Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Frameworks for transformational breakthroughs in RNA-based medicines

Abstract

RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The composition of RNA drugs is based on desired pharmacology, overcoming biological barriers, and intended site of action.
Fig. 2: Platform development is a central framework for creating and improving RNA drugs.
Fig. 3: Evolution of siRNA and clinical development.
Fig. 4: Applications of mature and emerging RNA platforms across the disease landscape.
Fig. 5: Strategy for overcoming roadblocks in RNA drug discovery and development.

Similar content being viewed by others

References

  1. Curreri, A., Sankholkar, D., Mitragotri, S. & Zhao, Z. RNA therapeutics in the clinic. Bioeng. Transl. Med. 8, e10374 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Xie, W., Chen, B. & Wong, J. Evolution of the market for mRNA technology. Nat. Rev. Drug Discov. 20, 735–736 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Hogan, M. J. & Pardi, N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu. Rev. Med. 73, 17–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Warne, N. et al. Delivering 3 billion doses of Comirnaty in 2021. Nat. Biotechnol. 41, 183–188 (2023). This article provides first-hand account of the technical and operational feats required to deliver large-scale production of a COVID-19 mRNA vaccine during the pandemic.

    CAS  PubMed  Google Scholar 

  6. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020). This article is a landmark publication for mRNA vaccines, showing 95% protection against COVID-19.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas, S. J. et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine through 6 months. N. Engl. J. Med. 385, 1761–1773 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021). This article describes the success of a second COVID-19 vaccine, solidifying mRNA as a game-changing technology for addressing the pandemic.

    Article  CAS  PubMed  Google Scholar 

  9. Jones, C. H. et al. Breaking the mold with RNA-a “RNAissance” of life science. NPJ Genom. Med. 9, 2 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Griffin, R. Pfizer needs to prove it’s ready to move on from Covid-19. Bloomberg News https://www.bloomberg.com/news/features/2022-10-04/pfizer-s-pfe-future-relies-on-mrna-scientists-are-skeptical (2022).

  11. Orbital Therapeutics. Orbital Therapeutics secures $270 million in series a financing to unleash full potential of RNA medicines. businesswire https://www.businesswire.com/news/home/20230426005102/en/Orbital-Therapeutics-Secures-270-Million-in-Series-A-Financing-to-Unleash-Full-Potential-of-RNA-Medicines (2023).

  12. Chroma Medicine. Chroma Medicine launches with $125M in financing to deliver on the promise of epigenetic editing. PR Newswire https://www.prnewswire.com/news-releases/chroma-medicine-launches-with-125m-in-financing-to-deliver-on-the-promise-of-epigenetic-editing-301426248.html (2021).

  13. ReNAgade Therapeutics. ReNAgade Therapeutics launches with over $300 million in series A financing to unlock the limitless potential of RNA medicine. MarketWatch https://www.marketwatch.com/press-release/renagade-therapeutics-launches-with-over-300-million-in-series-a-financing-to-unlock-the-limitless-potential-of-rna-medicine-2023-05-23 (2023).

  14. Kozlowski, K. New UM Center to take medicine to personalized level. The Detroit News https://www.detroitnews.com/story/life/wellness/2016/03/20/center-rna-biomedicine-university-michigangenomeprostatemips/82060600/ (2016).

  15. Monnet, R. $165-million for McGill University’s world-leading inclusive genomics and RNA research program. McGill University https://www.mcgill.ca/gci/article/165-million-mcgill-universitys-world-leading-inclusive-genomics-and-rna-research-program (2023).

  16. University at Albany. UAlbany research at the RNA Institute, NYS Mesonet receives $2 million federal boost. University at Albany https://www.albany.edu/news-center/news/2022-ualbany-research-rna-institute-nys-mesonet-receives-2-million-federal-boost (2022).

  17. Houston Methodist Academic Institute. Annual Report 2021: Expanding the RNAcore to encompass the entire cycle of translation. issuu https://issuu.com/instituteforacademicmedicine/docs/hmai_annual_report_2021/s/16433340 (2022).

  18. Hait, W. N. & Stoffels, P. A primer for academic entrepreneurs on academic-industrial partnerships. Nat. Commun. 12, 5778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chitale, S., Lawler, C. & Klausner, A. So you want to start a biotech company. Nat. Biotechnol. 40, 296–300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Damase, T. R. et al. The limitless future of RNA therapeutics. Front. Bioeng. Biotechnol. 9, 628137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gleeson, J. G. et al. Personalized antisense oligonucleotides “for free, for life” — the n-Lorem Foundation. Nat. Med. 29, 1302–1303 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Fernando, K. et al. Achieving end-to-end success in the clinic: Pfizer’s learnings on R&D productivity. Drug Discov. Today 27, 697–704 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Aimo, A. et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat. Rev. Cardiol. 19, 655–667 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Walsh, G. & Walsh, E. Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40, 1722–1760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). This article describes a Nobel Prize winning primary work on the discovery of siRNA.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J. K. H. The history of monoclonal antibody development — progress, remaining challenges and future innovations. Ann. Med. Surg. 3, 113–116 (2014).

    Article  Google Scholar 

  27. Eisenstein, M. Pharma’s roller-coaster relationship with RNA therapies. Nature 574, S4–S6 (2019).

    Article  CAS  Google Scholar 

  28. Mathieu, E. et al. Coronavirus pandemic (COVID-19). Our World in Data https://ourworldindata.org/coronavirus (2020).

  29. Dolgin, E. Self-copying RNA vaccine wins first full approval: what’s next? Nature 624, 236–237 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Winokur, P. et al. Bivalent omicron BA.1-adapted BNT162b2 booster in adults older than 55 years. N. Engl. J. Med. 388, 214–227 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chalkias, S. et al. A bivalent omicron-containing booster vaccine against Covid-19. N. Engl. J. Med. 387, 1279–1291 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Pecetta, S. & Rappuoli, R. mRNA, the beginning of a new influenza vaccine game. Proc. Natl Acad. Sci. USA 119, e2217533119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. RNA Therapy Beacon (Hanson Wade Group, 2023); https://hansonwade.com/rna-therapy-beacon/.

  35. Center for Drug Evaluation & Research. FDA approves treatment of amyotrophic lateral sclerosis associated with a mutation in the SOD1 gene. US Food and Drug Administration https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-amyotrophic-lateral-sclerosis-associated-mutation-sod1-gene (2023).

  36. Aoki, Y. & Wood, M. J. A. Emerging oligonucleotide therapeutics for rare neuromuscular diseases. J. Neuromuscul. Dis. 8, 869–884 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Armengol, V. D. et al. Life-saving treatments for spinal muscular atrophy: global access and availability. Neurol. Clin. Pract. 14, e200224 (2024).

    Article  PubMed  Google Scholar 

  38. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023). This is a thorough, well-organized and accessible review article on oligonucleotide chemistries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woodcock, J. & Marks, P. Drug regulation in the era of individualized therapies. N. Engl. J. Med. 381, 1678–1680 (2019).

    Article  PubMed  Google Scholar 

  40. Investor Relations Alnylam Pharmaceuticals, Inc. Alnylam and Regeneron report positive interim phase 1 clinical data on ALN-APP, an investigational RNAi therapy. Alnylam Pharmaceuticals, Inc. https://investors.alnylam.com/press-release? (2023).

  41. Lim, G. B. Novel siRNA reduces plasma lipoprotein(a) levels. Nat. Rev. Cardiol. 19, 147 (2022).

    PubMed  Google Scholar 

  42. Zhang, M. M., Bahal, R., Rasmussen, T. P., Manautou, J. E. & Zhong, X.-B. The growth of siRNA-based therapeutics: updated clinical studies. Biochem. Pharmacol. 189, 114432 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vitale, G. Moderna/Merck cancer vaccine shows promise in trials. Chemical & Engineering News https://cen.acs.org/pharmaceuticals/vaccines/ModernaMerck-cancer-vaccine-shows-promise/100/web/2022/12 (2022).

  45. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021). To our knowledge, this is the first published clinical study report for in vivo CRISPR gene editing.

    Article  CAS  PubMed  Google Scholar 

  46. Cross, R. Intellia’s second CRISPR gene editing therapy reduces swelling attacks by 95% in hereditary angioedema. Endpoints News https://endpts.com/intellias-second-crispr-gene-editing-therapy-reduces-swelling-attacks-by-95-in-hereditary-angioedema/ (2023).

  47. Naddaf, M. First trial of “base editing” in humans lowers cholesterol — but raises safety concerns. Nature 623, 671–672 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Crooke, S. T., Liang, X.-H., Baker, B. F. & Crooke, R. M. Antisense technology: a review. J. Biol. Chem. 296, 100416 (2021). This review is a tour de force of the deep mechanistic knowledge acquired over decades of ASO platform research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 623, 673–694 (2020).

    Article  Google Scholar 

  50. Kawamoto, Y., Wu, Y., Takahashi, Y. & Takakura, Y. Development of nucleic acid medicines based on chemical technology. Adv. Drug Deliv. Rev. 199, 114872 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Aliahmad, P., Miyake-Stoner, S. J., Geall, A. J. & Wang, N. S. Next generation self-replicating RNA vectors for vaccines and immunotherapies. Cancer Gene Ther. 30, 785–793 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018). This study describes pioneering work on the production and use of circRNA for longer-lived protein expression in transfected cells compared with linear mRNA.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hardee, G. E., Tillman, L. G. & Geary, R. S. in Antisense Drug Technolology 2nd edn, Ch. 8, 217–236 (Routledge, 2007).

  54. Levin, A. A., Rosie, Z. Y. & Geary, R. S. in Antisense Drug Technology 2nd edn, Ch. 7, 183–216 (Routledge, 2007).

  55. Iversen, P. L. in Antisense Drug Technology 2nd edn, Ch. 20, 565–582 (Routledge, 2007).

  56. Crooke, S. T., Wang, S., Vickers, T. A., Shen, W. & Liang, X.-H. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol. 35, 230–237 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019). This study provides clinical proof-of-concept for hyper-personalized medicine using ASOs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rittig, S. M. et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol. Ther. 19, 990–999 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Weide, B. et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother. 31, 180–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Selmi, A. et al. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol. Immunother. 65, 1075–1083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990). This study demonstrates that intramuscular injection into mice of both lipid-formulated ornakedmRNA results in protein expression.

    Article  CAS  PubMed  Google Scholar 

  62. Probst, J. et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 14, 1175–1180 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ramachandran, S., Satapathy, S. R. & Dutta, T. Delivery strategies for mRNA vaccines. Pharm. Med. 36, 11–20 (2022).

    Article  CAS  Google Scholar 

  64. Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Diken, M. et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 18, 702–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Prakash, T. P. et al. Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res. 43, 2993–3011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Khorev, O., Stokmaier, D., Schwardt, O., Cutting, B. & Ernst, B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem. 16, 5216–5231 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Tanowitz, M. et al. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res. 45, 12388–12400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010). This study elucidates the roles of ApoE and LDLR in LNP uptake, and even more significantly, it demonstrates GalNAc-conjugated siRNA delivery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Paunovska, K. et al. The extent to which lipid nanoparticles require apolipoprotein E and low-density lipoprotein receptor for delivery changes with ionizable lipid structure. Nano Lett. 22, 10025–10033 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021). This seminal study provides proof-of-concept for passive targeted LNPs wherein supplemental LNP formulation components influence protein corona formation, thereby changing biodistribution to the liver, lung and spleen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). This article reports pioneering work for in vivo cellular reprogramming using an anti-CD5 mAb-conjugated LNP to generate antifibrotic CAR T cells in situ following intravenous administration of a formulated CAR-encoding mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parhiz, H. et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Rel. 291, 106–115 (2018).

    Article  CAS  Google Scholar 

  78. Pascual-Gilabert, M., Artero, R. & López-Castel, A. The myotonic dystrophy type 1 drug development pipeline: 2022 edition. Drug Discov. Today 28, 103489 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Thi, T. T. H. et al. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines 9, 354 (2021).

    Article  Google Scholar 

  81. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510, 152–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010). This is an early breakthrough study for LNPs showing improved siRNA knockdown of a tool gene in livers of rodents and NHPs.

    Article  CAS  PubMed  Google Scholar 

  84. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    Article  CAS  Google Scholar 

  85. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013). This article provides a good example of the meticulous and challenging aspects of studying endosomal release of RNA payloads.

    Article  CAS  PubMed  Google Scholar 

  88. Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dowdy, S. F. Endosomal escape of RNA therapeutics: how do we solve this rate-limiting problem? RNA 29, 396–401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Geary, R. S. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin. Drug Metab. Toxicol. 5, 381–391 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Prakash, T. P. et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247–4253 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Manoharan, M. et al. Unique gene-silencing and structural properties of 2′-fluoro-modified siRNAs. Angew. Chem. Int. Ed. 50, 2284–2288 (2011).

    Article  CAS  Google Scholar 

  93. Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Janas, M. M. et al. Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc-siRNA conjugates. Nucleic Acids Res. 47, 3306–3320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Parmar, R. G. et al. Facile synthesis, geometry, and 2′-substituent-dependent in vivo activity of 5′-(E)- and 5′-(Z)-vinylphosphonate-modified siRNA conjugates. J. Med. Chem. 61, 734–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Andries, O. et al. N1-Methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Rel. 217, 337–344 (2015).

    Article  CAS  Google Scholar 

  97. Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13, 1536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. DeRosa, F. et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 23, 699–707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against chikungunya virus. Nat. Med. 27, 2224–2233 (2021). This article is one of few published clinical studies reporting measured levels of protein expression and pharmacokinetics of an infused mRNA-LNP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Roseman, D. S. et al. G6PC mRNA therapy positively regulates fasting blood glucose and decreases liver abnormalities in a mouse model of glycogen storage disease 1a. Mol. Ther. 26, 814–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, C.-K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pamudurti, N. R. et al. Translation of circRNAs. Mol. Cell 66, 9–21.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012). This article reports seminal saRNA vaccine proof-of-concept work demonstrating immunogenicity and protection against RSV in a cotton rat model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oda, Y. et al. Immunogenicity and safety of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: a double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet Infect. Dis. 24, 351–360 (2023).

    Article  PubMed  Google Scholar 

  112. McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun. 11, 3523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vogel, A. B. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26, 446–455 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. de Alwis, R. et al. A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice. Mol. Ther. 29, 1970–1983 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhang, X. et al. Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. J. Clin. Pharmacol. 60, 37–49 (2020).

    Article  PubMed  Google Scholar 

  116. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Walsh, E. E. et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N. Engl. J. Med. 383, 2439–2450 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Adams, D. et al. Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study. Lancet Neurol. 20, 49–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022). In this article, the authors identify a plausible immunological mechanism for increased sensitivity of humans to mRNA-LNP compared with preclinical species.

    Article  CAS  PubMed  Google Scholar 

  121. Robbins, M., Judge, A. & MacLachlan, I. siRNA and innate immunity. Oligonucleotides 19, 89–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Parhiz, H. et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J. Control. Rel. 344, 50–61 (2021).

    Article  Google Scholar 

  123. Swayze, E. E. & Bhat, B. in Antisense Drug Technology 2nd edn, Ch. 6, 143–182 (Routledge, 2007).

  124. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005). This article reports transformative work, although less appreciated at the time, on chemically modified mRNA and recognition by pattern recognition receptors.

    Article  PubMed  Google Scholar 

  126. Abbas, Y. M. et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc. Natl Acad. Sci. USA 114, E2106–E2115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Minnaert, A.-K. et al. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: getting the message across. Adv. Drug Deliv. Rev. 176, 113900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Szebeni, J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 61, 163–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Crooke, S. T., Seth, P. P., Vickers, T. A. & Liang, X.-H. The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these agents. J. Am. Chem. Soc. 142, 14754–14771 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Chi, X., Gatti, P. & Papoian, T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov. Today 22, 823–833 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Swayze, E. E. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 35, 687–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Jackson, A. L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Schlegel, M. K. et al. Overcoming GNA/RNA base-pairing limitations using isonucleotides improves the pharmacodynamic activity of ESC+ GalNAc-siRNAs. Nucleic Acids Res. 49, 10851–10867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sedic, M. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Vet. Pathol. 55, 341–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Loughrey, D. & Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Maraganore, J. Reflections on Alnylam. Nat. Biotechnol. 40, 641–650 (2022). This article provides an insightful retrospective on the business and science behind Alnylam’s platform build.

    Article  CAS  PubMed  Google Scholar 

  139. Tseng, H. F. et al. mRNA-1273 bivalent (original and Omicron) COVID-19 vaccine effectiveness against COVID-19 outcomes in the United States. Nat. Commun. 14, 5851 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zou, J. et al. Neutralization of BA.4-BA.5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 with bivalent vaccine. N. Engl. J. Med. 388, 854–857 (2023).

    Article  PubMed  Google Scholar 

  141. Stewart-Jones, G. B. E. et al. Domain-based mRNA vaccines encoding spike protein N-terminal and receptor binding domains confer protection against SARS-CoV-2. Sci. Transl. Med. 15, eadf4100 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Obici, L. et al. Quality of life outcomes in APOLLO, the phase 3 trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. Amyloid 27, 153–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Butler, J. S. et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid 23, 109–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sutherland, J. E. et al. Nonclinical safety profile of revusiran, a 1st-generation GalNAc-siRNA conjugate for treatment of hereditary transthyretin-mediated amyloidosis. Nucleic Acid Ther. 30, 33–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Judge, D. P. et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc. Drugs Ther. 34, 357–370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hawkins, P. N. et al. Evolving landscape in the management of transthyretin amyloidosis. Ann. Med. 47, 625–638 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Adams, D. et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid 30, 18–26 (2023).

    Article  CAS  Google Scholar 

  150. Investor Relations Alnylam Pharmaceuticals, Inc. Alnylam continues scientific leadership in advancement of RNAi therapeutics at the 17th Annual Meeting of the Oligonucleotides Therapeutics Society. Alnylam Pharmaceuticals, Inc. https://investors.alnylam.com/press-release?id=26011 (2021).

  151. Keam, S. J. Inotersen: first global approval. Drugs 78, 1371–1376 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Ackermann, E. J. et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid 23, 148–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Crooke, S. T. et al. The effects of 2′-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid Ther. 27, 121–129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Slingsby, M. H. L. et al. Sequence-specific 2′-O-methoxyethyl antisense oligonucleotides activate human platelets through glycoprotein VI, triggering formation of platelet-leukocyte aggregates. Haematologica 107, 519–531 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Zaslavsky, A. et al. Antisense oligonucleotides and nucleic acids generate hypersensitive platelets. Thromb. Res. 200, 64–71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Flierl, U. et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J. Exp. Med. 212, 129–137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Engelhardt, J. A. et al. Scientific and regulatory policy committee points-to-consider paper*: drug-induced vascular injury associated with nonsmall molecule therapeutics in preclinical development: part 2. antisense oligonucleotides. Toxicol. Pathol. 43, 935–944 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Shen, L. et al. Mechanistic understanding for the greater sensitivity of monkeys to antisense oligonucleotide-mediated complement activation compared with humans. J. Pharmacol. Exp. Ther. 351, 709–717 (2014).

    Article  PubMed  Google Scholar 

  160. Frazier, K. S. et al. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide. Toxicol. Pathol. 42, 923–935 (2014).

    Article  PubMed  Google Scholar 

  161. US Food and Drug Administration. WAINUA™ (eplontersen) injection, for subcutaneous use initial U.S. approval. US Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217388s000lbl.pdf (2023).

  162. Ionis Pharmaceuticals, Inc. Ionis announces FDA acceptance of new drug application for eplontersen for the treatment of hereditary transthyretin-mediated amyloid polyneuropathy (ATTRv-PN). PR Newswire https://www.prnewswire.com/news-releases/ionis-announces-fda-acceptance-of-new-drug-application-for-eplontersen-for-the-treatment-of-hereditary-transthyretin-mediated-amyloid-polyneuropathy-attrv-pn-301764027.html (2023).

  163. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018). To our knowledge, this is the first paper to demonstrate that a transient mRNA-LNP can be used for stable in vivo gene editing of a mouse.

    Article  CAS  PubMed  Google Scholar 

  164. Intellia Therapeutics. Intellia and Regeneron present updated interim data from phase 1 study of CRISPR-based NTLA-2001 for the treatment of transthyretin (ATTR) amyloidosis demonstrating that deep serum TTR reductions remained durable after a single dose. Intellia Therapeutics https://ir.intelliatx.com/news-releases/news-release-details/intellia-and-regeneron-present-updated-interim-data-phase-1 (2022).

  165. Intellia Therapeutics. Intellia presents updated interim data from the cardiomyopathy arm of ongoing phase 1 study of NTLA-2001, an investigational CRISPR therapy for the treatment of transthyretin (ATTR) amyloidosis at the American Heart Association scientific sessions 2022. Intellia Therapeutics https://ir.intelliatx.com/news-releases/news-release-details/intellia-presents-updated-interim-data-cardiomyopathy-arm (2022).

  166. Intellia Therapeutics. Intellia Therapeutics announces new positive clinical data from phase 1 study of NTLA-2002, an investigational in vivo CRISPR genome editing treatment for hereditary angioedema (HAE). Intellia Therapeutics https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-announces-new-positive-clinical-data-phase (2022).

  167. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Havens, M. A. & Hastings, M. L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 44, 6549–6563 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Booth, B. J. et al. RNA editing: expanding the potential of RNA therapeutics. Mol. Ther. 31, 1533–1549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Perez-Garcia, C. G. et al. Development of an mRNA replacement therapy for phenylketonuria. Mol. Ther. Nucleic Acids 28, 87–98 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jericó, D. et al. mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. Mol. Ther. Nucleic Acids 25, 207–219 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. An, D. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 24, 2520 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Apgar, J. F. et al. Quantitative systems pharmacology model of hUGT1A1-modRNA encoding for the UGT1A1 enzyme to treat Crigler-Najjar syndrome type 1. CPT Pharmacomet. Syst. Pharmacol. 7, 404–412 (2018).

    Article  CAS  Google Scholar 

  174. Balakrishnan, B. et al. Novel mRNA-based therapy reduces toxic galactose metabolites and overcomes galactose sensitivity in a mouse model of classic galactosemia. Mol. Ther. 28, 304–312 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Karadagi, A. et al. Systemic modified messenger RNA for replacement therapy in alpha 1-antitrypsin deficiency. Sci. Rep. 10, 7052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. DeRosa, F. et al. Improved efficacy in a Fabry disease model using a systemic mRNA liver depot system as compared to enzyme replacement therapy. Mol. Ther. 27, 878–889 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jiang, L. et al. Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun. 11, 5339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cao, J. et al. mRNA therapy improves metabolic and behavioral abnormalities in a murine model of citrin deficiency. Mol. Ther. 27, 1242–1251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Prieve, M. G. et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol. Ther. 26, 801–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wei, G. et al. Synthetic human ABCB4 mRNA therapy rescues severe liver disease phenotype in a BALB/c.Abcb4-/- mouse model of PFIC3. J. Hepatol. 74, 1416–1428 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Truong, B. et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc. Natl Acad. Sci. USA 116, 21150–21159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yang, T. et al. Therapeutic HNF4A mRNA attenuates liver fibrosis in a preclinical model. J. Hepatol. 75, 1420–1433 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Van Hoecke, L. & Roose, K. How mRNA therapeutics are entering the monoclonal antibody field. J. Transl. Med. 17, 54 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Schlake, T., Thess, A., Thran, M. & Jordan, I. mRNA as novel technology for passive immunotherapy. Cell. Mol. Life Sci. 76, 301–328 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Schlake, T. et al. mRNA: a novel avenue to antibody therapy? Mol. Ther. 27, 773–784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McHugh, J. Acute inflammatory arthritis: long-term effects of chikungunya. Nat. Rev. Rheumatol. 14, 62 (2018).

    Article  PubMed  Google Scholar 

  191. Kose, N. et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci. Immunol. 4, eaaw6647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Moderna. Moderna reports third quarter fiscal year 2021 financial results and provides business updates. Moderna https://investors.modernatx.com/news/news-details/2021/Moderna-Reports-Third-Quarter-Fiscal-Year-2021-Financial-Results-and-Provides-Business-Updates/default.aspx (2021).

  193. Lundberg, A. M. et al. Key differences in TLR3/poly I:C signaling and cytokine induction by human primary cells: a phenomenon absent from murine cell systems. Blood 110, 3245–3252 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Karikó, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  PubMed  Google Scholar 

  195. Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kauffman, K. J. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109, 78–87 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kalnin, K. V. et al. Immunogenicity and efficacy of mRNA COVID-19 vaccine MRT5500 in preclinical animal models. NPJ Vaccines 6, 61 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chivukula, S. et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. NPJ Vaccines 6, 153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Corleis, B. et al. Efficacy of an unmodified bivalent mRNA vaccine against SARS-CoV-2 variants in female small animal models. Nat. Commun. 14, 816 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lutz, J. et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lowe, D. CureVac comes around. Science: In the Pipeline https://www.science.org/content/blog-post/curevac-comes-around (2023).

  202. Lenart, K. et al. A third dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances quality and quantity of immune responses. Mol. Ther. Methods Clin. Dev. 27, 309–323 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sanofi. Sanofi announces positive phase 1/2 study interim results for its first mRNA-based vaccine candidate. Sanofi https://www.sanofi.com/en/media-room/press-releases/2021/2021-09-28-06-00-00-2304069 (2021).

  204. Aldrich, C. et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: a phase 1 trial. Vaccine 39, 1310–1318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Callaway, E. & Naddaf, M. Pioneers of mRNA COVID vaccines win medicine Nobel. Nature https://doi.org/10.1038/d41586-023-03046-x (2023).

  206. Generation Bio. Generation Bio provides update on preclinical studies for hemophilia a program. Generation Bio https://generationbio.com/news/generation-bio-provides-update-on-preclinical-studies-for-hemophilia-a-program/ (2021).

  207. Lam, K. et al. Optimizing lipid nanoparticles for delivery in primates. Adv. Mater. 35, 2211420 (2023). This article provides a most welcome and valuable systematic evaluation of LNP performance and parameter optimization for NHPs.

    Article  CAS  Google Scholar 

  208. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Suzuki, T. et al. Influence of dose and animal species on accelerated blood clearance of PEGylated liposomal doxorubicin. Int. J. Pharm. 476, 205–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Chen, E. et al. Premature drug release from polyethylene glycol (PEG)-coated liposomal doxorubicin via formation of the membrane attack complex. ACS Nano 14, 7808–7822 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Liu, S., Ishida, T. & Kiwada, H. Effect of serum components from different species on destabilizing hydrogenated phosphatidylcholine-based liposomes. Biol. Pharm. Bull. 20, 874–880 (1997).

    Article  CAS  PubMed  Google Scholar 

  213. Harashima, H. et al. Species difference in the disposition of liposomes among mice, rats, and rabbits: allometric relationship and species dependent hepatic uptake mechanism. Pharm. Res. 13, 1049–1054 (1996).

    Article  CAS  PubMed  Google Scholar 

  214. Yin, W. et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J. Lipid Res. 53, 51–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Elston, D. M. Survivorship bias. J. Am. Acad. Dermatol. https://doi.org/10.1016/j.jaad.2021.06.845 (2021).

  216. Hemprich-Bennett, D., Rabaiotti, D. & Kennedy, E. Beware survivorship bias in advice on science careers. Nature https://doi.org/10.1038/d41586-021-02634-z (2021).

  217. Stein, C. A. Keeping the biotechnology of antisense in context. Nat. Biotechnol. 17, 209 (1999).

    Article  CAS  PubMed  Google Scholar 

  218. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Whitehead, K. A. et al. In vitro–in vivo translation of lipid nanoparticles for hepatocellular siRNA delivery. ACS Nano 6, 6922–6929 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Rel. 316, 404–417 (2019).

    Article  CAS  Google Scholar 

  222. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017). In this article, a pooled approach for LNP screening is described, offering a new path for LNP discovery, potentially accelerating identification of novel LNPs with different tropisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Suzuki, Y. et al. Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates. Int. J. Pharm. 519, 34–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Ämmälä, C. et al. Targeted delivery of antisense oligonucleotides to pancreatic β-cells. Sci. Adv. 4, eaat3386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Jafar-Nejad, P. et al. The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Res. 49, 657–673 (2021).

    Article  CAS  PubMed  Google Scholar 

  228. Klose, A. D. & Paragas, N. Automated quantification of bioluminescence images. Nat. Commun. 9, 4262 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Kauffman, K. J. et al. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-Flanked tdTomato reporter mouse. Mol. Ther. Nucleic Acids 10, 55–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X.-H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Holgersen, E. M. et al. Transcriptome-wide off-target effects of steric-blocking oligonucleotides. Nucleic Acid Ther. 31, 392–403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Manghwar, H. et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 7, 1902312 (2020).

    Article  CAS  Google Scholar 

  235. Wayment-Steele, H. K. et al. Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Res. 49, 10604–10617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Truebel, H. & Seidler, M. Mitigating bias in pharmaceutical R&D decision-making. Nat. Rev. Drug Discov. 21, 874–875 (2022).

    Article  PubMed  Google Scholar 

  237. Hon, C.-C. et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543, 199–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ren, F., Zhang, N., Zhang, L., Miller, E. & Pu, J. J. Alternative polyadenylation: a new frontier in post transcriptional regulation. Biomark. Res. 8, 67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Liang, X.-H., Nichols, J. G., Sun, H. & Crooke, S. T. Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Nucleic Acids Res. 46, 293–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  240. Gagnon, K. T. & Corey, D. R. Guidelines for experiments using antisense oligonucleotides and double-stranded RNAs. Nucleic Acid Ther. 29, 116–122 (2019). This paper is mandatory reading for everyone involved in RNA therapeutic discovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wang, F. et al. G-rich motifs within phosphorothioate-based antisense oligonucleotides (ASOs) drive activation of FXN expression through indirect effects. Nucleic Acids Res. 50, 12657–12673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Putzbach, W. et al. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism. eLife 6, e29702 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Whither RNAi? Nat. Cell Biol. 5, 489–490 (2003).

  245. Hogrefe, R. I. An antisense oligonucleotide primer. Antisense Nucleic Acid Drug Dev. 9, 351–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  246. Stein, C. A. The experimental use of antisense oligonucleotides: a guide for the perplexed. J. Clin. Invest. 108, 641–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Myers, K. J. & Dean, N. M. Sensible use of antisense: how to use oligonucleotides as research tools. Trends Pharmacol. Sci. 21, 19–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  248. Crooke, S. T. Evaluating the mechanism of action of antiproliferative antisense drugs. Antisense Nucleic Acid Drug Dev. 10, 123–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  249. Eckstein, F. et al. On the quality control of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 6, 149 (1996).

    Article  CAS  PubMed  Google Scholar 

  250. Crooke, S. T. Proof of mechanism of antisense drugs. Antisense Nucleic Acid Drug Dev. 6, 145–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  251. Stein, C. A. & Krieg, A. M. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res. Dev. 4, 67–69 (1994).

    Article  CAS  PubMed  Google Scholar 

  252. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Article  CAS  PubMed  Google Scholar 

  253. Clark, K. L. et al. Pharmacological characterization of a novel ENaCα siRNA (GSK2225745) with potential for the treatment of cystic fibrosis. Mol. Ther. Nucleic Acids 2, e65 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Androsavich, J. R. Assessing anti-miR pharmacology with miRNA polysome shift assay. Methods Mol. Biol. 1517, 103–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Lagarde, J. et al. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat. Genet. 49, 1731–1740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. van Dongen, S., Abreu-Goodger, C. & Enright, A. J. Detecting microRNA binding and siRNA off-target effects from expression data. Nat. Methods 5, 1023–1025 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Scharner, J. et al. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides. Nucleic Acids Res. 48, 802–816 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Bartoszewski, R. et al. Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. Cell. Mol. Biol. Lett. 21, 23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Olexiouk, V. et al. sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res. 44, D324–D329 (2016).

    Article  CAS  PubMed  Google Scholar 

  260. Liu, C.-X. & Chen, L.-L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

    Article  CAS  PubMed  Google Scholar 

  261. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Center for Biologics Evaluation & Research. Human gene therapy products incorporating human genome editing. US Food and Drug Administration https://www.fda.gov/regulatory-information/search-fda-guidance-documents/human-gene-therapy-products-incorporating-human-genome-editing (2021).

  263. Lei, Z., Meng, H., Zhuang, Y., Zhu, Q. & Yi, C. Chemical and biological approaches to interrogate off-target effects of genome editing tools. ACS Chem. Biol. 18, 205–217 (2023).

    Article  CAS  PubMed  Google Scholar 

  264. Hunt, J. M. T., Samson, C. A., Rand, Adu & Sheppard, H. M. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum. Genet. 142, 705–720 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Scannell, J. W. & Bosley, J. When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS ONE 11, e0147215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Altshuler, D. Vertex pharmaceuticals: humanizing drug discovery. https://www.nature.com/articles/d42473-020-00303-9 (2018). In this insightful feature piece, the author describes Vertex’s ‘next generation’ approach to drug development, which seeks to frontload investment into developing more candidates to lower the risk of late-stage attrition.

  267. Mulligan, M. J. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. ClinicalTrials.gov. A trial investigating the safety and effects of four BNT162 vaccines against COVID-2019 in healthy and immunocompromised adults. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT04380701 (2022).

  269. Anderson, B. A. et al. Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res. 49, 9026–9041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Liu, J.-J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Yamada, K. et al. Extended nucleic acid (exNA): a novel, biologically compatible backbone that significantly enhances oligonucleotide efficacy in vivo. Preprint at bioRxiv https://doi.org/10.1101/2023.05.26.542506 (2023). This article is a recent example of an improved nucleic acid chemistry for siRNAs, indicating that there is still much more innovation to come in RNA medicinal chemistry.

  273. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Aditham, A. et al. Chemically modified mocRNAs for highly efficient protein expression in mammalian cells. ACS Chem. Biol. 17, 3352–3366 (2022).

    Article  CAS  PubMed  Google Scholar 

  276. Molina, A. G. & Sanghvi, Y. S. Liquid-phase oligonucleotide synthesis: past, present, and future predictions. Curr. Protoc. Nucleic Acid Chem. 77, e82 (2019).

    Article  PubMed  Google Scholar 

  277. Paul, S. et al. Convergent biocatalytic mediated synthesis of siRNA. ACS Chem. Biol. 10, 2183–2187 (2023).

    Article  Google Scholar 

  278. Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M. & Marques, M. P. C. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39, 2190–2200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

    Article  CAS  Google Scholar 

  280. Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023). This article reports an exciting preclinical example of in vivo editing outside the liver, with potential for treating sickle cell disease (without toxic preconditioning).

    Article  CAS  PubMed  Google Scholar 

  281. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Lee, E. C. et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat. Commun. 10, 4148 (2019). This article describes an exemplar anti-miRNA therapeutic discovery programme with robust preclinical validation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. van der Ree, M. H. et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389, 709–717 (2017).

    Article  PubMed  Google Scholar 

  284. Bader, A. G. miR-34 — a microRNA replacement therapy is headed to the clinic. Front. Genet. 3, 120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Abdelaal, A. M. et al. A first-in-class fully modified version of miR-34a with outstanding stability, activity, and anti-tumor efficacy. Oncogene 42, 2985–2999 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Segal, M. et al. Hydrophobically modified let-7b miRNA enhances biodistribution to NSCLC and downregulates HMGA2 in vivo. Mol. Ther. Nucleic Acids 19, 267–277 (2020).

    Article  CAS  PubMed  Google Scholar 

  287. Pallan, P. S. et al. Structure and nuclease resistance of 2′,4′-constrained 2′-O-methoxyethyl (cMOE) and 2′-O-ethyl (cEt) modified DNAs. Chem. Commun. 48, 8195–8197 (2012).

