Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Using oxides to compute with heat

One of the most innovative possibilities offered by oxides is the use of heat currents for computational purposes. Towards this goal, phase-change oxides, including ferroelectrics, ferromagnets and related materials, could reproduce sources, logic units and memories used in current and future computing schemes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of heat-based neuromorphic systems.

References

  1. Nair, B. et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468–472 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Limelette, P. et al. Influence of ferroelastic domain walls on thermal conductivity. Phys. Rev. B 108, 144104 (2023).

    Article  CAS  Google Scholar 

  3. Liu, C. et al. Low voltage–driven high-performance thermal switching in antiferroelectric PbZrO3 thin films. Science 382, 1265–1269 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Seijas-Bellido, J. A., Aramberri, H., Íñiguez, J. & Rurali, R. Electric control of the heat flux through electrophononic effects. Phys. Rev. B 97, 184306 (2018).

    Article  CAS  Google Scholar 

  5. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi, W., Teraoka, Y. & Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009).

    Article  Google Scholar 

  7. Latella, I., Marconot, O., Sylvestre, J., Fréchette, L. G. & Ben-Abdallah, P. Dynamical response of a radiative thermal transistor based on suspended insulator-metal-transition membranes. Phys. Rev. Appl. 11, 024004 (2019).

    Article  CAS  Google Scholar 

  8. Gomez-Heredia, C. L. et al. Measurement of the hysteretic thermal properties of W-doped and undoped nanocrystalline powders of VO2. Sci. Rep. 9, 14687 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ordonez-Miranda, J., Ezzahri, Y., Tiburcio-Moreno, J. A., Joulain, K. & Drevillon, J. Radiative thermal memristor. Phys. Rev. Lett. 123, 025901 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Castelli, L., Zhu, Q., Shimokusu, T. J. & Wehmeyer, G. A three-terminal magnetic thermal transistor. Nat. Commun. 14, 393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Comment was cofunded by the European Union (European Research Council (ERC), DYNAMHEAT, No. 101077402; European Program FP7-NMP-LARGE-7, QUANTIHEAT, No. 604668). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the ERC. J.Í.-G. acknowledges the funding of the Luxembourg National Research Fund (FNR) through Grant C21/MS/15799044/FERRODYNAMICS. R.R. acknowledges financial support by MCIN/AEI/10.13039/501100011033 under grant PID2020–119777GB-I00, and the Severo Ochoa Centres of Excellence Program under grant CEX2019–000917-S, and by the Generalitat de Catalunya under grant 2021 SGR 01519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume F. Nataf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nataf, G.F., Volz, S., Ordonez-Miranda, J. et al. Using oxides to compute with heat. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00690-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00690-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing