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Operational prediction of solar 
flares using a transformer‑based 
framework
Yasser Abduallah 1,2, Jason T. L. Wang 1,2*, Haimin Wang 1,3,4 & Yan Xu 1,3,4

Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around 
solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections 
are sources of space weather, which negatively affects a variety of technologies at or near Earth, 
ranging from blocking high‑frequency radio waves used for radio communication to degrading power 
grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore 
crucial for preparedness and disaster risk management. In this article, we present a transformer‑
based framework, named SolarFlareNet, for predicting whether an AR would produce a γ‑class flare 
within the next 24 to 72 h. We consider three γ classes, namely the ≥M5.0 class, the ≥ M class and the 
≥ C class, and build three transformers separately, each corresponding to a γ class. Each transformer 
is used to make predictions of its corresponding γ‑class flares. The crux of our approach is to model 
data samples in an AR as time series and to use transformers to capture the temporal dynamics of 
the data samples. Each data sample consists of magnetic parameters taken from Space‑weather HMI 
Active Region Patches (SHARP) and related data products. We survey flare events that occurred from 
May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X‑ray flare 
catalogs provided by the National Centers for Environmental Information (NCEI), and build a database 
of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels 
of the data samples suitable for machine learning. We further extend the deterministic approach to a 
calibration‑based probabilistic forecasting method. The SolarFlareNet system is fully operational and 
is capable of making near real‑time predictions of solar flares on the Web.

Solar flares are sudden explosions of energy that occur on the Sun’s surface. They often occur in solar active 
regions (ARs), caused by strong magnetic fields typically associated with sunspot areas. Solar flares are catego-
rized into five classes A, B, C, M, and X, with A-class flares having the lowest intensity and X-class flares hav-
ing the highest intensity. Major flares are usually accompanied by coronal mass ejections and solar energetic 
 particles1–7. These eruptive events can have significant and harmful effects on or near Earth, damaging technolo-
gies, power grids, space stations, and human  life8–11. Therefore, providing accurate and early forecasts of solar 
flares is crucial for disaster risk management, risk mitigation, and preparedness.

Although a lot of effort has been devoted to flare  prediction12–15, developing accurate, operational near-real-
time flare forecasting systems remains a challenge. In the past, researchers designed statistical models for the 
prediction of flares based on the physical properties of active  regions16–18. With the availability of large amounts of 
flare-related  data14, researchers started using machine learning methods for flare  forecasting3,19,20. More recently, 
deep learning, which is a subfield of machine learning, has emerged and showed promising results in predicting 
solar eruptions, including solar  flares21,22.

For example, Nishizuka et al.23 developed deep neural networks to forecast M- and C-class flares that would 
occur within 24 h using data downloaded from the Solar Dynamics Observatory (SDO)24 and the Geostation-
ary Operational Environmental Satellite (GOES). Sun et al.22 employed three-dimensional (3D) convolutional 
neural networks (CNNs) to forecast ≥M-class and ≥C-class flares using Space-weather HMI Active Region 
Patches (SHARP)25 magnetograms downloaded from the Joint Science Operations Center (JSOC) accessible at 
http:// jsoc. stanf ord. edu/. Li et al.26 also adopted a CNN model to forecast ≥M-class and ≥C-class flares using 
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SHARP magnetograms where the authors restructured the CNN layers in their neural network with different 
filter sizes. Deng et al.27 developed a hybrid CNN model to predict solar flares during the rising and declining 
phases of Solar Cycle 24.

Some researchers adopted SHARP magnetic parameters in time series for flare prediction. Static SHARP 
parameters quantitatively describe the properties of ARs, especially their ability to produce flares, at a given 
time. On the other hand, dynamic information, such as the magnetic helicity injection rate, sunspot motions, 
shear flows, and magnetic flux emergence/flux cancelation, is more important for flare forecasting. Using time 
series of SHARP parameters allows a model to capture the relationship between the evolution of magnetic fields 
of ARs and solar flares, hence achieving more accurate flare predictions 28,29. In an earlier study, Yu et al.30 added 
the evolutionary information of ARs to a predictive model for the prediction of short-term solar flares. More 
recently, Chen et al.31 designed a long short-term memory (LSTM) network to identify precursors of solar flare 
events using time series of SHARP parameters. LSTM is suitable for capturing the temporal dynamics of time 
series. Liu et al.9 developed another LSTM network with a customized attention mechanism to direct the network 
to focus on important patterns in time series of SHARP parameters. Sun et al.32 attempted to distinguish between 
ARs with strong flares ( ≥M-class flares) and ARs with no flare at all. The authors showed that combining LSTM 
and CNN can better solve the “strong versus quiet” flare prediction problem, with data from both Solar Cycle 23 
and Cycle 24. All of the aforementioned studies provided valuable models and algorithms in the field. However, 
the existing methods focused on short-term forecasts (usually within 24 h). Furthermore, the models were not 
used as operational systems.

In this paper, we propose a new deep learning approach to predicting solar flares using time series of SHARP 
parameters. Our approach employs a transformer-based framework, named SolarFlareNet, which predicts 
whether there would be a flare within 24 to 72 h, where the flare could be a ≥M5.0-, ≥M-, or ≥C-class flare. We 
further extend SolarFlareNet to produce probabilistic forecasts of flares and implement the probabilistic model 
into an operational, near real-time flare forecasting system. Experimental results demonstrate that SolarFlareNet 
generally performs better than, or is comparable to, related flare prediction methods.

Results
Deterministic prediction tasks. For any given active region (AR) and time point t, we predict whether 
there would be a γ-class flare within the next 24 h (48 h, 72 h, respectively) of t where γ can be ≥M5.0, ≥ M, or 
≥ C. A ≥M5.0-class flare means the GOES X-ray flux value of the flare is above 5× 10−5 Wm−2 . A ≥M-class flare 
refers to an X- or M-class flare. A ≥C-class flare refers to an X-class, M-class, or C-class flare. We focus on these 
three classes of flares due to their importance in space  weather9,19,23,33. We developed three transformer models 
to tackle the three prediction tasks individually and separately. Notice that we did not consider γ to be ≥ X due 
to the lack of samples for X-class flares. Instead, we use ≥M5.0 as the most significant class, which contains suf-
ficient samples.

Comparison with previous methods. We conducted a series of experiments to compare the proposed 
SolarFlareNet framework with closely related methods. All these methods perform binary classifications/pre-
dictions as defined above. We adopt several performance metrics. Formally, given an AR and a data sample 
xt observed at time point t, we define xt to be a true positive (TP) if the ≥M5.0 ( ≥ M, ≥ C, respectively) model 
predicts that xt is positive, i.e., the AR will produce a ≥M5.0- ( ≥M-, ≥C-, respectively) class flare within the 
next 24 h of t, and xt is indeed positive. We define xt as a false positive (FP) if the ≥M5.0 ( ≥ M, ≥ C, respectively) 
model predicts that xt is positive while xt is actually negative, i.e., the AR will not produce a ≥M5.0- ( ≥M-, ≥
C-, respectively) class flare within the next 24 h of t. We say xt is a true negative (TN) if the ≥M5.0 ( ≥ M, ≥ C, 
respectively) model predicts xt to be negative and xt is indeed negative; xt is a false negative (FN) if the ≥M5.0 
( ≥ M, ≥ C, respectively) model predicts xt to be negative while xt is actually positive. We also use TP (FP, TN, and 
FN, respectively) to represent the total number of true positives (false positives, true negatives, and false nega-
tives, respectively). The TP, FP, TN, and FN for the 48-h and 72-h ahead predictions are defined similarly. The 
performance metrics are calculated as follows:

Table 1 compares SolarFlareNet with related methods for 24-h ahead flare predictions. The performance metric 
values of SolarFlareNet are mean values obtained from 10-fold cross-validation9. The metric values of the highest 
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performance models in the related studies are taken directly from those studies and are displayed in Table 1. The 
symbol ‘–’ means that a method does not produce the metric value for the corresponding prediction task. The 
best metric values are highlighted in boldface. TSS is the primary metric used in the literature on flare prediction. 
It can be seen from Table 1 that SolarFlareNet outperforms the state-of-the-art methods in terms of TSS except 
that Liu et al.9 perform better than SolarFlareNet in predicting ≥M5.0 class flares.

Table 2 presents the mean performance metric values with standard deviations enclosed in parentheses for 
the 48- and 72-h forecasts made by SolarFlareNet. None of the existing methods in Table 1 provides predictions 

Table 1.  Performance comparison between SolarFlareNet and related methods for 24-h ahead flare 
predictions. Best values are in bold.

Metric Method ≥M5.0 class ≥ M class ≥ C class

Recall

Huang et al.34 – – –

Li et al.26 – 0.817 0.889

Liu et al.9 0.960 0.885 0.773

Sun et al.22 – 0.925 0.862

Wang et al.35 – 0.730 0.621

This work 0.853 0.842 0.891

Precision

Huang et al.34 – – –

Li et al.26 – 0.889 0.906

Liu et al.9 0.048 0.222 0.541

Sun et al.22 – 0.595 0.878

Wang et al.35 – 0.282 0.541

This work 0.977 0.848 0.949

ACC 

Huang et al.34 – – –

Li et al.26 – 0.891 0.861

Liu et al.9 0.921 0.907 0.826

Sun et al.22 – 0.904 0.879

Wang et al.35 – 0.945 0.883

This work 0.964 0.928 0.915

BACC 

Huang et al.34 – – –

Li et al.26 – – –

Liu et al.9 0.940 0.896 0.806

Sun et al.22 – – –

Wang et al.35 – – –

This work 0.926 0.919 0.917

TSS

Huang et al.34 – 0.662 0.487

Li et al.26 – 0.749 0.679

Liu et al.9 0.881 0.792 0.612

Sun et al.22 – 0.826 0.756

Wang et al.35 – 0.681 0.553

This work 0.818 0.839 0.835

Table 2.  Performance metric values of SolarFlareNet for 48- and 72-h ahead flare predictions.

Metric Hour ≥M5.0 class ≥ M class ≥ C class

Recall
48 0.739 (0.108) 0.735 (0.089) 0.722 (0.089)

72 0.717 (0.100) 0.708 (0.078) 0.702 (0.089)

Precision
48 0.890 (0.210) 0.823 (0.092) 0.812 (0.072)

72 0.872 (0.045) 0.812 (0.089) 0.809 (0.051)

ACC 
48 0.923 (0.003) 0.907 (0.007) 0.896 (0.047)

72 0.906 (0.002) 0.883 (0.005) 0.863 (0.040)

BACC 
48 0.864 (0.054) 0.857 (0.045) 0.848 (0.040)

72 0.856 (0.039) 0.843 (0.048) 0.834 (0.029)

TSS
48 0.736 (0.112) 0.728 (0.090) 0.719 (0.079)

72 0.729 (0.108) 0.714 (0.095) 0.709 (0.058)
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in 48 or 72 h in advance and, therefore, they are not listed in Table 2. Overall, SolarFlareNet performs well for 
the 48- and 72-h forecasts. However, the metric values of the tool in Table 2 are lower than those in Table 1. This 
is understandable due to the longer range of predictions in Table 2.

Probabilistic forecasting with calibration. SolarFlareNet is essentially a probabilistic forecasting 
method, producing a probability between 0 and 1. The method compares the probability with a predetermined 
threshold, which is set to 0.5. Given an AR and a data sample xt at time point t, if the predicted probability is 
greater than or equal to the threshold, then the AR will produce a flare within the next 24 (48, 72, respectively) 
hours of t (i.e., xt belongs to the positive class); otherwise, the AR will not produce a flare within the next 24 (48, 
72, respectively) hours of t (i.e., xt belongs to the negative class). We can turn SolarFlareNet into a probabilistic 
forecasting method by directly outputting the predicted probability without comparing it with the threshold. 
Under this circumstance, the output is interpreted as a probabilistic estimate of how likely the AR will produce 
a flare within the next 24 (48, 72, respectively) hours of t. We employ a probability calibration technique with 
isotonic regression 36,37 to adjust the predicted probability and avoid the mismatch between the distributions of 
the predicted and expected probabilistic values 5. We add a suffix “-C” to SolarFlareNet to denote the network 
without calibration.

To evaluate the performance of a probabilistic forecasting method, we use the Brier score (BS) and Brier skill 
score (BSS), defined as  follows4,5,38:

where N is the number of data samples in a test set; yi denotes the observed probability and ŷi denotes the pre-
dicted probability of the ith test data sample, respectively; ȳ = 1

N

∑N
i=1 yi denotes the mean of all the observed 

probabilities. BS values range from 0 to 1, with 0 being a perfect score. BSS values range from −∞ to 1, with 1 
being a perfect score.

Table 3 compares SolarFlareNet, used as a probabilistic forecasting method, with a closely related  method9. 
The BS and BSS values in the table are mean values (with standard deviations enclosed in parentheses) obtained 
from 10-fold cross-validation. The metric values for the existing method are taken directly from the related  work9. 
The best BS and BSS values are highlighted in bold. Notice that the existing method did not make 48-h or 72-h 
forecasts in advance. Table 3 shows that there is no definitive conclusion regarding the relative performance 
of SolarFlareNet and the existing method. The existing method is better in terms of BS, while SolarFlareNet is 
better in terms of BSS. On the other hand, the calibrated version of a model is better than the model without 
calibration. Notice also that the results of the 48-h and 72-h forecasts are worse than those of the 24-h forecasts. 
This is understandable since the longer the prediction window, the worse the performance a model achieves due 
to data deviation over time.

(6)BS =
1

N

N
∑

i=1

(yi − ŷi)
2

(7)BSS = 1−
BS

1
N

∑N
i=1(yi − ȳ)2

Table 3.  Performance comparison between SolarFlareNet and an existing method for probabilistic flare 
predictions (24 to 72 h in advance). Best values are in bold.

Hour Metric Method ≥M5.0 class ≥ M class ≥ C class

24

BS

Liu et al.9 0.090 (0.011) 0.090 (0.009) 0.133 (0.007)

SolarFlareNet 0.226 (0.024) 0.244 (0.013) 0.285 (0.034)

SolarFlareNet-C 0.263 (0.024) 0.281 (0.050) 0.313 (0.033)

BSS

Liu et al.9 −21.576 (2.956) −2.241 (0.319) 0.152 (0.047)

SolarFlareNet 0.584 (0.022) 0.521 (0.042) 0.409 (0.062)

SolarFlareNet-C 0.504 (0.026) 0.491 (0.031) 0.349 (0.055)

48

BS

Liu et al.9 – – –

SolarFlareNet 0.272 (0.091) 0.312 (0.101) 0.361 (0.091)

SolarFlareNet-C 0.315 (0.049) 0.336 (0.033) 0.378 (0.104)

BSS

Liu et al.9 – – –

SolarFlareNet 0.569 (0.045) 0.524 (0.021) 0.502 (0.033)

SolarFlareNet-C 0.457 (0.062) 0.424 (0.091) 0.411 (0.056)

72

BS

Liu et al.9 – – –

SolarFlareNet 0.313 (0.062) 0.327 (0.063) 0.344 (0.049)

SolarFlareNet-C 0.329 (0.094) 0.369 (0.088) 0.376 (0.102)

BSS

Liu et al.9 – – –

SolarFlareNet 0.549 (0.067) 0.524 (0.089) 0.501 (0.093)

SolarFlareNet-C 0.514 (0.077) 0.469 (0.095) 0.447 (0.059)
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The SolarFlareNet system. We have implemented the probabilistic forecasting method described above 
into an operational, near real-time flare forecasting system. To access the system, visit the SolarDB website at 
https:// nature. njit. edu/ solar db/ index. html. On the website, select and click the menu entry “Tools” and then 
select and click “Flare Forecasting System.” Figure 1 shows the graphical user interface (GUI) of the system. It 
displays a probabilistic estimate of how likely an AR will produce a flare within the next 24, 48, and 72 h of the 
time point at which the system is updated each day. No prediction is made for an AR marked with a special 
character *, #, or ∼ where

• * means the AR is near the limb,
• # means the AR is spotless with the number of spots being zero,
• ∼ means no SHARP data is available for the AR.

The system provides daily predictions based on the data obtained from the previous day. When the user clicks 
the link to the previous day, the user is led to the SolarMonitor site that is accessible at https:// www. solar monit 
or. org/ index. php where detailed AR information for that day is available. The system also provides previous 
forecasting results since the operational system came online. We compare the previous forecasting results with 
the true flare events in the GOES X-ray flare catalogs provided by NCEI. The SolarFlareNet system achieves 89% 
(76%, 71%, respectively) accuracy for 24-h (48-h, 72-h, respectively) ahead predictions.

Discussion and conclusion
In this article, we present a novel transformer-based framework to predict whether a solar active region (AR) 
would produce a γ-class flare within the next 24 to 72 h where γ is ≥M5.0, ≥ M, or ≥ C. We use three transform 
models to handle the three classes of flares individually and separately. All three transformer models perform 
binary predictions. We collect ARs with flares that occurred between 2010 and 2022 from the GOES X-ray flare 
catalogs provided by the National Centers for Environmental Information (NCEI). In addition, we downloaded 
SHARP magnetic parameters from the Joint Science Operations Center (JSOC). Each data sample contains 
SHARP parameters suitable for machine learning. We conducted experiments using 10-fold cross-validation9. 
Based on the experiments, our transformer-based framework generally performs better than closely related 
methods in terms of TSS (true skill statistics), as shown in Table 1. We further extend our framework to produce 
probabilistic forecasts of flares and implement the framework into an operational, near real-time flare forecasting 
system accessible on the Web. The probabilistic framework is comparable to a closely related  method9 in terms 
of BS (Brier score) and BSS (Brier skill score) when making 24-h forecasts, as shown in Table 3, although the 

Figure 1.  The graphical user interface of the SolarFlareNet system.

https://nature.njit.edu/solardb/index.html
https://www.solarmonitor.org/index.php
https://www.solarmonitor.org/index.php


6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13665  | https://doi.org/10.1038/s41598-023-40884-1

www.nature.com/scientificreports/

existing method did not make 48- or 72-h forecasts. Thus, we conclude that SolarFlareNet is a feasible tool for 
producing flare forecasts within 24 to 72 h.

Methods
Data collection. In this study we used SHARP magnetic  parameters2,9,25 downloaded from the Joint Science 
Operations Center (JSOC) accessible at http:// jsoc. stanf ord. edu/. Specifically, we collect data samples, composed 
of SHARP parameters, at a cadence of 12 minutes where the data samples are retrieved from the hmi.sharp_
cea_720s data series on the JSOC website using the Python package  SunPy39. We selected nine SHARP mag-
netic parameters as suggested in the  literature2–4,9,19. These nine parameters include the total unsigned current 
helicity (TOTUSJH), total unsigned vertical current (TOTUSJZ), total unsigned flux (USFLUX), mean charac-
teristic twist parameter (MEANALP), sum of flux near polarity inversion line (R_VALUE), total photospheric 
magnetic free energy density (TOTPOT), sum of the modulus of the net current per polarity (SAVNCPP), area 
of strong field pixels in the active region (AREA_ACR), and absolute value of the net current helicity (ABSN-
JZH). Table 4 presents an overview of the nine parameters. The SHARP parameters’ values are in different scales 
and units; therefore, we normalize each parameter’s values using the min-max normalization  method4,5. For-
mally, let pki  be the original value of the ith parameter of the kth data sample. Let qki  be the normalized value of 
the ith parameter of the kth data sample. Let mini be the minimum value of the ith parameter. Let maxi be the 
maximum value of the ith parameter. Then

We collected A-, B-, C-, M- and X-class flares that occurred between May 2010 and December 2022, and their 
associated active regions (ARs) from the GOES X-ray flare catalogs provided by the National Centers for Envi-
ronmental Information (NCEI). Flares without identified ARs were excluded. This process yielded a database of 
8 A-class flares, 6571 B-class flares, 8973 C-class flares, 895 M-class flares, and 58 X-class flares. Also, we collected 
10 nonflaring  ARs40. We collected data samples that were 24 (48, 72, respectively) hours before a flare. Further-
more, we collected data samples that were 24 (48, 72, respectively) hours after the start time of each nonflaring 
AR. The data was then cleaned as  follows2,5,9.

We discard ARs that are outside ± 70◦ of the central meridian. These ARs are near the limb and have projec-
tion effects that render the calculation of the ARs’ SHARP parameters incorrect. In addition, we discard a data 
sample if (i) its corresponding flare record has an absolute value of the radial velocity of SDO greater than 3500 m 
s−1 , (ii) the HMI data have low  quality41, or (iii) the data sample has missing values or incomplete SHARP param-
eters. Thus, we exclude low-quality data samples and keep qualified data samples of high quality in our study.

Data labeling. Data labeling is crucial in machine learning. To predict ≥C-class flares, suppose that a C-, 
M-, or X-class flare occurs at time point t on an AR (more precisely, the start time of the flare is t). Data samples 
between t and t − 24 h (48, 72 h, respectively) in the AR are labeled positive. If the flare occurs at time point t is 
an A-class or B-class flare, the data samples between t and t − 24 h (48, 72 h, respectively) in the AR are labeled 
negative. Figure 2 illustrates the labeling scheme to predict whether a ≥C-class flare would occur within 24 h. 
In predicting ≥M-class flares, we use ≥M-class flares to label positive data samples; use ≤C-class flares to label 
negative data samples. In predicting ≥M5.0-class flares, we use ≥M5.0-class flares to label positive data samples; 
use ≤C-class flares as well as M1.0- through M4.0-class flares to label negative data samples. If there are recurring 
flares whose corresponding data samples overlap, we give priority to the largest flare and label the overlapped 
data samples based on the largest flare. In all three prediction tasks, the data samples in the nonflaring ARs are 
labeled negative.

Table 5 shows the total numbers of positive and negative data samples in each class for 24-, 48-, and 72-h 
ahead flare predictions. The numbers in the table are lower than expected. This is because we discarded/removed 
many low-quality data samples as described above. If a gap occurs in the middle of a time series due to removal, 
we use a zero-padding  strategy5,9 to create a synthetic data sample to fill the gap. The synthetic data sample has 

(8)qki =
pki −mini

maxi −mini

Table 4.  Overview of the nine SHARP parameters used in our study.

Keyword Description Formula

TOTUSJH Total unsigned current helicity Hctotal ∝
∑

|Bz · Jz |

TOTUSJZ Total unsigned vertical current Jztotal =
∑

|Jz |dA

USFLUX Total unsigned flux � =
∑

|Bz |dA

MEANALP Mean characteristic twist parameter, α αtotal ∝
∑

Jz Bz
∑

B2z

R_VALUE Sum of flux near polarity inversion line � =
∑

|BLoS|dA within Rmask

TOTPOT Total photospheric magnetic free energy density ρtot ∝
∑

(BBBObs − BBBPot)2dA

SAVNCPP Sum of the modulus of the net current per polarity Jzsum ∝ |
∑B+z JzdA| + |

∑B−z JzdA|

AREA_ACR Area of strong field pixels in the active region Area =
∑

Pixels

ABSNJZH Absolute value of the net current helicity Hcabs ∝ |
∑

Bz · Jz |

http://jsoc.stanford.edu/
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zero values for all nine SHARP parameters. The synthetic data sample is added after normalization of the values 
of the SHARP parameters, and therefore the synthetic data sample does not affect the normalization procedure.

For each prediction task, we divide the corresponding data samples into 10 equal sized distinct partitions/
folds that are used to perform 10-fold cross-validation experiments. In the run i, where 1 ≤ i ≤ 10 , we use fold 
i as the test set and the union of the other nine folds as the training set. The data samples of the same AR are 
placed in the training set or the test set, but not both. This scheme ensures that a model is trained with data 
different from the test data and makes predictions on the test data that it has never seen during training. There 
are 10 folds and, consequently, 10 runs. The means and standard deviations of the performance metrics’ values 
over the 10 runs are calculated and recorded.

Data augmentation. The data sets used in this study to predict flares of the ≥ M- and ≥M5.0-class are 
imbalanced as shown in Table 5 where negative data samples are much more than positive data samples. Imbal-
anced data pose a challenge in model training and often result in poor model performance. One may use data 
augmentation to combat the imbalanced data. Data augmentation is an important technique that enriches train-
ing data and increases the generalization of the model  42. Here, we adopt the Gaussian white noise (GWN) 
data augmentation scheme because it has shown a significant improvement in model  performance43,44. GWN 
assumes that any two values are statistically independent, regardless of how close they are in time. The stationary 
random values of GWN are generated using the zero mean and 5 % of the standard deviation. During training, 
the data augmentation is applied to the minority (positive) class, leaving the majority (negative) class as is. Dur-
ing testing, the data are left without any augmentation so that the model predicts only on the actual test data to 
avoid any misleading performance assessment.

The SolarFlareNet architecture. Figure 3 presents the architecture of SolarFlareNet. It is a transformer-
based framework that combines a one-dimensional convolutional neural network (Conv1D), long short-term 
memory (LSTM), transformer encoder blocks (TEBs), and additional layers that include batch normalization 
(BN) layers, dropout layers, and dense layers. The first layer is the input layer, which takes as input a time series 
of m consecutive data samples xt−m+1 , xt−m+2 ...xt−1 , xt where xt is the data sample at time point t5. (In the study 
presented here, m is set to 10.) The input layer is followed by a BN layer. BN is an additional mechanism to sta-
bilize SolarFlareNet, make it faster, and help to avoid overfitting during  training45. We applied BN after the input 
layer, the LSTM layer, and within the TEBs to make sure that SolarFlareNet is stable throughout the training pro-
cess. The BN layer is followed by the Conv1D layer because time series generally have a strong 1D time locality 
that can be extracted by the Conv1D  layers46. Then, the LSTM layer is used, which is equipped with regulariza-
tion to also avoid overfitting. LSTM is suitable for handling time series data to capture the temporal correlation 
and dependency in the data. Adding an LSTM layer after a Conv1D layer has shown significant improvement in 
time series  prediction47–49. The LSTM layer passes the learned features and patterns to a BN layer to stabilize the 
network before the data go to the TEBs.

Figure 2.  Illustration of positive and negative data samples used in predicting ≥C-class flares. In the left panel, 
the red vertical line indicates the start time of a ≥C-class flare. The data samples collected in the 24 h prior to the 
red vertical line are labeled positive (in green color). In the right panel, the red vertical line indicates the start 
time of an A-class or B-class flare. The data samples collected in the 24 h prior to the red vertical line are labeled 
negative (in yellow color).

Table 5.  Total numbers of positive and negative data samples in each class for 24-, 48-, and 72-h ahead flare 
predictions.

Hour Data samples ≥M5.0 class ≥ M class ≥ C class

24
Positive 2,125 13,989 244,968

Negative 461,060 449,196 218,517

48
Positive 2,255 16,709 316,149

Negative 615,708 602,154 304,714

72
Positive 2,375 18,505 356,219

Negative 704,997 689,567 350,953
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We use transformer encoders without decoders because we process time series here, rather than performing 
natural language processing where the decoders are required to decode the words for sentence translation. The 
number of TEBs is set to 4. This number has a significant effect on the overall performance of the  model50. When 
we use less than 4 TEBs, the model is not able to learn useful patterns and is under-fitted. When we use more 
than 4 TEBs, the large number of TEBs causes overhead on the encoder processing while the model tends to do 
excessive overfitting and lean toward the majority class (i.e., negative class) in the data, ignoring the minority 
class (i.e., positive class) entirely. Each TEB is configured with a dropout layer, multi-head attention (MHA) 
layer, a BN layer, a Conv1D layer, and an LSTM layer. The MHA layer is the most important layer in the encoder 
because it provides the transformation on the sequence values to obtain the different metrics. The MHA layer is 
configured with 4 heads and each attention head is also set to 4. The dropout layer is mainly used to overcome 
the overfitting caused by the imbalanced data. It drops a percentage of the neurons from the architecture, which 
causes the internal architecture of the model to change, allowing for better performance and stability. Finally, the 
softmax function is used as the final activation function, which produces a probabilistic estimate of how likely 
a flare will occur within the next 24 (48, 72, respectively) hours of t.

Ablation study. We performed ablation tests to assess each component of SolarFlareNet. We consider 
four variants of SolarFlareNet, denoted SolarFlareNet-Conv, SolarFlareNet-L, SolarFlareNet-ConvL, and Solar-
FlareNet-T, respectively. Here, SolarFlareNet-Conv (SolarFlareNet-L, SolarFlareNet-ConvL, SolarFlareNet-T, 
respectively) represents the subnet of SolarFlareNet in which the Conv1D layer (LSTM layer, Conv1D and LSTM 
layers, transformer network with the 4 TEBs, respectively) is removed while keeping the remaining components 
of the SolarFlareNet framework. Table 6 compares the TSS values of the five models for the 24-, 48-, and 72-h 
ahead flare prediction. It can be seen from Table 6 that the full model, SolarFlareNet, outperforms the four 
subnets in terms of the TSS metric. This happens because the SolarFlareNet-Conv model captures the temporal 
correlation of the test data, but does not learn additional characteristics of the data to build a stronger relation-
ship between the test data. SolarFlareNet-L captures the properties of the test data, but lacks knowledge of the 
temporal correlation patterns in the data to deeply analyze the sequential information in the test data. It can 
also be seen from Table 6 that the SolarFlareNet-ConvL model is not as good as the full model, indicating that 
the transformer network alone is not enough to produce the best results. Lastly, SolarFlareNet-T has the least 
performance among the four subnets, demonstrating the importance of the transformer network. In conclusion, 
our ablation study indicates that the performance of the proposed SolarFlareNet framework is not dominated 

Figure 3.  Architecture of SolarFlareNet.
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by any single component. In fact, all components have made contributions to the overall performance of the 
proposed framework.

Data availability
The trained SolarFlareNet model and datasets used in this study can be downloaded from https:// nature. njit. 
edu/ solar db/ solar flare net.
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