    Article  CAS  Google Scholar 

  288. Campbell, M. A. & Wengel, J. Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem. Soc. Rev. 40, 5680–5689 (2011).

    Article  CAS  PubMed  Google Scholar 

  289. Despic, V. & Jaffrey, S. R. mRNA ageing shapes the Cap2 methylome in mammalian mRNA. Nature 614, 358–366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to D. Morrissey, M. Tadin-Strapps, M. Stewart, A. Barry and Y. Fu from Pfizer RNA Accelerator, as well as many other past and present colleagues, for their insights and helpful discussions that contributed to the creation of this manuscript. Biorender.com was used under paid subscription for initial figure creation; figures were redrawn by the journal for publication.

Author information

Authors and Affiliations

Authors

Contributions

J.R.A. contributed to all aspects of the article.

Corresponding author

Correspondence to John R. Androsavich.

Ethics declarations

Competing interests

J.R.A. was an employee and shareholder of Pfizer, Inc. at the time of this writing. He is an inventor on several patents related to RNA technologies and therapeutics.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Andrea Kasinski, Dave Ecker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adeno-associated virus

(AAV). A small, non-pathogenic virus commonly used as a gene delivery vector in gene therapy, with a limited cargo capacity of approximately 4.7 to 5.0 kilobases.

Batten disease

A rare genetic disorder, also known as neuronal ceroid lipofuscinoses, caused by mutations in 1 of 13 genes that causes progressive neurological deterioration in children, leading to cognitive decline, seizures and loss of motor skills.

Cap analysis of gene expression

(CAGE). A method for identifying transcriptional start sites and the identity of 5′ ends of mRNA at single-base pair resolution using next-generation sequencing.

Closed-ended DNA

A non-viral capsid-free DNA vector with covalently closed ends used for gene transfer.

Duplex RNA

A molecule composed of two complementary RNA strands that have formed a double-stranded structure through base pairing.

Endosomes

Membrane-bound cellular organelles involved in the sorting, processing and trafficking of molecules within the cell, particularly during endocytosis.

Gapmer

An oligo designed for RNAase-H-based knockdown with a central DNA region flanked by modified nucleotides. Shorthand nomenclature is often used to designate the length (in nucleotides) of each segment and the modification used, for example, 5-10-5 methoxyethyl (MOE) gapmer.

Gymnosis

Refers to the still incompletely understood phenomenon by which molecules are delivered into cells without the use of any delivery vehicles or carriers.

Hereditary transthyretin amyloidosis

(hATTR). A heterogenous, multisystem condition caused by mutations in the transthyretin (TTR) gene leading to abnormal deposits of amyloid protein in the heart, nerves and other organs. hATTR has several phenotypes including cardiomyopathy (hATTR-CM) with symptoms of heart failure and enlarged heart, and peripheral neuropathy (hATTR-PN) experienced as pain, loss of sensation, or tingling in the hands and feet and damage to the digestive tract and other organs.

Internal ribosomal entry sites

(IRES). A structured RNA element that allows for translation initiation in a 5′ cap-independent manner, which means that ribosomes can bind directly to the IRES element within an RNA and initiate translation at or near this site.

Ligand conjugates

Consist of a ligand attached to another molecule, for example, an oligonucleotide, often used for targeted drug delivery or imaging purposes.

Lipid nanoparticle

(LNP). Formulations used to deliver nucleic acid-based therapeutics into cells, providing a protective and stable environment for efficient delivery to target cells and enhancing intracellular release into the cytoplasm.

Macropinocytosis

An actin-driven process in which cells take in extracellular fluid and its contents by forming vesicles at the cell surface.

Multivalency

Refers to the ability of a molecule to have multiple functions by interacting with or expressing multiple targets simultaneously.

Pattern recognition receptors

(PRRs). A class of proteins that play a crucial part in the innate immune system by identifying specific molecular patterns associated with pathogens, triggering an immune response.

Peripheral blood mononuclear cells

(PBMCs). Prepared from (human) whole blood containing lymphocytes, monocytes and progenitor populations.

Plug-and-play

Colloquial term for the theoretical pinnacle of drug platform performance in which new products can be swiftly developed using pre-established parameters.

Rapid amplification of cDNA ends

(RACE). A molecular biology technique used to obtain the sequence at the ends of an RNA transcript using reverse-transcription PCR amplification.

Ribonuclease H

(RNAse-H). An enzyme that catalyses the cleavage of RNA in RNA–DNA hybrids leading to the degradation of the RNA component.

Scrambled controls

Oligos generated with random or altered nucleotide arrangements that are used as experimental controls in an attempt to assess the specificity and biological effects of the original test oligo.

Shear stress

Refers to the force exerted by flowing blood on nanoparticles and cells that can impact surface interactions and cellular uptake.

Solid-phase synthesis

An efficient, automated production method in which oligonucleotides are assembled on a solid support, typically through controlled addition of nucleotide building blocks in a stepwise fashion.

Survivorship bias

Refers to the error that occurs when only successful or surviving individuals or entities are considered in an analysis, leading to an inaccurate representation of the entire population or sample.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Androsavich, J.R. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-00943-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-024-00943-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing