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Simulated digestions of free 
oligosaccharides and mucin‑type 
O‑glycans reveal a potential role 
for Clostridium perfringens
Andrew G. McDonald  1,2* & Frédérique Lisacek  1,3,4*

The development of a stable human gut microbiota occurs within the first year of life. Many open 
questions remain about how microfloral species are influenced by the composition of milk, in 
particular its content of human milk oligosaccharides (HMOs). The objective is to investigate the effect 
of the human HMO glycome on bacterial symbiosis and competition, based on the glycoside hydrolase 
(GH) enzyme activities known to be present in microbial species. We extracted from UniProt a list 
of all bacterial species catalysing glycoside hydrolase activities (EC 3.2.1.-), cross-referencing with 
the BRENDA database, and obtained a set of taxonomic lineages and CAZy family data. A set of 13 
documented enzyme activities was selected and modelled within an enzyme simulator according to 
a method described previously in the context of biosynthesis. A diverse population of experimentally 
observed HMOs was fed to the simulator, and the enzymes matching specific bacterial species were 
recorded, based on their appearance of individual enzymes in the UniProt dataset. Pairs of bacterial 
species were identified that possessed complementary enzyme profiles enabling the digestion of the 
HMO glycome, from which potential symbioses could be inferred. Conversely, bacterial species having 
similar GH enzyme profiles were considered likely to be in competition for the same set of dietary 
HMOs within the gut of the newborn. We generated a set of putative biodegradative networks from 
the simulator output, which provides a visualisation of the ability of organisms to digest HMO and 
mucin-type O-glycans. B. bifidum, B. longum and C. perfringens species were predicted to have the 
most diverse GH activity and therefore to excel in their ability to digest these substrates. The expected 
cooperative role of Bifidobacteriales contrasts with the surprising capacities of the pathogen. 
These findings indicate that potential pathogens may associate in human gut based on their shared 
glycoside hydrolase digestive apparatus, and which, in the event of colonisation, might result in 
dysbiosis. The methods described can readily be adapted to other enzyme categories and species as 
well as being easily fine-tuneable if new degrading enzymes are identified and require inclusion in the 
model.

Human milk oligosaccharides (HMOs) are a class complex unconjugated sugars derived from lactose, and which 
is the third-most abundant component of milk, after lactose itself, and lipids, with their concentration being at 
their highest in colostrum1. Although undigested by the neonate, HMOs are thought to provide protection from 
pathogenic microorganisms by masking the epithelial cells of the developing intestinal mucosa2,3, promotion of 
mucin expression4 and by promoting the growth of lactobacilli and bifidobacteria specialising in their digestion5. 
Aside from protecting against necrotising enterocolitis6 or Streptococcus group B organisms7, HMOs may also 
provide other benefits to the neonate, including in neurodevelopment8,9 and prevention of allergic diseases10–12. 
The development of a healthy gut microbiome, as a consequence of human milk oligosaccharides in the diet, has 
indications of longer-term benefit to the infant, including reduced incidence of inflammatory bowel diseases13, 
neuroprotective effects14 and small-molecule homeostasis15. In this context, understanding the principles of 
HMO synthesis as well as the conditions upon which HMOs are potentially digested by the infant gut16, is a step 
towards answering the broad range of open questions. Previously, we have modelled the synthesis of the HMO 
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portion of human milk and ran simulations that could account for around 90% of all structures observed and 
reported in the literature17. The logical follow-on is to consider the HMO degradation by the gut microbiome.

As evidence of the prominent role of carbohydrate-active enzymes (cazymes) in digestion of dietary and host 
oligosaccharides, 95% of the genomes contained in CAZy, the database in which those enzymes have long been 
collected and grouped into families18, as well as 85% of its entries, are from the superkingdom of Bacteria. Novel 
enzyme activities are usually inferred, both from genomic and19 metagenomic studies20 of these organisms. The 
IUBMB Enzyme List, with its Enzyme Commission (EC) number hierarchy, provides a functional classification 
of enzymes based on experimental evidence of the reactions they catalyse21, a classification which is independent 
of the specific protein or organism. The manually curated association between EC numbers and CAZy families 
is a source of identification of carbohydrate synthesis/degradation effectors. Genome automatic annotation that 
assigns protein function based on a broad variety of criteria, provides an independent starting point for select-
ing these cazymes. In the past decade, numerous studies have covered the analysis of the cazyme content in the 
gut microbiome as reviewed in19,22,23 where the focus is mostly on cazymes involved in catabolism by Bacteria. 
These are generally confined to the sub-subclass of glycosidases (GH family), classified under EC 3.2.1.-, and 
occasionally as polysaccharide lyases (PL family), which are classified under EC 4.2.2.-.

In the present account, we report on a new simulator of 13 hydrolase enzymes known to be possessed by 
gut microflora24–26, which we have used to investigate the potential of microbes to digest either HMOs or the 
glycoconjugates of the intestinal mucosa, and the possibility of cross-feeding25,27 and syntrophy28. We queried 
the UniProt protein database for the available evidence for proteins involved in glycoside hydrolase and sulfatase 
activity, correlated these with their corresponding EC numbers, and identified the CAZy families into which 
they are organised. Through simulated digestions of populations of HMOs and mucin-type (GalNAc-linked) 
O-glycans, we estimated the likelihood of different taxa and individual bacteria to grow on these classes of sub-
strate. Previous attempts to simulate HMO catabolism have been made29 but were mostly based on the occurrence 
of specific (orthologous) genes in bacterial genomes.

Within a similar framework as that presented in17 for HMO biosynthesis, we generated a set of putative 
networks from the output of simulating HMO degradation. Network visualisation was kept consistent in terms 
of colour coding of HMO categories. A closer look at species distribution and contribution expectedly revealed 
B. bifidum, B. longum as having the most diverse GH activity. More surprisingly, C. perfringens, in the present 
study, is associated with similar capacities as the Bifidobacter species, which might have implications for the 
involvement of this pathogen in the development of necrotising enterocolitis30.

Results
Bacterial proteins associated with activities in sub-subclasses EC 3.2.1 (glycoside hydrolases) and EC 3.1.6 (sul-
furic-ester hydrolases) were extracted from UniProt (Release 2023_02) as described in the Methods. Similar data 
were extracted from CAZy (May 2023 update) for EC 3.2.1. Amongst these proteins 155 complete EC numbers 
were found, when cross-referenced with the BRENDA31 repository, of which 30 were unique to UniProt and 20 
were unique to BRENDA (Fig. 1B). Twelve proteins associated with sulfuric-ester hydrolase (sulfatase) activity 
were found, all of which were in UniProt, and six of which were in BRENDA (Fig. 1A).

Enzymes and reactions
A Glycologue simulator of 12 glycoside hydrolases and 1 sulfatase was developed, based on their known 
involvement in HMO and mucin digestion by gut floral bacteria24,25,32. The enzymes of the model are shown 
in Table 1, numbered 1–13, with the EC number, where available, comprising one sialidase (enzyme 1), two 
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Figure 1.   Numbers of distinct bacterial sulfatase (EC 3.1.6.-) and glycoside hydrolase (EC 3.2.1.-) activities in 
UniProt, cross-referenced with the BRENDA database, and CAZy. Sulfatases not being exclusively carbohydrate-
active, no members of EC 3.1.6 are listed in the CAZy database. The BRENDA values were not sourced directly 
from the BRENDA database but represent EC numbers that are cross-referenced in UniProtKB.
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galactosidases (2 and 3), two N-acetylgalactosaminidases (4, 8), two N-acetylglucosaminidases (5, 13), one 
β-N-acetylhexosaminidase (7), one sulfatase (9), three fucosidases (6, 10, 11) and the endo-glycosidase, lacto-
N-biosidase (12). The corresponding activities were modelled in Glycologue33 notation, which uses a single-
character encoding system for the monosaccharides. Reactions and glycan substrates were cross-checked with 
ChEBI34 and Rhea. Rhea accession numbers, where available, are included in Table 1.

CAZy families and organism taxonomic classification
From the UniProt dataset (Release 2023_02) 95 distinct CAZy glycoside hydrolase families were identified in 
Bacteria. The number of distinct simulated EC numbers available to individual species were counted. No organ-
ism was found to have all 11 fully characterised enzymes of the simulator, based on the assignment of a complete 
EC number in UniProt or BRENDA, the highest ranked being Bifidobacterium bifidum, with 10 full EC numbers 
associated with its GH-encoding proteins.

Of the 8368 bacterial species associated with glycoside hydrolase (GH) or sulfuric-ester hydrolase (SH) 
activities in UniProt/BRENDA, 448 were manually positively identified with human gut, the remaining 7920 
being classed as non-gut species (often from environmental samples). A subset of 166 of the gut species have 
been identified as potential pathogens35.

From Table 1 an enzyme profile could be assigned to each species based on the presence or absence of a 
particular enzyme activity in the UniProt data. This enzyme profile value is an integer representing the state of 
enzyme activities (see Methods, Enzyme profiles), represented through this work as pX, with X an integer from 0 
to 
∑

13

i=1
2
i−1 = 8191. From the gut bacteria, 40 unique enzyme profiles were identified, compared with 79 profiles 

in non-gut species. Interactive Krona36 SVG (Scalable Vector Graphics) diagrams of gut, non-gut and all species 
(combined) are shown in Supplementary Information. On comparing the gut and non-gut microbial subsets, 
4 enzyme profiles unique to gut species were identified, and 12 were unique to non-gut bacteria. The median 
numbers of simulated characterised hydrolytic enzymes available to non-gut (n = 7920) and gut (n = 448) species 
were found to be 2 and 3, respectively.

Feeding HMOs to a simulated microbiome
A library of 226 experimentally determined HMOs17 was used as input to the Glycologue GH simulator, for 
every species within each subset of the species data. Every GH reaction was associated with one bit of infor-
mation from the innate enzyme profile value. Once all substrates had been digested, as far as possible, within 
the simulator, the subset of the enzymes used on those substrates was stored as digestion profile value. Not all 
enzyme activities of the model were activated by the HMO set. For example, three species, Bacteroides caccae, 
Adhaeribacter pallidiroseus and Zobellia galactanivorans, express enzymes 1 through 8 (see Table 1), which is 
the enzyme profile value p7936. After simulated digestion, since none of the HMOs possessed an α-galactose 
or α-N-acetylglucosaminidase residue, the enzymes corresponding to the removal of these sugar units, namely 
α-galactosidase and α-N-acetylglucosaminidase were never activated, resulting in a further elimination of 
enzymes 2 and 5. The substrate-specific, or environment-specific, profile value for these bacteria was therefore 
calculated to be p7954. The mapping of innate profile values to HMO-trained profile values is summarised in 
Fig. 2. Six species were discovered to possess unique subsets of the modelled enzymes, including the probiotic 
species B. bifidum and B. longum, but also two potential pathogens, C. perfringens and Oribacterium sinus.

Simulated networks of the digestion of the HMOs are shown in Fig. 3. Nodes that were part of the experi-
mentally determined HMO set are drawn at a larger node size than the intermediates and coloured according to 
the core type (Fig. 4) to be consistent with the representation previously used17 for HMO biosynthesis. Complete 
digestion of all HMOs to lactose was not possible with the current version of the GH enzyme simulator, owing to 
its inability to process 3-fucosylated lactose (3-FL). Nevertheless, both the size of the networks and the number of 
disjoint subnetworks could be matched with certain profile values. The number of reaction subnetworks is seen 

Table 1.   Enzymes of the model. Glycoside hydrolases included in the Glycologue simulator. a A sulfatase 
enzyme (9) and 6-β-N-acetylglucosaminidase (13) are listed but were unused.

Enzyme no EC number Short name Accepted name CAZy families Rhea ID

1 EC 3.2.1.18 exo-αSiaH exo-α-sialidase GH33,34,83, 177,181 –

2 EC 3.2.1.22 αGalH α-galactosidase GH4,27,31, 36,57,97,110 21,112

3 EC 3.2.1.23 βGalH β-galactosidase GH1,2,3,5,16,35,42,50,54,147,165,173 –

4 EC 3.2.1.49 αGalNAcH α-N-acetylgalactosaminidase GH27,36,109,129 15,085

5 EC 3.2.1.50 αGlcNAcH α-N-acetylglucosaminidase GH89 –

6 EC 3.2.1.51 αFucH α-l-fucosidase GH29,95,151 12,288

7 EC 3.2.1.52 βHexNAcH β-N-acetylhexosaminidase GH2,3,18,20,84,179 –

8 EC 3.2.1.97 endo-αGalNAcH endo-α-N-acetylgalactosaminidase GH101 30,983/54,540

9 EC 3.1.6.- exo-sulfoH (3S/4S/6S-Gal/GlcNAc sulfatase) – –

10 EC 3.2.1.63 α2FucH 1,2-α-l-fucosidase GH95 10,816

11 EC 3.2.1.111 α3/4FucH 1,3-α-l-fucosidase GH29 –

12 EC 3.2.1.140 LNBase lacto-N-biosidase GH20,136 21,568

13 EC 3.2.1.- β6GlcNAcH (6-β-N-acetylglucosaminidase) – –
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to increase, as the numbers of enzymes available to an organism decrease (Fig. 3A–D; see also Supplementary 
Information). The most complete digestion profile, with all GH enzymes active, is shown in Fig. 3A), with a 
single major network of hydrolase reactions, and several smaller islands. The network for the species B. bifidum 
and B. longum was partitioned into two large and five small subnetworks (Fig. 3B). (Fig. 3B), which was closely 
matched by the C. perfringens enzyme profile (Fig. 3C). A putative digestive network that is representative of 
several species is shown in Fig. 3D, including E. coli, but also 24 other species, of which 7 were associated with 
the gut microbia that include two other species from the same order of Enterobacterales, Enterobacter cloacae and 
Salmonella enterica, two from Bacteroidales (Parabacteroides distasonis and Bacteroides stercoris) and two within 
Eubacteriales (Eisenbergiella tayi and Blautia wexlerae). With 5 GH enzyme activities available, compared with 
8 and 10 activities in panel B, the graph is noticeably more fragmented than those of Bifidobacteria, indicating 

Figure 2.   Mapping the enzymes used in carbohydrate (HMO) digestion to the full complement of simulated 
glycoside hydrolase enzymes available to an organism. (A) Krona diagram showing the GH enzyme profiles 
on the inner ring, which reflect simulated digestion of a heterogeneous population of HMOs, map to one or 
more profiles of available enzymes in the outer ring, which corresponds with the bacterial species. (B) Unique 
enzyme profile values belonging to the six named spaces in (A), Bifidobacterium bifidum, Bifidobacterium 
longum, Clostridium butyricum, Clostridium perfringens, Oribacterium sinus and Treponema succinifaciens. The 
enzyme profile value is illustrated by a vector of cells (1 to 13, left to right, representing the enzymes of Table 1) 
filled according to a colour representing the substituent removed, or bond cleaved: red (l-fucose); yellow 
(d-galactose); orange (GalNAc); blue (GlcNAc/HexNAc) magenta (sialic acid); grey (lacto-N-biose); white 
(no activity). A complete set of enzyme profile values is shown in Fig. 9, while interactive Krona diagrams are 
provided in Supplementary Information (Krona), in which each segment can be expanded to reveal the species 
associated with each profile.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1649  | https://doi.org/10.1038/s41598-023-51012-4

www.nature.com/scientificreports/

only partial digestion of the HMO substrates. Other HMO-degradation networks are shown in Supplementary 
Information (Networks).

In Fig. 5, simulated networks of glycosyltransferase action during HMO biosynthesis17 are contrasted with the 
predicted networks of the glycoside hydrolases simulated in this study. The structure of TFS-LNO, a trifucosyl, 
monosialyl derivative of lacto-N-octaose37,38, was used as a reference. In both networks, several intermedi-
ates encountered have previously been characterised, and are highlighted in the figure, including F-LND III39, 
DF-LNH c40,41, TF-LNO II39, TF-LNH40–42 and DF-LNH II40,42. Not all paths through the networks are equally 
probable, and in the biosynthetic network, are regulated kinetically, through enzyme activities and their spati-
otemporal localisations within Golgi43.

Differences in intermediates between biosynthetic and degradative pathways were also observed. When the 
computed intermediates of the HMO-Glycologue minimal biosynthetic networks, published previously17, were 
compared with those of the GH simulator acting on the same initial set of HMO substrates, the percentage of 
the intermediates that were common to both networks was found to be 59.1%, the differences being partly due 
to products terminating in 6-linked GlcNAc, as a result of the βHexNAcH activity (enzyme 7) acting to remove 
β3-linked GlcNAc from a branched oligosaccharide.

Potential energy scores
To quantify the effect of an innate glycoside hydrolase apparatus feeding on HMO substrates, and more readily to 
compare the ability of species to thrive on these dietary oligosaccharides, a scoring system was developed for each 
simulated digestion, as described in the Methods (Calculation of potential energy scores). First, a maximum score 
was determined for the digestion of 226 HMOs by the simulator with all enzymes active, and the scores of all 
unique enzyme profile values were assigned a potential energy (PE) score relative to this maximum, from 0 to 1.

Figure 3.   Simulated networks of HMO degradation by glycoside hydrolases expressed in Bacteria when 
each of 226 unique human milk oligosaccharides were submitted to the simulator. (A) Network obtained 
with all enzymes of the model available. (B) Networks corresponding to the enzyme profiles p4360 and 
p4888, representing Bifidobacterium spp. bifidum and longum, respectively. (C) Network p6912 (Clostridium 
perfringens). (D) Network p7984 (E. coli and other species). Between panels (A–D), increased fragmentation of 
the networks occurs, as the number of available GH enzymes active towards HMO substrates decreases (B–D). 
Nodes are coloured according to type of core structure based on the reducing end of the HMO17: red (lacto-N-
tetraose), cyan (lacto-N-neotetraose), blue (lacto-N-hexaose), orange (lacto-N-neohexaose), grey (other).
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The highest scoring species in the gut subclass were B. bifidum and B. longum, with relative PE scores of 
0.9888 and 0.8210, respectively, while C. perfringens scored 0.8089. These were coloured blue or purple in Fig. 6B 
(grouped at the level of taxonomic Order), while the closest scoring species were from the 7 bacteria referenced 
above (Fig. 3D), with a corresponding PE score of 0.6983, a value that was also achieved by several other GH 
enzyme profiles, such as p8072, which matched Akkermansia muciniphila, Bacteroides reticulotermitis, Bacte-
roides xylanisolvens and Phocaeicola vulgatus. Among the lowest scoring organisms on these substrates (PE value 
0.0012) included Enterococcus caccae and Salmonella typhi, for which only two enzymes, α-galactosidase and 
β-N-acetylhexosaminidase, were retrieved from UniProt/BRENDA. For the 79 profiles in the non-gut bacte-
rial subclass, PE scores ranged from 0.0007 (Bacillus paranthracis) to 0.7688 (Adhaeribacter pallidiroseus and 
Zobellia galactanivorans). The non-gut bacteria are grouped according to taxonomic Class in Fig. 6A. In both 

Figure 4.   Symbols of common monosaccharides and cores found in human milk oligosaccharides and mucin-
type O-glycans.
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Figure 5.   Simulated pathways of biosynthesis and glycoside hydrolase-catalysed degradation of the human 
milk oligosaccharide TFS-LNO. In the biosynthetic network, only products leading to TFS-LNO are included. 
Selected edges are labelled according to the enzymes assumed to be active at those steps of the pathway. 
Highlighted nodes represent experimentally characterised structures: grey node (LNTri II), blue nodes 
representing structures with a lacto-N-hexaose core (Fig. 4). Abbreviations used: LNTri II (lacto-N-triose II); 
TFS-LNO (a trifucosyl,monosialyllacto-N-octaose).
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Figure 6.   Predicted potential energy (PE) scores assigned to Bacteria fed a population of human milk 
oligosaccharides and mucin-type O-glycans. For each unique enzyme profile, with a subset of the simulated 
enzymes, a simulated glycoside hydrolase degradation network was generated, and the number of 
monosaccharides released was counted (the action of lacto-N-biosidase was counted as 0.5 instead of 1). Each 
profile was then scored based on the ratio of this value to the maximum possible value for the HMO dataset, 
with all enzymes active. Colours are assigned from grey through blue for the PE scores (0–1). (A) Non-gut 
species, grouped by taxonomic Class. (B) Gut bacterial species, grouped by taxonomic Order. The position of C. 
perfringens is indicated by an arrow. C Numbers of simulated enzymes available to gut and non-gut species. D 
Frequency distribution of potential energy scores of HMO-fed bacteria. Highly scoring gut species, fed in silico 
on HMOs (A, right) were B. bifidum (p4360), B. longum (p4888) and C. perfringens (p6912); the highest scoring 
on mucin-type O-glycans (B, right) were B. bifidum (p4360) and C. perfringens (p6912). Data are sourced from 
UniProtKB (https://​unipr​ot.​org). For comparison with the CAZy dataset, see Extended Data Fig. E2.

https://uniprot.org
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HMO and O-glycan simulated digestions, a similar pattern of clustering of profiles is evident, but the highest-
performing species appear only in the gut category. Frequency distributions of potential energy scores in gut and 
non-gut Bacterial species are shown in Fig. 6D, along with the number of simulated enzymes available within 
each division.

Simulated syntrophies
Bacteria expressing extracellular glycoside hydrolase enzymes can release substrates to the benefit of other species 
in a community, a process known as cross-feeding or syntrophy27,28,44. To investigate this phenomenon in silico, 
with the data in UniProt, we compared each enzyme profile in the simulator against the others, in pairwise fash-
ion. Glycoside hydrolase enzyme profiles of the gut species were compared bitwise, as described in the Methods 
(Calculation of potential syntrophies) using Boolean exclusive-OR (XOR) and conjunction (AND). Where an 
enzyme activity was found to be lacking in one organism but present in the other, the score was incremented, 
as evidence of a potential collaboration, when supplied on substrates amenable to catabolism by that enzyme. 
Where the same enzyme activity was possessed by both profiles (each profile representing one or more species) 
the score was decremented, as an indication of the potential for competition on the same substrates. Enzymes 
absent from both profiles were treated neutrally. Thus, it was possible to assign an overall score for each pair, from 
the GH data in UniProt and BRENDA alone, without the need for simulated digestion. The potential syntrophic 
scores are illustrated in Fig. 7, where potential collaborations are represented as green pixels, competitors as red, 
and neutral interactions as white. Intraspecies competition45 is represented by the diagonal, in which identical 
profile values are compared.

Syntrophic scores (x) were found to range from − 6.0 to + 8.0. A general feature of the data in Fig. 7 is that 
the potential for collaboration between species exists for those expressing a greater variety of GH enzymes, in 
the region in which green pixels are dominant. A possible exception is the profile of B. longum, which tended to 
score neutrally against the profiles of other species. A potential for syntrophy between Clostridium butyricum 
(p8152) and Brevundimonas diminuta (p7991) is highlighted, where six enzymes from Table 1 are present in 

Figure 7.   Predicted competition and symbiosis between gut bacteria, based on available enzyme profiles. For 
each bit in profiles p1 and p2, a syntrophic score increased by 1 when the bitwise comparison p1 XOR p1 = 1 
(Boolean true), decreased by 0.5 when p1 AND p2 = 1 (Boolean true), and left unchanged when p1 AND p2 = 0 
(Boolean false). A syntrophic pair (green) and competitive pair of species (red) are indicated. See text for details.
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one and absent in the other. The potential for competition between Bacillus cereus (p8059) and Acinetobacter 
johnsonii (p8127), which share similar overall profiles, is also indicated.

With a score of 4.50, profiles p8072 and p7991 are likewise complementary, which suggests that gut species 
associated with these profiles, such as Akkermansia muciniphila and B. diminuta might collaborate within the 
host gut, as might C. butyricum and B. diminuta (p8072 and p8152), with x = 4.0. A. muciniphila and C. butyri-
cum (p8072 and p8152) having a pairwise x value of -1.5 and are thus classed as competitive according to Fig. 7. 
The strength of the association, or the disassociation, based on enzyme complementarities, will be related to the 
potential energy extracted from a given substrate set.

Feeding mucin‑type O‑glycans to a simulated microbiome
For comparison with the HMO population, a set of 434 mucin-type O-glycans, characterised from various 
species, were used as input to the simulator. When all enzymes were available, the digestive network shown in 
Fig. 8 was obtained, which shows nearly complete digestion of all substrates. Despite the incompleteness of the 
simulated digestions, the potential energy scores were calculated for the non-gut and gut classes of bacteria, 
as shown in Fig. 6. With the large numbers of bacteria appearing in the former category, to maintain the same 
aspect ratios in the heatmaps, the non-gut data were clustered at the Class taxa level, and by Order in the case of 
gut species. Again, the Bifidobacteriales spp. scored highly, as did C. perfringens, although not as highly as when 
fed the HMO substrate population, perhaps because of a lack of LNB substrates for the Bifidobacteriales. In the 
upper quartile of these PE scores (PE > 0.6128), with values between 0.7 and 0.8, were profiles p8072, p7944, 
p7952 and p7936, which were associated, in the data extracted from UniProt, with A. muciniphila (and 3 other 
spp.), Parabacteroides faecis, Bacteroides thetaiotaomicron (and 3 other spp.) and Bacteroides caccae.

Verification with the CAZy database
The problem of EC number misassignment, either manually or through software, has been noted previously46–48. 
Owing to the possibility of the existence of false positives, or mis-annotations, within the UniProt-derived data, 
the methods described here were applied to the corresponding data obtained from CAZy, as a way to verify the 
results independently. In a parallel set of experiments, gut and non-gut bacterial species were ranked accord-
ing to the number of simulated glycoside hydrolases each possessed, and an enzyme profile value was assigned. 

Figure 8.   O-glycan degradation networks by glycoside hydrolases. 434 mucin-type GalNAc-linked glycans were 
submitted to the Glycologue glycoside hydrolase simulator for digestion by the enzymes of Table 1. Larger nodes 
are experimentally observed O-glycans, coloured according to the core type (cf. Figure 4): core 1 (yellow); core 2 
(green); core 3 (cyan); core 4 (blue); core 5 (orange); smaller grey nodes are inferred intermediates.
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With the 3,009,944 Bacterial entries in CAZy, 6,814 unique species were found, of which 5,690 are assigned GH 
families. Compared with the UniProt/BRENDA, the number of EC number assignments in CAZy was much 
smaller, resulting in 134 selected species for the simulations, of which 44 were assigned to the gut microbiota 
and 94 to non-gut. The median number of simulated enzymes available was also lower than in the UniProt/
BRENDA-derived dataset, at 1 enzyme per species, for both the gut and non-gut associated subsets.

Simulations were repeated with the CAZy dataset, including HMO (Extended Data Fig. E1) and O-glycan 
digestion networks, the calculation of relative potential-energy scores (Extended Data Fig. E2) and pairwise 
enzyme-profile comparisons (Extended Data Fig. E3). Despite the differences in annotation, a similar pattern 
emerged: gut species consistently ranked higher both in the number of enzymes and the resulting PE score, 
as summarised in Fig. 9, when compared to non-gut spp. The enzyme profile values for UniProt- and CAZy-
sourced microbiota are distinct, as shown by the profile of B. bifidum, which in the CAZy data does not possess 
the enzyme sialidase, EC 3.2.1.18 (enzyme 1 in Table 1), whereas 10 protein entries within UniProtKB were 
associated with this activity. The distinction between gut and non-gut bacteria is clearly seen in the heatmaps of 
Extended Data Fig. E2. Despite the discrepancies in annotation, Clostridium perfringens ranks second highest 
in the number of glycoside hydrolase enzymes active towards HMOs, in both datasets, and, in CAZy, the third-
highest PE scorer, jointly with A. muciniphila.

Discussion
Glycologue was originally developed as a simulator of biosynthetic pathways, based on a formal-language 
approach to describe the acceptor substrates of the glycosyltransferases and sulfotransferases17,33,49,50, and the 
present account is the first application of the method to the glycoside hydrolases. In the model reported here, 
therefore, we have deliberately focused on enzymatic as opposed to genomic/transcriptomic information asso-
ciated with bacterial species, since our goal was to compare the potential rather than the observed ability of 
microbes to process human milk oligosaccharides.

Our analysis of the GH enzymes and their association with gut and non-gut bacteria supports the longstand-
ing findings that Bifidobacteroides species are uniquely suited towards colonising human gut in early life, when 
fed a diet of complex lactose-based oligosaccharides such as HMOs. Our findings also confirm the report on 
A. muciniphila as being able to thrive in vitro when grown on human milk28. A. muciniphila-like species are 
observed to colonise human gut across all age groups, beginning in early life and increasing to adult-like levels 
within a year51. A mucin-degrading strain, MucT, which at lower abundances has been shown to correlate with 
diseases in humans and mice, can also use HMOs as an energy source (see52).

A surprising finding was the case of C. perfringens, which scored highly when fed on these substrates, because 
of its broad glycoside hydrolase apparatus, viz., the enzymes 1–8 and 11 of Table 1. One report found no growth 
of this species on 2′-FL53, while another demonstrated growth of the Clostridium perfringens ATCC 13124 variant 
on porcine gastric mucin54. Therefore, the induction of a general α-l-fucosidase activity (EC 3.2.1.51) might be 
possible in an environment where complex fucosylated glycans are in abundance relative to simpler trisaccharides 
such as 2′-FL. This would support the hypothesis that early colonisation of human gut by HMO-specialising 
microbes protects against species with a preference for mucin O-glycans. Low relative PE scores were obtained 
for both non-gut species Staphylococcus aureus (0.2087) and Staphylococcus epidermidis (0.1733), despite a report 
that both species had shown potential for growth on HMOs55. Given that HMO concentrations were not found 
to decrease during these experiments, however, a mechanism for the promotion of these bacteria in milk, other 
than catabolism, is likely involved, a conclusion that would be supported by our data.

Can Clostridium perfringens digest HMOs?
Necrotising enterocolitis (NEC) is an often fatal disease of early infancy, especially in preterm infants56. The 
causes and symptoms of NEC are multifarious, but bacterial agents are implicated in many cases, including 
members of the Clostridia, Enterococcus and Cronobacter genii30. HMOs are known to reduce the likelihood 
of NEC in many instances56–59 and have therefore been the focus of studies into their use as prebiotics60,61. 
Incidence of NEC has been associated with low HMO diversity in low birth-weight infants62. Dietary HMOs 
2′-FL (2′-fucolactose), 6′-SL (6′-sialyllactose) and DS-LNT (disialyl lacto-N-tetraose)63 have shown, in animal 
models, to protect neonatal gut from NEC infection and are thus targets of therapeutic development in humans64. 
The mechanism of protection is likely immunomodulatory, promoting immune cell development and anti-
inflammatory pathways56,65.

Clostridium perfringens is a Gram-positive spore-forming anaerobe found in both soil and human and ani-
mal gut, which is implicated in NEC56, gastroenteritis66 and histotoxic infections. As a food-borne pathogen, its 
prevalence in meat and dairy industries has been an ongoing concern67–69. C. perfringens types can produce a 
wide variety of toxins70,71, including alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX) and enterotoxin (CPE). 
Perfringolysin O (PFO) is a pore-forming toxin that contributes to Clostridial myonecrosis (gas gangrene)72. A 
recent genomics study of C. perfringens having linked those with pfoA+ strains with C. perfringens-associated 
NEC in neonates73, the possibility that C. perfringens has a substantial number of the glycoside hydrolase enzymes 
necessary for HMO digestion may indicate that it has the potential for opportunistic colonisation of the infant 
gut and thereby contribute to clinical disease. A study of the coincidence of PFO toxins with GH enzyme activi-
ties may therefore be warranted. A resolution of the apparent paradox, which is that DS-LNT protects against 
NEC, while C. perfringens is predicted to be able to digest it, may be simply the competition that exists between 
Clostridial and Bifidobacter species for gut colonisation in early life. A more subtle effect, based on possible 
inhibition of the sialidases involved by the disialylated DS-LNT, might be elucidated, but confirmation would 
require a more detailed knowledge of the kinetics of exo-α-sialidases of these species, which is outside the scope 
of the present study.
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Figure 9.   Comparison of UniProt- and CAZy-derived enzyme profiles of bacteria and simulated potential 
energy scores based on HMOs. A list of the top ten species in decreasing order of the number of simulated 
enzymes shown in Table 1, along with an enzyme profile value and a vector of cells (1 to 13, left to right) filled 
according to a colour representing the substituent removed, or bond cleaved. Colour key: red (l-fucose); yellow 
(d-galactose); orange (GalNAc); blue (GlcNAc/HexNAc) magenta (sialic acid); grey (lacto-N-biose); white 
denotes a complete absence of activity. The enzyme profile value is calculated from the source database for each 
organism. The relative potential energy (P.E.) score matching the enzyme profile of a species fed on a mixture of 
HMOs. The unique GH enzyme profile values obtained from UniProt/BRENDA (left panels) and CAZy (right 
panels) are shown beneath, divided into gut and non-gut categories. Each heatmap possesses, as a reference 
point p0, which is the default value with all enzymes available.
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The question also arises as to whether certain bacterial competitors in the gut might lower the average 
concentration of the more complex fucosylated HMOs, which would otherwise be capable of inducing the GH 
enzymes in C. perfringens, especially the sialidases74,75 and “generalist” α-l-fucosidase activity (EC 3.2.1.51, cf. 
Table 1)54,76,77. It is possible, therefore, that probiotic use would promote competition with C. perfringens and 
similar pathogenic organisms and species beneficial to the host.

Gut versus non‑gut species
The observed contrast between gut and non-gut bacteria may be enhanced by the noisy nature of the non-gut set 
which contains bacteria of mixed origins (terrestrial, marine, etc.). Nonetheless, differences are evident from a 
comparison of the number of GH enzymes available and the potential-energy scores obtained with these organ-
isms, and in the heatmaps of Fig. 6 and Extended Data Fig. E2. It is most evident in the latter, where the non-gut 
species scored poorly. The higher scoring species in the heatmaps, fed on both HMO and O-glycan substrates, 
correlates with the numbers of simulated GH enzymes found in each database, which show a cluster of outliers in 
the gut category (Fig. 6C). These outliers include the known Lactobacillus spp. and others summarised in Fig. 9. 
More remarkable, however, is that all others are possible pathogens: B. caccae78, B. fragilis79, C. perfringens and 
Streptococcus pneumoniae35. This could explain the ability for pathogens to interfere and trigger inflammation or 
infection. Our results suggest that the glycoside hydrolases of C. perfringens be examined in greater detail. For 
example, further characterisation of the Calx-beta domain protein CPF_2130 (UniProtKB Entry A0A0H2YQI3) 
might be needed, to confirm that this has the fucosidase activity of EC 3.2.1.51 that is ascribed to it (see above).

Limitations and future directions
Since our objective was to investigate possible GH activity on HMOs and mucin-type O-glycans, enzyme activi-
ties related fructofuranose (FOS) and galactooligosaccharide (GOS) hydrolysis were excluded from the simulator. 
In a future release, the enzymes β-fructofuranosidase (EC 3.2.1.80), β-fructosidase (EC 3.2.1.26) and endo-
galactanase (EC 3.2.1.89), could be added, to simulate the activities of these bacterial enzymes on fructans and 
oligosaccharides from non-human milks. The present study has a number of limitations, including the possibility 
of noise in the data, referred to earlier, but also curation errors, such as misassignment of EC numbers in data 
repositories. The lack of EC numbers for the sulfatase (9) has already been noted, and entries in general have 
few Bacteria-associated examples in UniProt/BRENDA (Fig. 1A). A β6-linked GlcNAc hydrolase (13) exists but 
was inactive in our simulations owing to the lack of an EC number. It would be interesting to see how this latter 
enzyme influences the intermediates of the biodegradative HMO pathways, compared to those of biosynthesis. 
While these enzymes have been modelled in Glycologue, it will not be possible to integrate the simulator with 
the database-generated enzyme profiles until the enzymes have been officially classified within the EC system. 
Another possible limitation is that our results reflect a degree of bias in the underlying data, in the sense that 
certain organisms may have received more interest owing to their roles either in health or disease.

The glycoside hydrolase reactions modelled in this study convey less information than those of the cor-
responding glycosyltransferase simulators, which model enzymes possessing greater specificities. Accordingly, 
where the glycosyltransferase rules are readily reversible49, the corresponding reversed reactions of hydrolysis 
would result in many transglycosylated products, leading to increased uncertainty in the choice of the reversed 
degradation pathway, i.e., in the biosynthetic direction. In order to model, for example, the effect of sulfation on 
the exo-GH enzymes, additional information about known parent monosaccharide and modifier specificities 
would need to be added to the reaction rules.

Sugar modifiers such as sulfation or acetylation may block some GH activities, for example the 3S-Gal sul-
fatase of the bacterium B. thetaiotaomicron are inactive towards sulfated mucin O-glycans32. In the future, as 
sulfatases from different organisms are characterised, the generic sulfatase activity of enzyme 9 in the model 
that currently acts as a placeholder will be modified, as needed, and further activities added, such as 3S-GalNAc 
sulfatase32. A further complication to modelling these bacterial enzymes will be the presence of sulfoglycosidases 
in certain species, for example the 6-sulfo-β-d-N-acetylglucosaminidase of Bifidobacterium bifidum80,81, which 
has a preference for particular sulfation patterns of GlcNAc.

The potential-energy scores could be adapted to offset the current penalty applied to LNBase action, if an 
organism is found to possess a transport mechanism for uptake of LNB, as with the GNB/LNB transport system 
of B. longum subsp. infantis. In the future, bit masking could be used to incorporate transporter functionality, or 
to distinguish between intracellularly and extracellularly expressed glycosidase activities, by extracting subcel-
lular location data from UniProtKB, and inverting the bits in the enzyme profile value of those enzymes that are 
only expressed internally by a given organism. Furthermore, as our results have shown, the pathway simulation 
for biosynthesis and degradation does not yield the same intermediary products. A more detailed study of these 
differences could reveal a bias in HMO composition depending on the presence/absence of specific bacterial 
species or strains. An extension to the simulator would be required to monitor this phenomenon. It is expected 
that the predictions of Fig. 7 would be the most affected by masking of activities through nutrient uptake and 
activation of intracellular digestion pathways. Since the scoring system in this work does not distinguish between 
intracellular or extracellular enzyme activities, the results are a preliminary observation only.

The methods described in this work can be adapted to other components of the human gut microbiome, 
such as archaea82,83, about which relatively little is known compared to bacteria, and to enzymes in additional 
EC subclasses. As more data on the glycoside hydrolase enzymes of the gut microbiome become available and 
are curated in UniProtKB, these could be included in the future, in a re-examination of the digestive abilities of 
these organisms.
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Methods
Data extraction
Data were extracted from UniProt (https://​unipr​ot.​org) (Release 2023_02) using the RESTful Application Pro-
gramming Interface (API)84. For bacterial proteins matching EC numbers in sub-subclass EC 3.2.1 (glycosi-
dases) and EC 3.1.6 (sulfuric-ester hydrolases) the UniProtKB fields Entry, Entry Name, Reviewed, EC number, 
BRENDA, Protein names, Gene Names, CAZy, Organism, Length, Subcellular location [CC] and Taxonomic 
lineage were extracted using the stream method as tab-separated value (TSV) files for further offline processing. 
Queries matched EC numbers appearing in UniProt or BRENDA (Release 2023.1, February 1, 2023), using a 
Boolean OR, such as query = ((ec:3.2.1.*) OR (xref:brenda-3.2.1.*)). The method was sufficiently general that it 
could be adapted to other taxonomic domains, such as Archaea, and to other EC sub-subclasses.

Example: https://​rest.​unipr​ot.​org/​unipr​otkb/​stream?​compr​essed=​false​&​fields=​acces​sion,id,revie​wed,ec,xref_​
brend​a,prote​in_​name,gene_​names​,xref_​cazy,organ​ism_​name,lengt​h,linea​ge&​format=​tsv&​query=​((ec:3.​2.1.​*) 
OR (xref:brenda-3.2.1.*)) AND (taxonomy_id:2).

The CAZy database was queried for all EC 3.2.1.- entries appearing in the ExplorEnz database (Release 
2023.01, January 2023) of IUBMB Enzyme Nomenclature85. Downloaded HTML files were parsed and saved 
as TSV files. Bacterial species names were cross-referenced with the taxonomic lineage data obtained from 
UniProtKB.

Glycoside hydrolase simulator
Glycoside hydrolase (GH) enzymes were selected from the ExplorEnz based on their activities towards glyco-
conjugates and milk oligosaccharides, and correlated with their corresponding Rhea86 identifiers (Table 1). A 
simulator of the GH enzyme reactions was constructed, using the Glycologue formalism described previously33,49.

Enzymes simulated
Thirteen activities were modelled, as shown in Table 1, with the index value 1–13, the EC number, a short name, 
a longer accepted name, CAZy families and Rhea accession numbers. An alternative version of this table with 
the Glycologue reaction patterns used in the hydrolase model is given in Supplementary Information (Tables). 
Reactions within the simulator could be limited by Boolean conditionals, using regular expressions.

Enzyme profile values
The Glycologue simulator represents enzyme profiles in terms of knockouts of individual activities, the combi-
nation of which is an integer ranging from 0 to 2n-1, where n is the total number of enzymes modelled, with bit 
value 0 representing an expressed enzyme activity, and 1 representing a complete knockout of that activity. The 
least significant bit of the profile value representing α-sialidase (1) in Table 1, and the most significant bit is that 
of β6GlcNAcH (13). For example, the bacterium Fusicatenibacter saccharivorans, which was found to possess 
only the enzyme activities 2, 3 and 7, has the profile value p8121 (8121 = 1 + 0 + 0 + 8 + 16 + 32 + 0 + 128 + 256 + 
512 + 1024 + 2048 + 4096).

Matching EC numbers with species
The data extracted from UniProtKB were filtered into separate files according to records matching complete EC 
numbers in the Glycologue simulator, resulting in 11 datasets, and similarly for CAZy. For each set of records 
matching a single EC number, a set of organism names was extracted. The number of unique activities within 
each sub-subclass and taxonomic domain was recorded within the UniProtKB and CAZy databases. To visualise 
the overlap between repositories, Venn diagrams were produced in R using package venn (venn_1.11).

Species were separated into classes, those known to be associated with human gut, and all others, which were 
described as non-gut. Of the gut species, a subset were identified as potentially pathogenic based on published 
reports35. From the UniProtKB lineage data, species were ranked according to their position with the superk-
ingdom, phylum, class, order, family, genus and species, with the species being stored as the assigned binomial 
name. For every binomial species in each subcategory, a set EC numbers associated with GH activities in UniProt/
BRENDA was deduced and an enzyme profile value assigned to that species. Krona36 graphs were generated from 
profile value and taxonomic lineage data.

Glycoside hydrolase simulated digestions
Two sets of substrates, 226 human milk oligosaccharides based on lactose17, and 434 GalNAc-linked O-glycans, 
encoded in the Glycologue modelling language33,49, were obtained from published studies to use as input to the 
glycoside hydrolase simulator. For each species, each substrate in the set was passed to the enzymes capable 
of being expressed by the organism, as a supplied profile value, and degraded according to the exo- and endo-
glycosidase reaction patterns. The process proceeded iteratively until no further degradation products were 
formed. The number of distinct simulated reactions was counted, along with the number of enzymes activities 
used during the degradation of the complete set of substrates. Each substrate-product reaction pair was recorded 
together with the enzyme catalyst. Reaction networks were drawn using Tulip87 software (https://​tulip.​labri.​fr), 
using the Stress Majorization (OGDF) graph layout algorithm.

Calculation of potential energy scores
Every successful hydrolase reaction releasing a monosaccharide was assigned a score of 1, and the release of a 
disaccharide such as Gal-(β1,3)-GlcNAc from lacto-N-biose was counted as 0.5, to simulate the effect of a delayed 
entrance to energy metabolism. A theoretical maximum energy score was calculated from the enzyme profile 

https://uniprot.org
https://rest.uniprot.org/uniprotkb/stream?compressed=false&fields=accession,id,reviewed,ec,xref_brenda,protein_name,gene_names,xref_cazy,organism_name,length,lineage&format=tsv&query=((ec:3.2.1.*)
https://rest.uniprot.org/uniprotkb/stream?compressed=false&fields=accession,id,reviewed,ec,xref_brenda,protein_name,gene_names,xref_cazy,organism_name,length,lineage&format=tsv&query=((ec:3.2.1.*)
https://tulip.labri.fr
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p0, where all enzymes were available to act on the set of all substrates. The organism-related energy score was 
then calculated as the fraction of simulated energy score for an organism divided by this theoretical maximum. 
Heatmaps were generated in R, coloured by calculated energy score, relating profile value to species grouped at 
the level of phylum, class, order, or genus.

Calculation of potential syntrophies
Enzyme profile values were compared pairwise using a bitwise-XOR comparison, to obtain a profile of shared 
and unshared enzymes. The number of enzymes matching between profile values at the same bit position were 
scored positively if the value of the XOR. Since the Glycologue profile value encodes knockouts of activities, its 
bitwise inverse was calculated by a conjunctive AND operation with 2n-1, where n = 13. For each profile-value 
pair, (p1, p2), the result of (p1 AND p2 AND 2n-1) was recorded and scored according to the enzymes active in 
each profile. Where an enzyme was expressed in one organism but not the other, a collaboration might exist 
(syntrophy), while enzymes common to both were treated as competitive, and scored negatively. Enzymes lack-
ing to both members of a pair were scored neutrally: p1 XOR p2 = 1, ∆x = 1; p1 AND p2 = 0, ∆x = 0; p1 AND p2 = 1, 
∆x = –0.5. The final value of x was obtained as the sum of all the pairwise bit comparisons.

Web application
The glycoside hydrolase simulator is embedded within each member of the family of Glycologue glycosylation-
related enzyme simulators (https://​glyco​logue.​org), where it can be used to predict digestion networks of the 
products of glycosyltransferase enzymes.

Data availability
The HMO and O-glycan structures used as substrates of the hydrolase simulator are available as CSV files (Sup-
plementary Information). The enzyme model simulator is available at https://​glyco​logue.​org/m/. GlyConnect 
Compozitor is available at https://​glyco​nnect.​expasy.​org/​compo​zitor/.
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