing function ¢ : ] — R s.t U/ (t) # 0, for each t. Fork > 0, the Kth Y-Rie-
mann-Liouville fractional ({-RLF) integral for an integrable real function w on J with respect to  is illustrated by

« CVE) w@ =
'ﬂ\+’\lj = / = d B :: - bl
i o) Sy Qe TG0 § e (t) == U(t) — () (5)

where ' (k) = fojLoo et %71 de¥38, Let ), w € CP(J) and s possesses the same properties referred above. The
k™ -RLF derivative of w is defined by

t
7 o) =2 g TV ew) =2 @ /
1 1

VE ed 3,:< 1 d))
n (e (D)1 T — k)

¥ (t) dt

where n = [k] 4 17, The k™ -CFD of w is defined by C@ifq’w(t) = ﬂiﬁ_wff ™ (t), wheren = [k] + 1
1 1

and k wheneverk ¢ Nandk € N, respectively®. In other words,
Z "w(t), k=neN,
Co GV t I(E —K—
78 t) = ) ~ nok=l oy e
i e® T (Ge0) T 2 Dy dE g N ©)
i M(n—x)
Extension (6) gives the Caputo and Caputo-Hadamard derivative when {(t) = tand {/(t) = In t, respectively.
The U-CFD of order k is specified as*’, Theorem 3,

K; K; n-l :f(l) 1 ~ 4
7tV o) :ﬁ@ir’w(w(t) -5 57‘!”(”)(11;;1(1;)) )
£=0

Lemma2.1 (*°) Letw € C"()). Then,
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n—1
fzi““ C@if%(t) = w(t) —
1 1
£=0

®
z ‘”(”)[qj,l(t)} Vtel,n—1l<k<n.

Also, ifw € C*™(J) (m € N), then

| | . [inl (t)} t4n—k—m
g (W) <C‘@i?%) (t) = C‘@i;ﬁmy‘bw(t) T ; S —— 1)5 €+ (0. (7)
Watch that in the case of # @ w(i;) = 0,n < £ < n+m— 1, the relationship
g () (C@i?lll )(t) cj Km; s o(t), tel
can be obtained
Lemma2.2 (*) Letk,v > 0and o € C(]). Then, forallt €7, (i)
SN e) @) = 25 o), 25 (45 0) (1) = w(o);
(i) withA =v+k—1,
S W o) = s +) Foo g W™ @5 e = 5 (F(") S (D)

(iii)C@i?“’(F;l)‘ =0,n—1<k<nf=01,...,n—1LneN.

Theorem 2.3 (Banach Contraction Principle*!) Let W # & and (W, p) be a complete metric space via a contrac-
tion?Y : W — Wie, p(Tow, Tw*) < op(w,w*), foreachw, o™ € W, 6 € (0,1). Then, Y admits a FP uniquely.

Theorem 2.4 (Leray-Schauder*') Let B be a bounded convex closed set and O be open set contained in B of Banach
space W with 0 € O. Then, for the continuous and compact mapping Y : O — B, either (i) " admits a FP belonging
toO; (if)dw € 00,0 <0 < Is.tw =0T (w).

Model formulation
Mathematical models play a crucial role in predicting the behavior of viruses and their transmission among
individuals during a viral pandemic. These models are essential for understanding how diseases spread in dif-
ferent parts of the world and for effectively managing the outbreak. Various mathematical models, such as the
SIRSEIRSEC I ARYSE I 2T S andS E I o RS, etc. are used to evaluate the prevalence
of diseases. Based on the data provided by the WHO regarding %-19, there are two categories of individuals
infected with the virus: asymptomatic and symptomatic. Both types of individuals can transmit the disease to
healthy individuals, and the infected individuals may either recover or succumb to the illness.

We aimed to change the time derivative with the {-CFD in system (1) for the disease in Fig. 1 under the
parameters are explained in Table 1, by introducing a parameter 6 in the following way

[GK—IC@ b g (t)} _ {%} — 5L

Consequently, the -19 mathematical model based on fractional derivatives of order 0 < k < 1is presented as

Parameter explanation Parameter
Birth rate of population A

Natural death rate o
Changing rate from # to %, & to .# and o/ S,V
Transmission rate of infection from .7 to ¥, .« to ¥ B1,B2

Recovery rate of infected and asymptomatic population | o,y

Mortality rate because to the disease 3

Population progress to .# p

Table 1. The parameters description used in model.
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< 1CJ“¢¢—A—G¢ LR -1 (D) I (£) — Pl oA,

<= lcg““’g =BF I —(V+)E + BT A,

01z "U =pué —(@+0+98).7, )
o< 1C9““9/—(1—p)u<§ —(y40),

g<-1Cq z“ﬂ/? =of — O+ )R +yH,

for t > O under ICs

FO)=S9>0, & 0)=6E>0, F0)=I9>0, Z0)=Ay>0, Z(0)=ZR>0.
Lemma 3.1 Let closed set is expressed by
- A
xp:{(.?,@@ I A R)ERY (RO =S +6 +F +A +R < f}.
o

Then \y is positively invariant with respect to system (8).
Proof Add all of the relations in system (8) to get
017N =07 (25 + 95V 4oV 9 495 ) = A—one) b
Thus,
eH@ilf‘“x(t) <A—oR(t) = 28 " TR(E) <0174 — 01 oR(t).

By applying®, Theorem 7.2, we conclude

t
R(t) §N(O)£’K(—061_Kt'<)+/ AT g (—00 ) dp.
0

Hence,
t 2 Niig(I—K)i ik
_ e e (=1'c'6 P
R(t) < R0)& (—oB * ¥ AQITK prl A S
(t) < NO)&(—0 )+A p Z; T o
o C
3 B (_1)1016(1 K)1t1K+K
= R(0)& (=0t ) + A1«
0)&(—o )+ Z; T
A oo (_l)io.ie(lfk)itik
= R0)E&, (—oB k) — = At
O)f(~o ) og Tk 1 1)
A A A
= R(0)8(—00' ") — = (& (=00 ) = ~H o= 00! L~ )(N(O)——)
o
Thus, if R(0) < %, thenR(t) < gfor each positive real number t. This completes the proof. O

Equilibrium points and stability
Equilibrium points (EPs) of system (8) can be determined by solving the following equations.

A—ﬁlyf —Bzag)&{—O'y +§.% =0,

1S I +BS A —(v+0)E =0,

pvé —(a+o+3)F =0, (9)
(1—pvé —(y+o0) =0,

af +yo —(c+¢)#Z =0.

Clearly, whenever there is no spread of the disease; i.e.,.# = 0, then a disease-free equilibrium (DFE) is occurred.

Hence, the DFE point is obtained as &y = (%, 0,0,0,0). If ,%v’o > 1, one can find others EPs of the model by solv-
ing (9). Therefore, we obtain the endemic EPs of the model whenever ¥, &, .7, o/, Z is against zero, and it is in

the form: &1 = (ff *E NI AR *), where
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v (W +0)(a+0+8)(y+0)
" Bipu(y +0) +Ba(1 —p)u(a@+o +38)’
£+ (A= *)@+0+8)(y+0)(o+¢)

T WH0)@Fo+)F+0)0+5) —puasy +0) — (1 —p)oys(@+o+9)’
. pué * Q1 =pé * %*_a./*—l—yd*

N p =

=(oc—|—o+8)’ T (y+o0) o+¢

7 *

In order to find @0, the system is considered as ©2 ) (t) =F(@(t)) — V(P (L)), where

B1S + B2l (V+0)é&
F(@(t) =06"" 0 . WD) =0 (@to+8)S —puE |.
0 (y+0)Z — (A —pué&

At &, the Jacobian matrix for § and U is gotten as

A A
o\ al—k 51; Bz;
J5(60) =0 0 0
0 0

S O O

v+o 0 0
, fm(o@o)=e‘“< —pv a+o+d 0 )
—(1—=p)v 0 Y+o

The next-generation matrix for system (8) is as

B14py +_sz§<r—mu p1d P2
1 (v+0) (a+0+d) (vt+o)(y+o) ato+d y+o
TV = 0 o o |-

0 0 0

and the reproduction number is gotten from ,@0 = p(ZF v~ ~1). Therefore,

~ pup1A N (I —p)upaA

P —

Co(uto)ato+d)  outo)(y+o)

Theorem 3.2 The DFE point & of (8) is locally asymptotically stable if?éo < land it is unstable if@o > L

Proof The Jacobian matrix of (8) at &y = (. ©,0,0,0,0) is

—0 0 — B0 —Brs? S
0 —(v+o) B1.7° B ° 0
F () =061 0 pu —(@+o+9) 0 0 ,
0 (1-pw 0 —(y+o0) 0
0 0 o Y —(o+9)
where &0 = g The characteristic equation | # (£p) —A.# | =0, has two eigenvalues A; = —o and
A2 = —(0 + ¢). The remaining three eigenvalues are those of the 3 x 3 matrix
~(to) B0 B "
J1=0"" pv —(a+0+39) 0
1-=p 0 —(y+o)
The characteristic equation takes the form
—(+o+2) Brs° B2 °
pv —(a+o+3+1) 0 =0.
1—-pv 0 —(y+o+2)

Thus,
W+o+MN@+o+3+My+o+0) — P 'L —pu@+o+5+4) — s pu(y + o+ 1) =0.
Therefore, Z (\) := A3 + b1A? + byA + b3 = 0, whereby =v+o+a+o+y+8+o0,
by=(+0+0)W+0)+@+o+8)y+0)+(y+0)(v+0) =B (1 —pv— 17 %pv,
b3 = (@40 49V +0)(y +0) — @+ 0+ 8)p2.7 °(1 — p)u — (v + 0)B1.¥ *pu.

It is clear that if b3 s greater than zero, it means that .0;?0 is less than one. In addition, if the value of jfo is greater
than 1, then bs is less than zero.
From lim)_, oo Z (A) = 00, one can conclude that # (L) = 0 has a real positive solution, and the EP &Y is

thus unstable. The EP &) is locally asymptotically stable whenever Ry < 1. Specifically, we need to prove that
in this situation, the equation 2 (L) = 0 only has solutions that are negative or have a negative real part by
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employing the Routh-Hurwitz criteria. It follows from %70 < Ithat bs > 0. Expressly, by > 0. The condition

%y < 1all so gives
W+)¥+0) >k’ A=pv,  (@+0+8)V+0)>Pp¥ pu.
Hence, by > 0. Since (v + 0)(y + 0) > B2 °(1 — p)vand (a + 6 + 8) (L + 0) > 1.7 *pu, we get
biby > (V+0)(y +0)(a+o+39).

On the other hand, b3 < (Vv + 0)(y + 0)(a + 6 + 3) and therefore, b1b; > (V+0)(y +0)(a + 0 +3) > b3.

The Routh-Hurwitz yardstick then connotes that the EP & is locally asymptotically stable whenever R is less
than 1. O

Theorem 3.3 The DFE point & of (8) is globally asymptotically stable if@o <1

Proof To display the result, define a Lyapunov function as £(t) = & (t) + 927 (t) + U397 (t), where 91,0
and ¥3 are positive constants. The {-CFD of the Lyapunov function is given by,

g Vo) =09 s ) +9:.%2 s 0 +0:% e ).
Apply system (8), to get
Cq i“l'ﬁ‘):(t) =0 {B1S I +BS A —(V+0)E }
+9{pvé —(@+0+8).7 } +0:{0—pvé —(y+0)}
A A
= 19152; — 93y +0)} oA + {19161; —t@+0o+8)|F + [P3(1—p)v+ Ppv — 1 (LV+0)]|E ,
where #; = (a + 0+ 3)(y + 0), %2 = b1 %(y +0)and 93 = Bzg(a + o + 3). Therefore,
71V e(t) = @+ o+ )0+ + )% — 116 .
Thus, if Zy < 1, then % ?;ﬁljﬂ(t) < 0. So, the DFE point of (8) is globally asymptotically stable whenever
1

@051. O

Ro sensitivity analysis
To study the % sensitivity, we find the derivatives of it in the following way:

3% pvA 3% (1—pa

1 ov+o)a+to+d) Py oWto)y+o)

3% _ pup1 (1—p)vp,

oA cv+o)a+o+8) ow+o)(y+o)

oAy _ pp1 Ao (1-p)B2Ao

v o(v+0)2@+o+3)  oy+o)(v+0)?

%0 _ pupr A %0 _ pupr A

da o(v+o)(a+o+8)? 3 oc(uto)a+o+8)?2
%0 . (1 —=p)vpaA

y  ocwtoy+o?
3% (Va4 26V + 200 + VS + 302 + 208) (pup1 A)
o (6(v+0)(a + 0+ 9))?
(VY + 20V + 20y + 362 (1 — p)up, A
- (©(V+0)(y +0))>2 '

Since all the parameters are positive, so

%R %o 3% %R %R 3% %R %R
>0 —>0, —>0, —>0, —<0, — <0, — <0, — < 0.
3B 3B aA v da 33 ay do

In this way, ?20 is increasing with 1, B2, A, v, but it is decreasing with o, 8, y, o.

Existence and uniqueness of solution
It will be shown here that the system with the IC has a unique solution. To begin with, we compose system (8)
as takes after:

Scientific Reports | (2024) 14:723 | https://doi.org/10.1038/s41598-024-51415-x nature portfolio



www.nature.com/scientificreports/

0o = (), 09 =), 079 =),
070 et = Ay, 6T = A5,

where

H (e, L )=A-PS)I -t A —cS +cA,
Hq(t, 8 )= )I +5S A —(V+0)E ,
Hi(t, S ) =pvé —(a+0o+d8)S,

Hy(t, ) = (1 —pvé —(y+0)s,

Hs5(t, S )=aR +yAd —(c+ )X .

By taking integral, we have

S [F Ve aES)
y’t—y’ozelK/N
© © o (xlfs(j:))l"‘ F(K)a
& (t)—é” (0)=elfK/ N¢‘($) %2(5,(5 )dé,
T s
Jt—f():el*K/ _ S de,
© @ o (et T d (10)

dé,

t N
o (t) — o/ (0) 291«/ VO A )
0o (We(eNt—* Tk
! 7
%(t)—?](O):el*K/ VO AR
o (We(etnt= T

Theorem 4.1 The kernel of the model will satisfy the Lipschitz condition (LC) if the disparity0 < g, < 1,1 <1 <5,
hold, where g1 = B1t1 +P2t2 + 0, g2 =v+o,gs=a+o0+8gs=y+oandgs =0+ ¢.

Proof We will show for the first part and do the same for the rest. Consider functions . (t) and ' (t). Then,

|#1(t,S) = A1, LD = | = B1F + Bl )S —F1) —o(& — LD
<IB1f +BA IS — Sl + ol — A
<GillL 1+ B2l | + DS — Al
< Biv1 + B2 + ) S = T,

where||.7 || < v, || || < t2. In a similar manner, we get

[H#2(t, 6 ) — At EDI = @20l =6l 1A5(8,7) = As3(t, S) < gsllS — Aulls ()
1A 4(t, ) = Ha(t, ADN < galld — 1l N H5(ER) — A5t 2D < g5 2 — Al

O

Let’s look at some recursive versions of system (10),

G

F(K) (ws(t))l o
RAGH

F(K) (xug(t))l ¢
V()

F(K) (wt»l C
e

F(K) 0 (De(e)i* ¢

CVE

F(K) 0 (Pe(r)!«

with the ICs #o(t) = % (0), &o(t) = & (0), Fo(t) = (0), o(t) = 7 (0),and Zo(t) = Z (0). Hence,

fln(t):yn n 1= l(éayn—l)_%l(s)yn—Z))dS>

FZn(t):édn_ n—-1 =

2(5) éﬂn—l) - <7[/2(%‘, édn—Z)) déa

Fan(t) =Sy —SIn 1= (A3, In1) — H3(E,9,2))d8,

Fan(t) =<%n — o n—1=

H 4 (&, A1) — H (€, 4 2))dE,

Fsn(t) =Ry — Rn1 = (o5&, Rn—1) — H5(8,Rn—2)) d8,
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el—K t /
IFinOI =157 = Ll = / v (1, S n1) — H1(§, S n2)) dE

T Jo (g (r)i—«
V')
—— (W1, S ) — H1(E, S = d¢&.
< ey 16T o) = 16 o) | b
With LC (11),
t
I 1m0 < /0 I 11 )] d. (12)

In a similar manner,

IF 2nll < F( )92/ IF2m-p@IdE, NIFall =< F( )93/ IF3m-1n @) ds,

(13)
IFanll =

/ IFa-n@ENdE, lIFsall < / IF 5(a-1) () d§.

r( ) F(K)

Thus,

Sa(€) =D Fue)6a(t) =D Fa(0),In(t) =Y Falt),Zn(®) =Y Fai(6), Za(t) = Fsi(t).

i=1 i=1 i=1 i=1

Theorem 4.2 If there exists t; such that ( 91 “t1g¢ < 1, then a the solution of the system of fractional
C O VIDIVSE I AR S model (8) exists.

Proof From the recessive method and Egs. (12) and (13) we conclude that

1—k 1—k

n pl—« n
gzt} > Fsall = IIJ"n(O)II{ gst} ,

n 0
glt} s Fanll < IIé”n(O)II{ I

0
IFinll < IIeVn(O)II{ 0

()
1—k

9 n 91 K n
IFanll < II%n(O)ll{F( )94t} s M snll < ||'%n(0)|||:1—,( )gst] .

Hence, the system (8) has a solution and also it is continuous. Now, we prove that the upper functions fab-
ricate solution for model (10). Let & (t) — ¥ (0) = Fn — Gin, & (£) — & (0)=&En — Gon, F (£) — F (0)
=91 — G3p, A (t) — A (0) = A — Gan, # (£) — # (0)= #n — Gsp. Thus,

Gl = ‘

o )/ HNE S ) — H1E 1>dsH

)
/ 11, S ) = H1(E, S n-DII dE < N

1—k

S — L1l
< F() g1l 1l

With iterate the procedure, we have, at ty,

1— n+1
IGm©l < | ¢, gitle.
= [T

When we make the value of n go towards infinity, the upper equation gives us a limit, | Gi, || — 0. In a similar
manner, one can check that|| Gy, || — 0, £ = 2,3,4, 5. This completes the proof. O

Theorem 4.3 Suppose that1 — 1H(K)glt > 0. Then, the solution of & & I o R & model (8) is unique.

Proof To show that the solution is one, we assume that there is another solution called %1, &1, #1, 271, and #1. Then,

7 0= S0 = 1 )/ (H1EF) — Hr(E S1) dE.

Therefore,

1.7 =1l <

t
F(K)/O |41, S ) — H1(E, S dk.

It follows from (11) that || — %1l < 5 0" @1t (£) — Z1(t)|. Hence,
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el—K
17 (£) = SO (1 - l_(K)glt> <o.

Then, |¥ — &1|| = 0. Therefore, & = 1. In the same way, we are able to display the same parity for
&, I ,d,R. O

Numerical results
Utilizing the FEP for {-CFD, approximate solutions for the fractional-order 4-19,.% & .# o/ # % model will
be provided (see*?). Simulations to foreknow the €-19 transmission within the world will also be provided.

Numerical procedure
Let’s think about system (8) in a shorter and simpler way as:

077 =0, M0 =0 = (Fo. b0, S0, S0, R 0= € =T <0, (14)
whereA = (¥ ,68 ,9 ,4,R) € Ri and w(t) € Ris a continuous vector function satisfying LC

loi(t)) — w2 < cllt) —Azll, ¢ >0.

Exerting a fractional integral operator matching to the {-CFD to Eq. (14), we get

M, =0 o+ Vo0 ], 0st=7 <o

Setm = ‘// -0

—, A/ eNandt, =nm,n=0,1,2,...,/ for0 <t <7 .LetA, = k| . Utilizing the FEP, see®,
we obtain

}\'n+1 = 61*'( 7\.0 + = F( 1) - Zun+1,l (,l)(t;,)\, ):| i€ {0} UN,0<i<= A/ -1,

whereup41,i= (n+1 -1 — (n —1)1=0,1,2,...,n. The researchers have proven that the obtained scheme
is stable in their work®’, Theorem (3.1). As a result, the approximate solution is expressed by

m« &
Loag1 =0 S+ ———— nt i Z1(ti M) |
+1 0+F(K+1)Eu +1i Z1(t 1)]

(g@n+1 :eliK (@ F(K+l) ZunJrl)l Zz(tl:x):|

I =017 7 nt1oi Z3(ti A
+1 +F(K—|—1)Zu+ll 3(ti )}

A1 =07 Ao+ i La(ti M) |
+1 F(K+1)Zu+1' a(ti )}

_@n+1 = 617'{ 1@ F( K+ 1) Zun+l>l Q‘S(th)\' )}

where

T1EN=A-pI S —prd S —cS +cR, 226N =p1 I L + B4 S —(L+0)E ,
23, =puvé —(@+o+8)S, Z4(t,M)=1A-pvéd —(y+o), Zs(t,M)=af +yoL —(c+5)%.

The model’s numerical simulations and interpretation
Using MATLAB, model (8) will be simulated for the world’s data. For simulation, the value of the parameters
should be first determined. The birth and death rate for the world in 2022 were 17.668 births and 7.678 per 1000
individuals, respectively. The world’s population on 15 June was & = 7914981120, so
1 7.678 s
= — nR = 383128.455, 0= ———— =2.10356 x 1077,
365 365 x 1000

and we choose 06 =0.99. Since R(0)=(0)+& (0)+.7 (0)+ ./ (0) +Z (0), and on 15 June
# (0) = 15 315 220, then we can suppose

& (0) = 20000000, .7 (0) = 10000000, % (0)=0, & (0)=7869665900.
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In addition, we consider the number of infection cases in the world in the period of time T, 15 June to 4
August 2022, so that any part is three day. The parameters values of model (8) are available in Table 2. In this
simulation, the EP is

E1=(77 6" I 2*) = (73 % 10°, 19 x 107, 147 x 107, 143 x 107, 5.5 x 10%).

Problem (8) will be examined in three cases for {(t) as {1 (t) = t (Caputo derivative); Y(t) =1Int
(Caputo-Hadamard derivative); \r3(t) = 4/t (Katugampola derivative).
Case L. Let ) (t) = t (Caputo derivative).

The real data for infected cases, as well as the results of model (8) for k € {0.95, 1} on period T can be
seen in Fig. 4. Also, in Fig. 5, it is predicted how each of the classes &, &, #, o/ and # will change with
k € {0.75,0.85,0.95}. In addition, Tables 3, 4 and 5 show these results. An important point in this case, over
the course of time, %’ decreases as the order of the derivative « approaches one (Fig. 5a), and even &, .7, &/
(Fig. 5b—d) has a faster downward growth. But this is not the case for Z. In fact, as the order of the derivative x
approaches one, the value of Z increases more (Fig. 5e).

Case II. Let {;(t) = In t (Caputo-Hadamard derivative).

The real data for infected cases, as well as the results of model (8) for k € {0.95, 1} on period T can be
seen in Fig. 6. Also, in Fig. 7, it is predicted how each of the classes &, &, #, o/ and # will change with
k € {0.75,0.85,0.95}. In addition, Tables 6, 7 and 8 show these results. The existence of exponential changes
in this case can be clearly seen in curves (Fig. 7a—e). What is received from the graphs and numerical results
is indicative of the fact that in this case, {,(t) = In t, the natural logarithm function is not appropriate in the
presented model (1) (Fig. 7).

Case IIL Let{r3(t) = 4/t (Katugampola derivative).

Parameter | Value Ref

A 383128.455 Estimated
o 2.10356 x 10~ | Estimated
B1 9.41 x 10711 Fitted

B2 1x 1071 Fitted

I 0.02 Fitted

o 0.365 Fitted

y 0.3890 Fitted

v 0.6 Fitted

3 0.015 Seett

p 0.5 See*®

Table 2. Details of the model parameters and their numerical value.

7 Pi(t) =t
2.4 210 ; ; ;

23 F 000 -

22

Active cases of COVID-19
N

1.9 ]
1.8 ]
1.7 ]
~=0.95
1.6 r=1 ]
0 real data

15 L L L L L

0 10 20 30 40 50 60

t (day)

Figure 4. Active cases of 4 (0 .9 %-19 on period T.

Scientific Reports |

(2024) 14:723 | https://doi.org/10.1038/s41598-024-51415-x nature portfolio



www.nature.com/scientificreports/

—— =075
¥ =085
=0.95

L L L L L L

7 7
X0 . 24200
23F
28
26
B o
5 2e E
22
248 | —0—1=075
—H— =085
#=0.95
18 L L L P
0 2 40 60 8 100 120 140 160 180 200 0 2 40 60 8 100 120 140 160 180 200 0 20
t (day) t (day)
(@) 7(¢) (b) &(t)

80 100 120 140 160 180
t (day

(c) 7 (¢)

—— =075
—h— =085
1=0.95

40 60 80 100 120 140 160 180

t (day)

(d) «(¢)

200 0 20 40 60 80 100 120 140
t (day)

(e) Z(t)

200

Figure 5. Dynamics of & (t),& (t),.# (t), (t)and # (t)whenever ¥ (t) = t and different fractional

order k = 0.75,0.85,0.95.

t Yi(t)=t, k=075

5 & g o R
0 7869665900 | 20000000 | 15315220 | 10000000 |0
1 7860830016 | 20094962 | 15448671 | 11565115 | 7032637
2 7853033854 | 20290342 | 15549178 | 12506680 | 13581346
3 7845872620 | 20479004 | 15657315 | 13161083 | 19781136
4 7839154660 | 20658141 | 15769680 | 13650343 | 25707613
100 7503275503 | 27677663 | 21510744 | 20904263 | 339058082
101 7500987972 | 27701550 | 21533292 | 20927122 | 341244555
102 7498717194 | 27724779 | 21555308 | 20949446 | 343416005
103 7496463071 | 27747355 | 21576799 | 20971240 | 345572511
197 7347317561 | 27815672 | 21898637 | 21324880 | 491227069
198 7346286566 | 27802190 | 21889933 | 21316601 | 492263235
199 7345265086 | 27788540 | 21881077 | 21308171 | 493290454
200 7344253058 | 27774724 | 21872072 | 21299594 | 494308780

Table 3. Obtained results of & (£), & (t),.f (t), o (t)and Z (t) whenever {1 (t) = t and fractional order

K = 0.75.
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t Yi(t)=t, k=0.85

4 & g of R
0 7869665900 | 20000000 | 15315220 | 10000000 |0
1 7859557659 | 20108637 | 15467888 | 11790490 | 8045329
2 7850149845 | 20355755 | 15587414 | 12881883 | 15982890
3 7841211719 | 20596005 | 15725920 | 13636203 | 23774862
4 7832614633 | 20836255 | 15875080 | 14192570 | 31420412

100 7348728654 | 28713862 | 22593761 | 22030108 | 488094733
101 7345923533 | 28700391 | 22588601 | 22025325 | 490868404
102 7343158332 | 28685723 | 22582423 | 22019541 | 493605516
103 7340432830 | 28669884 | 22575245 | 22012776 | 496306232

197 7222306548 | 24765884 | 19707170 | 19224245 | 619927754
198 7222087677 | 24720665 | 19671602 | 19189597 | 620234627
199 7221882302 | 24675618 | 19636145 | 19155057 | 620527904
200 7221690205 | 24630744 | 19600802 | 19120629 | 620807792

Table 4. Obtained results of & (t), & (t),.# (t), o/ (t)and # (t)whenever {/; (t) = t and fractional order
k = 0.85.

t Pi(t)=t, k=095

14 & 52 o R
0 7869665900 | 20000000 | 15315220 | 10000000 | O
1 7858338610 | 20121739 | 15486300 | 12006423 | 9015592

7847222227 | 20424519 | 15625861 | 13253405 | 18428079
7836298804 | 20722154 | 15799259 | 14110785 | 28006791
7825526394 | 21014264 | 15992365 | 14733065 | 37653177

W

100 7197975425 | 27155399 | 21649805 | 21064204 | 638927206
101 7195949537 | 27058574 | 21576523 | 20991841 | 641112531
102 7194007150 | 26960975 | 21502443 | 20918758 | 643217693
103 7192147110 | 26862672 | 21427623 | 20845012 | 645243665

197 7225901360 | 19409011 | 15442967 | 15078422 | 627237292
198 7227098207 | 19367671 | 15408510 | 15044826 | 626144098
199 7228293553 | 19327053 | 15374636 | 15011799 | 625050914
200 7229487083 | 19287152 | 15341342 | 14979336 | 623958063

Table 5. Obtained results of & (t), & (t),# (t), o/ (t)and # (t)whenever {/;(t) = t and fractional order
Kk = 0.95.

Similar to Case I and Case II, the real data for infected cases, as well as the results of model (8) fork € {0.95, 1}
on period T can be seen in Fig. 8. Also, in Fig. 9, it is predicted how each of the classes ¥, &, .7, .o/ and Z will
change withk € {0.75,0.85,0.95}. In addition, Tables 9, 10 and 11 show these results. The graphs (Fig. 9a-e), in
this case are remarkable. Over the course of time, only % decreases as the order of the derivative x approaches
one (Fig. 9a), But the value of rest of the parameters &, .7, .o/ and # increases more whenever the order of the
derivative x approaches one more (Fig. 9b—e).

Conclusion

In this paper, an epidemic model & & .# o/ # & for the transmission of infection caused via %-19 is presented
utilizing the \-Caputo derivative. The reason for utilizing the derivative of the fractional order is that it provides
a more accurate fit than the derivative of the integer order. The reproduction number has been calculated and
its sensitivity has also been explored. The EPs have been calculated, and their stability are investigated. We show

that the model is locally and globally asymptotically stable if Sy is less than 1. The existence and uniqueness of
the solution for the model via the FP theorem has been proven. Utilizing the FEP, an approximate solution to
the model has been calculated.
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Figure 6. Active cases of 4 (0 .9 %-19 on period T.
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Figure 7. Dynamics of & (t), & (t), # (t), o/ (t)and # (t)whenever {»(t) = In t and different fractional
orderk = 0.75,0.85,0.95.
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t Y(t) =Int, k=0.75

4 & g of R
7869665900 | 20000000 | 15315220 | 10000000 |0
7847025110 | 38005171 | 14084338 | 10373259 | 5488838
7838247767 | 40579825 | 15960764 | 12579909 | 7612759
7829582624 | 45695634 | 16559910 | 13420768 | 9714215
7823452484 | 48592485 | 17357955 | 14363787 | 11200151

B W N =] O

100 7759049106 | 80773138 | 25001908 | 23099135 | 26917187
101 7758956822 | 80818724 | 25013128 | 23111712 | 26939874
102 7758866102 | 80863537 | 25024159 | 23124075 | 26962177
103 7758776903 | 80907598 | 25035003 | 23136231 | 26984107

197 7754097118 | 83219139 | 27112262 | 23773881 | 28135185
198 7754068964 | 83233046 | 27115466 | 23777716 | 28142113
199 7754041061 | 83246829 | 27118342 | 23781517 | 28148979
200 7754013408 | 83260489 | 27121293 | 23785284 | 28155784

Table 6. Obtained results of ¥ (t), & (t), . (t), o/ (t)and # (t)whenever {,(t) = In t and fractional
orderk = 0.75.

t Ya(t) =Int, Kk =0.85

14 & 52 o R
0 7869665900 | 20000000 | 15315220 | 10000000 | O
1 7846396848 | 38504799 | 14050182 | 10383616 | 5641148

7837803252 | 40685450 | 16069035 | 12703258 | 7720281
7829043340 | 45995695 | 16609801 | 13478562 | 9845087
7823139350 | 48690923 | 17428856 | 14430944 | 11276111

W

100 7769720917 | 75446085 | 23740068 | 21655007 | 24300429
101 7769664754 | 75473938 | 23746841 | 21662644 | 24314205
102 7769609630 | 75501276 | 23753487 | 21670139 | 24327725
103 7769555515 | 75528113 | 23760012 | 21677498 | 24340998

197 7766856324 | 76875087 | 25406375 | 22046501 | 25007030
198 7766840626 | 76882804 | 25408124 | 22048613 | 25010844
199 7766825081 | 76890448 | 25410237 | 22050705 | 25014622
200 7766809684 | 76898018 | 25412135 | 22052777 | 25018364

Table 7. Obtained results of ¥ (t), & (t), # (t), o/ (t)and # (t)whenever {r;(t) = In t and fractional
order k = 0.85.

In addition, the number of infection cases in the world in the period of time T, 15 June to 4 August 2022, is
considered to simulate the model to the real information. Also, the behavior of each of the classes after August 4
to the next 150 days is predicted with different cases for . System (8) have been simulated in three cases for {(t)
as U1 (t) = t (Caputo derivative); U,(t) = In t (Caputo-Hadamard derivative); {3 (t) = v/t (Katugampola
derivative). In the simulation by {; (t ), as can be seen in Fig. 4, the designed model has very good support from
the data. In the simulation by {r,(t), as can be seen in Fig. 6, the designed model has acceptable support from
the data, and in the simulation by {r3(t), as can be seen in Fig. 8, the designed model has good support from the
data. In all simulations, the advantage of utilizing the derivative of the fractional order instead of the utilizing
of the integer order can be seen. In Figs. 5¢, 7c and 9c, respectively, utilizing {1 (t), 2 (t) and P3(t), as well as
utilizing different values for k, the spread of the disease after August 4 is predicted. At the end, by comparing
the simulation results and real data, we come to the conclusion that the simulation utilizing {; (t) = t (Caputo
derivative) with the order of 0.95 shows the prevalence of the disease better.
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t Y(t) =Int, Kk =0.95

4 & g of R
7869665900 | 20000000 | 15315220 | 10000000 |0
7846249518 | 38621963 | 14042172 | 10386045 | 5676866
7837993793 | 40474811 | 16110976 | 12727784 | 7674030
7829455368 | 45757204 | 16587097 | 13427279 | 9745317
7823962932 | 48191831 | 17387067 | 14348039 | 11076428

B W N =] O

100 7781453106 | 69561854 | 22368234 | 20072799 | 21429738
101 7781420755 | 69577988 | 22372085 | 20077183 | 21437653
102 7781389044 | 69593803 | 22375859 | 20081479 | 21445411
103 7781357955 | 69609308 | 22379559 | 20085691 | 21453017

197 7779855048 | 70359477 | 23804956 | 20289171 | 21820722
198 7779846797 | 70363600 | 23805932 | 20290287 | 21822740
199 7779838629 | 70367681 | 23806899 | 20291392 | 21824739
200 7779830544 | 70371721 | 23807856 | 20292486 | 21826717

Table 8. Obtained results of & (t), & (t), . (t), o/ (t)and # (t)whenever {,(t) = In t and fractional

order k = 0.95.
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Figure 8. Active cases of @ (0 ¥".¢ %-19 on period T.
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Figure9. Dynamics of & (t),& (t),# (t), o/ (t)and # (t)whenever U3(t) = 4/t and different fractional

order k = 0.75,0.85,0.95.

t V3(t) = 4/t, k=075

g & g < R
0 7869665900 | 20000000 | 15315220 | 10000000 | 0
1 7865452967 | 22496609 | 15748219 | 10636302 | 645391
2 7862675410 | 24000485 | 16111461 | 11122253 | 1068066
3 7860537499 | 25108429 | 16419469 | 11518472 | 1391902
4 7858771102 | 26000499 | 16687842 | 11855852 | 1658548
100 | 7819280579 | 44311816 | 23783634 | 19984670 | 7508561
101 | 7819073686 | 44404890 | 23822952 | 20028022 | 7538958
102 | 7818868032 | 44497393 | 23862045 | 20071116 | 7569172
103 | 7818663598 | 44589336 | 23900915 | 20113957 | 7599207
197 | 7803079926 | 51567958 | 26887359 | 23384206 | 9887173
198 | 7802940696 | 51630081 | 26914214 | 23413455 | 9907608
199 | 7802801862 | 51692024 | 26940995 | 23442621 | 9927986
200 | 7802663419 | 51753789 | 26967704 | 23471705 | 9948306

Table 9. Obtained results of & (t), & (t), .7 (t), o/ (t)and # (t)whenever {3(t) = +/t and fractional
orderk = 0.75.
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t V3(t) = /t, k=0.85

g & g 27 R
7869665900 | 20000000 | 15315220 | 10000000 | 0
7865101369 | 22704969 | 15784356 | 10689406 | 699253
7862056800 | 24342361 | 16188564 | 11227239 | 1162342
7859693049 | 25556695 | 16535145 | 11670122 | 1520093
7857726442 | 26540676 | 16839313 | 12049767 | 1816643

BRlw| |~ o

100 7810600458 | 48222416 | 25428095 | 21801971 | 8785251
101 7810337886 | 48339940 | 25478453 | 21857098 | 8823797
102 7810076727 | 48456816 | 25528552 | 21911931 | 8862134
103 7809816957 | 48573056 | 25578396 | 21966474 | 8900267

197 7789550567 | 57604673 | 29495040 | 26226278 | 11875142
198 7789365380 | 57686914 | 29531036 | 26265235 | 11902335
199 7789180647 | 57768950 | 29566948 | 26304096 | 11929461
200 7788996363 | 57850782 | 29602775 | 26342864 | 11956523

Table 10. Obtained results of & (t), & (t),.# (t), ./ (t)and # (t)whenever {3(t) = +/t and fractional
orderk = 0.85.

t V3(t) = +/t, k=095

& & R o R
7869665900 | 20000000 | 15315220 | 10000000 | O
7864823004 | 22869930 | 15812966 | 10731449 | 741896
7861559101 | 24616328 | 16251192 | 11312214 | 1238171
7859006095 | 25919245 | 16630434 | 11794449 | 1624321
7856869348 | 26980902 | 16965295 | 12210178 | 1946260

Bl w|ln|—~| o

100 7802431105 | 51885500 | 26988854 | 23515767 | 9986045

101 7802111117 | 52028204 | 27050615 | 23583030 | 10033008
102 7801792671 | 52170203 | 27112091 | 23649970 | 10079744
103 7801475744 | 52311508 | 27173287 | 23716593 | 10126258

197 7776216847 | 63528039 | 32083114 | 29031122 | 13835586
198 7775981251 | 63632299 | 32129151 | 29080727 | 13870219
199 7775746148 | 63736335 | 32175095 | 29130229 | 13904782
200 7775511532 | 63840150 | 32220948 | 29179629 | 13939273

Table 11. Obtained results of & (t), & (t),.# (t), .o/ (t)and # (t)whenever {3(t) = +/t and fractional
order k = 0.95.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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