
Nature Chemistry | Volume 16 | April 2024 | 633–643 633

nature chemistry

https://doi.org/10.1038/s41557-023-01393-wArticle

Probing the chemical ‘reactome’ with 
high-throughput experimentation data

Emma King-Smith    1, Simon Berritt    2, Louise Bernier3, Xinjun Hou    4, 
Jacquelyn L. Klug-McLeod2, Jason Mustakis2, Neal W. Sach    3, 
Joseph W. Tucker2, Qingyi Yang    4, Roger M. Howard    2  & Alpha A. Lee    1 

High-throughput experimentation (HTE) has the potential to improve 
our understanding of organic chemistry by systematically interrogating 
reactivity across diverse chemical spaces. Notable bottlenecks include 
few publicly available large-scale datasets and the need for facile 
interpretation of these data’s hidden chemical insights. Here we report 
the development of a high-throughput experimentation analyser, a 
robust and statistically rigorous framework, which is applicable to any 
HTE dataset regardless of size, scope or target reaction outcome, which 
yields interpretable correlations between starting material(s), reagents 
and outcomes. We improve the HTE data landscape with the disclosure 
of 39,000+ previously proprietary HTE reactions that cover a breadth of 
chemistry, including cross-coupling reactions and chiral salt resolutions. 
The high-throughput experimentation analyser was validated on 
cross-coupling and hydrogenation datasets, showcasing the elucidation of 
statistically significant hidden relationships between reaction components 
and outcomes, as well as highlighting areas of dataset bias and the specific 
reaction spaces that necessitate further investigation.

Data-driven chemistry has seen immense strides in recent years, espe-
cially in yield and enantioselectivity prediction1–4. One major contribut-
ing factor to this is the adoption of high-throughput experimentation 
(HTE) data in chemical synthesis5–8. Collections of ‘real-world’ HTE data 
have several beneficial features. They probably have sampled the reac-
tion space that is of direct interest to the field and cover a broad range 
of substrates and reaction types, ensuring that data-driven findings 
are relevant9. Valuable negative data is also present10. Additionally, the 
data will probably have been gathered in a manner that enables future 
HTE-guided synthesis, aiding the translatability of the findings. This 
approach is, however, not without its challenges. Yield calculations 
are often derived from the uncalibrated ratio of ultraviolet absorb-
ances, which assumes that the species have similar ultraviolet extinc-
tion coefficients and makes this measurement more qualitative than 
quantitative nuclear magnetic resonance spectroscopy or isolated 
yield determinations. The presence or absence of byproducts may 

also be somewhat obscured (see Supplementary Information for a 
full discussion on yield determination on HTE datasets). Moreover, 
datasets may be subject to biases in reactant and reaction condition 
selection and have regions of substantial data sparsity.

Despite these known challenges with HTE data, little work has 
been done to investigate the inherent structure and biases of these 
datasets11. A statistically robust methodology that can be applied to 
any HTE dataset to draw out hidden chemical insights is fundamental to 
driving forward data-driven chemistry. It is important to note that that 
this statistical framework was not envisioned to predict or generalize 
any specific reaction property (yield, selectivity, optimal conditions 
and so on), but to provide a far more fundamental analysis: what are 
the chemical insights within a dataset? From these conclusions, we can 
begin to understand (1) what are statistically important factors that 
drive good or bad outcomes and (2) what this data will teach an artificial 
intelligence (AI) model. Finally, comparison of the chemical insights 
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and spans a wide range of reaction classes (Fig. 1c). Within it are over 
39,000 reactions conditions spanning over 350 target products. The 
reactions are split across numerous classes, ranging from thousands 
of reactions to tens of reactions, whose reactants and reagents may be 
over-represented or under-represented. These challenges highlight the 
necessity of statistical analyses, which can understand the data even in 
these skewed environments. HiTEA’s analysis of several classic reaction 
types reveal some notable biases as well as some unexpected findings 
which warrant further investigation.

HiTEA: statistical analysis framework for HTE
The HiTEA methodology is centred around three orthogonal statis-
tical analysis frameworks, random forests, Z-score analysis of vari-
ance (ANOVA–Tukey) and principal component analysis (PCA). Each 
framework answers one of the following questions: which variable(s) 
are important? namely, random forests16; what are the statistically 
significant best-in-class/worst-in-class reagents? namely, the Z-score–
ANOVA–Tukey17–20; and how do those best-in-class/worst-in-class 
reagents populate the chemical space? namely, PCA21,22. Notably, 
this combination of statistical analysis makes no assumption about 
the underlying data structure. For example, relationships can be 
non-linear or even discontinuous, the data does not need to be the 

embedded within the HTE data, what we dub the ‘HTE reactome’, to the 
chemical insights drawn from the literature, the ‘literature’s reactome’, 
may (1) provide further evidence to support the mechanistic hypoth-
eses (agreement of the reactomes), (2) reveal bias within the dataset 
which limits its usefulness or (3) reveal subtle correlations that may 
lead to refinement of our chemical understanding (disagreement of 
the reactomes) (Fig. 1a). In this Article, ‘literature’ is defined as informa-
tion from open-source chemistry databases and published literature 
in peer-reviewed journals that excludes HTE data.

To create such a methodology, a high-throughput experimenta-
tion analyser (HiTEA) was developed, which can deduce the reactome 
of any HTE dataset. While common chemistry datasets such as the 
CAS12, Reaxys13, USPTO, Pistachio or the Open Reaction Database have 
impressive coverage, it was a concern that the high level of overlap 
between their reactions and literature data would shape these data-
sets’ reactomes to be indistinguishable to literature reactomes14,15. 
This would make it difficult to explore the discrepancies between the 
data and the literature reactomes, something that is probably possible 
when utilizing HTE datasets and a fundamental feature of HiTEA that 
we wished to investigate. Thus, a HiTEA analysis was performed on a 
ground-breaking release of 10 years of historical medicinal chemistry 
HTE data. It is an unprecedently large dataset, acquired over 10+ years 
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reactomes). b, Abstracted representations of the four reaction classes analysed 
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full combinatorial cross of all reagents with all reactants, an important 
feature when considering the sparse nature of chemistry datasets, and 
smaller datasets are just as feasible as larger datasets. The synergy 
between these three branches of HiTEA paint a comprehensible under-
standing of a dataset’s reactome, allowing for facile identification of 
hidden chemical insights. To highlight the flexibility and versatility 
of HiTEA, we analyse datasets that span upwards of 3,000 reactions 
across a broad range of substrates to datasets that are just over 1,000 
reactions with a narrower substrate scope.

Which variables are most important?
Intuitively, some reactions are more sensitive to certain variables than 
others. Cross couplings are highly sensitive to the metal and its ligand, 
but generally less sensitive to the identity of the solvent23,24. The relative 
variable importance is critical to understanding the chemistry insights 
that are present in the reactome. Note that importance can be positively 
correlated or negatively correlated with reaction outcome.

When investigating variable importance, two techniques come 
to mind as versatile and broadly applicable: random forests and 
multi-linear regressions. Both have yielded impressive results in chem-
istry and other field; however, for HiTEA we chose to utilize random 
forests4,16,25,26. Unlike multi-linear regression, random forests do not 
stipulate that one’s data must be linear, and thus obviate the need 
for linearization (and ideally normalization). Given the non-linearity 
of the data, we hypothesized that random forests would yield more 
accurate variable importances. In general, moderate-to-good out of 
bag accuracy of reaction outcome from a random forest with standard 
hyperparameters was observed (Supplementary Table 1), with some 
noted exceptions (taking dataset to HiTEA sections), correlating with 
poorer mechanistic insights of the reaction class overall. To assess 
the confidence of the variable importance, ANOVA was performed 
on each dataset subclass with statistical significance of the variables 
set at P = 0.05.

What are the best- and worst-in-class reagents?
It is known that there are privileged reagents that perform well across 
the board for a multitude of reactions, and there are those whose utility 
is narrow. Identifying the best- and worst-in-class reagents is therefore 
key to understanding a reactome. However, detangling the impact of 
a reagent from the inherent reactivity of the reactant(s) is challeng-
ing. We chose to compare relative yields that had been normalized 
through Z-scores, a technique that has shown promise in analysis of 
HTE data17,27. Notably, this framework allows for other target reaction 
outcomes to be used such as diastereoselectivity/enantioselectivity. 
ANOVA on the normalized target reaction outcome reveals the broad 
variables (solvent, base, catalyst system and temperature, and so on) 
that are statistically relevant for that reaction outcome17–19. Tukey’s 
honest significant difference test is then used to identify the outliers in 
each statistically significant variable, which are then ranked by average 
Z-score to provide the best- and worst-in-class reagents20.

How do the reagents populate the chemical space?
A visualization of the best- and worst-in-class reagents is useful to 
contextualize the scope of the dataset and therefore the extent of 
the reactome. The selection bias of reagents and clustering of high 
and low performing reagents can be easily interpreted. While numer-
ous techniques for dimensionality reduction and visualization of 
high-dimensional space are known, we chose to use PCA as its utility 
has been widely documented and numerous reliable user-friendly 
implementations exist28,29. Additionally, PCA is more interpretable 
than uniform manifold approximation and projection or t-distributed 
stochastic neighbour embedding, whose non-linearity necessitate 
warping the high-dimensional shape of the data during projection; the 
xy axes of projection lose the easy interpretability of highest variance 
(x axis)/second highest variance (y axis) that is fundamental to PCA30,31.

Taking the dataset to HiTEA
To test HiTEA, four distinct reactomes were chosen to be explored. 
These reactomes were widely used reaction classes: Buchwald–Hartwig 
couplings, Ullmann couplings, heterogeneous hydrogenations and 
homogeneous hydrogenations (Fig. 1b). From the generated reac-
tomes, careful analysis of HiTEA’s variable importances, statistically 
relevant best-/worst-in-class bases and catalysts, and ligand distribu-
tion was performed, concluding with tailored recommendations for 
further exploration. This analysis was also performed on temporally 
segregated data and data with their 0% yielding reactions removed, to 
mimic a dataset that would be more likely found in literature sources. 
Generally, temporal analysis appeared to be better correlated with 
the series of individual substrates screened over time than the evolv-
ing screen designs themselves. Despite the noticeable drift in best 
and worst reagents over time, we believe that inclusion of older data 
points may be beneficial. First, it typically expands the substrate space 
investigated, which is beneficial when investigating a reaction class 
overall. It also allows HiTEA and the user to more clearly distinguish 
the highly versatile reagents, which can be observed as those that 
were excellent performers over the entire course of their usage. The 
removal of 0% yielding reactions lead to a far poorer understanding of 
the reaction class overall (Supplementary Figs. 1–8). The disappearance 
of the worst-in-class reagents and catalysts was expected; however, 
best-in-class conditions also disappeared. This result highlighted the 
value of 0% and lower-yielding data in the disclosure of all datasets.

Buchwald–Hartwig couplings
Buchwald–Hartwig couplings are a fundamental reaction in medicinal 
and process chemistry32. The dependence of yield upon ligand elec-
tronic and sterics is well reflected in this dataset; it is diverse in catalysts 
and ligands, but less diverse in coupling partners. This was the largest 
reactome we analysed consisting of ~3,000 reactions.

Diversity wise, the dataset contained 31 unique halides and 32 
unique nucleophiles, encompassing amine, amide, aromatic nitrogen 
and alcohol nucleophiles, and 29 unique reacting halide–nucleophile 
pairs. Interestingly, the nucleophiles were less diverse than the aryl 
halides, owing to the nature of the ongoing campaigns at the time 
(Supplementary Fig. 9). It was also found that aryl bromides made up 
the majority of the reactions, both in number of unique reacting pairs 
and total number of reactions (Fig. 2a). It was expected that HiTEA 
on the Buchwald–Hartwig dataset without accommodating for this 
over-representation would reveal an HTE reactome predominantly 
centred around aryl bromide couplings. Indeed, HiTEA credits high 
variable importance to BrettPhos Pd G1 (Supplementary Fig. 10). This is 
clearly not in agreement with the literature’s reactome, in which many 
ligands show equal or better general performance to BrettPhos11,23,24,33. 
Thus it was hypothesized that a more nuanced analysis would arise if 
HiTEA was be applied to subdatasets (that is, ArBr + 1° amine, ArCl + 1° 
amine, and so on), to determine their subreactomes. Subdatasets with 
more than 80 reactions and two or more unique reacting pairs were 
analysed, as these subreactomes were more likely to be differentiated 
from their literature chemical reactomes.

With ArBr + 1° amines (three unique reacting pairs), the literature 
precedent suggests a high dependence on bulky biaryl phosphine 
ligands23, which can inhibit the unproductive β-hydride elimination 
pathway and prioritize the reductive elimination, will be observed. 
BrettPhos ligands were expected to be dominant in the reactome’s 
variable importances34, and indeed, we see that BrettPhos Pd G1 is by 
far the most important variable for this subdataset. Surprisingly, the 
even bulkier t-BuBrettPhos was not in contention for the top important 
variable23,24. The ArBr + 2° amines (three unique reacting pairs) show a 
negative dependence on the presence of P4-t-Bu, a phosphazene base, 
which despite known utility in cross couplings35, is universally bad for 
this subdataset. The other phosphazene base, P2-Et, is also ranked 
poorly by HiTEA (Fig. 3b). A recent systematic investigation of optimal 
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standard Buchwald–Hartwig conditions noted that P2-Et underper-
formed other bases9. With ArBr and ArI + 1° alcohols (both with two 
unique reacting pairs), and ArBr + amides (two unique reacting pairs), 
ligands with rigid backbones and steric bulk that promote easier reduc-
tive elimination and prevent the deleterious K2-amidate complexes24,36 
were expected to dominate, although a lower diversity of catalysts 
present in the variable importance analysis could be due to the lower 
random forest out of bag accuracy for these two reaction classes (Sup-
plementary Table 1). For these three subdatasets, the subreactomes 
are in agreement with the literature’s reactome with OMs RockPhos Pd 
G3 and OMs BrettPhos Pd G3 highlighted in HiTEA’s analysis. Finally, 
we turn to ArCl + 1° amine couplings (six unique reacting pairs). Here, 
the literature reports electron rich ligands that allow for more facile 
oxidative addition of the Ar–Cl bond and bulky scaffolds that limit the 
known β-hydrogen elimination pathway are preferred37,38. However, the 
HTE subreactome had only Pd(OAc)2/BippyPhos as a variable of minor 
importance (Fig. 3a). Upon closer inspection, a high dependence upon 
substrate identity was observed, implying that for this subreactome, 
the most important factor is the reacting halide–nucleophile pair.

Overall, the best-/worst-in-class catalysts fall neatly into chemical 
intuition for the reasons highlighted above (Fig. 3b), and gratifyingly 
also cluster neatly in the ligand PCA visualization (Fig. 4a). A sharp 
divide between best-in-class and worst-in-class ligand clustering is 

clear and Xantphos, the single ligand that could be either depending 
upon the precatalyst employed, resides away from the other ligands. 
Many of the subreactomes also agree with the literature’s reactome, but 
several areas of interest stick out. First, the ArCl + 1° amines reactome 
differs from the literature’s. While ArCl + 1° amine yield are somewhat 
dependent upon their reactants’ structures, the lack of any major ligand 
importance and the dominance of reactant identity suggests to us that 
this dataset may have some substrate selection bias. A clearer picture 
of ArCl + 1° amines’ reactome could be achieved with expansion of the 
diversity in nucleophiles screened. The second is the little importance 
placed upon t-BuBrettPhos in ArBr + 1° amine’s reactome. This may be 
due to the infrequent usage of t-BuBrettPhos when compared with the 
other catalysts in the subdataset. In the instances that t-BuBrettPhos 
was utilized, it was with challenging substrates (hence why it was noted 
as a best-in-class ligand with z-score–ANOVA–Tukey). In future screens, 
it could be advantageous to use t-BuBrettPhos more frequently to 
investigate this further.

Ullmann couplings
In recent years, palladium-free cross couplings such as the Ullmann 
reaction have gained in popularity due to their cost-effectiveness39. 
Ullmann couplings, in particular, are a viable option for aryl bromide/
iodide and nucleophile cross couplings. The Ullmann dataset is more 
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modest in scope and scale than its Buchwald–Hartwig counterpart, 
at about half the size; however, even in this smaller space HiTEA is 
applicable.

Contrary to the Buchwald–Hartwig dataset, which encompassed 
a ‘wide but shallow’ sampling of the substrate space, the Ullmann 
reactions are ‘narrow but deep’ with few subdatasets but higher total 
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number of reactions for each (Fig. 2b). The dataset contained nine 
unique halide–nucleophile pairs, with good diversity in both the aryl 
halides and the nucleophiles, albeit a limited number of each (Sup-
plementary Fig. 12).

HiTEA revealed HTE subreactomes that readily distinguish 
between subtle differences in solvent. Across the board, a high impor-
tance of solvent is observed, with dependencies based on differing 
reactomes. For example, In the ArI + aromatic nitrogen (three unique 
reacting pairs) and ArI + 2° alcohol couplings (two unique reacting 
pairs), dioxane and DMAc are favoured, respectively. For ArBr + 1° 
alcohol’s reactome (two unique reacting pairs), these two solvents are 
revealed to have less importance. In fact, the solvent of importance, 
allyl alcohol, is also the nucleophile in these couplings. In this subreac-
tome, ligand identity plays a large role in yield determination. Finally, 
for the ArI + 1° alcohol’s reactome, reaction temperature is a leading 
factor, a point that is of no surprise40. It was expected to also see some 
importance placed on temperature for the other three subreactomes, 
but due to HTE design, temperature remained nearly constant through-
out the entire subreactome, eliminating it as a variable.

For the Ullmann dataset, we believe the HTE and literature reac-
tomes are in broad agreement. Gratifyingly, phenanthroline-based and 
picolinamide-based ligands are present in the best-in-class ligands, 
which are well known as privileged scaffolds in Ullmann couplings41,42. 
HiTEA observed that the Ma ligands (DMPAO and PMPBO) were indi-
vidually less successful than other ligands in the standardized format 
of this HTE dataset. These ligands are characterized by high yields in 
the literature, which acknowledges that their yields are sensitive to the 
electronics of the specific ligand-reactant pairing43. Thus, it is possible 
that the true potential of these ligands were masked. Visualization of 
the ligand space reveals a very narrow scope for ligand choice, perhaps 
unsurprisingly given the similarity of privileged scaffolds in Ullmann 
couplings (Fig. 4a and Supplementary Fig. 14). A unique observation 
for the Ullmann’s ligand PCA is that the clustering is confined to the 
best-in-class ligands, supporting the random forest, z-score–ANOVA–
Tukey findings that, for the most part, a few select ligands are useful for 
good yield outcomes. This outcome highlights the sensitivity of HiTEA’s 
best- and worst-in-class catalyst analysis: despite the similarity in struc-
ture of the ligands, key differences in performance were identified, 
leading to a remarkably subtle overall ranking. The selection of specific 
solvents within the subreactomes was also intriguing. Although all the 
solvents identified are known to be good solvents within the literature, 
it is striking how each solvent’s importance varies across subreactomes. 
Solvent effects are known to play a role in the mechanism of Ullmann 
couplings, but an exact understanding of which solvents are best for 
single electron transfer (SET) versus iodo-atom transfer (IAT) or for C–N 
versus C–O coupling is not fully characterized, despite observed prefer-
ences40,44,45. A deeper dive into solvent characteristics is recommended 
for a more comprehensive understanding of this reactome overall.

Hydrogenations
Hydrogenations are a well utilized reaction with a broad range of 
applications46,47. The mechanistic differences between heterogene-
ous and homogeneous hydrogenations warrant that these datasets 
be analysed separately. Similar to the Buchwald–Hartwig dataset, the 
heterogeneous hydrogenations sample the reaction space in a ‘wide 
but shallow’ manner, whereas the homogeneous hydrogenations fol-
low the Ullmann’s ‘narrow but deep’ scope. The overall diversity of 
the molecules for both hetero- and homogeneous hydrogenations 
are broad (Supplementary Fig. 13). We will not be delving deeply into 
the heterogeneous reduction of ‘other Functional groups (FGs) (those 
which contain a mixture of nitro, diazo and nitrile reductions) nor the 
heterogeneous alkyne reductions due to this reaction type containing 
only a single unique molecule undergoing hydrogenation (Fig. 2c,d).

HiTEA reveals that the heterogeneous alkene subreactome 
(three unique reactants) places high negative importance on zinc 

dust, and for the HTE deprotection subreactome (nine unique reac-
tants), a high positive importance on temperature (Figs. 5 and 6). 
While temperature-correlated deprotections do agree with the lit-
erature’s reactome48,49, the negative correlation with zinc dust is a 
HiTEA-specific insight. This exemplifies the value of the negative results 
in the dataset, which enables HiTEA to confirm negative correlations. 
The literature’s reactome is often unable to confirm such correlations 
as it lacks publications with the negative data required. Interestingly, 
the other three subreactomes have no standout variable. In the case 
of the homogeneous hydrogenations (11 unique reactants), this can be 
explained by a strong dependence upon the reactants, but dearoma-
tizations (five unique reactants) show little overall dependence upon 
any variable, including molecule identity, perhaps due to the diverse 
and subtle changes that govern the energetically demanding process 
of dearomatization (Fig. 5)(ref. 50). For these three subdatasets, the 
HiTEA’s best-/worst-in-reaction-type reveal more information (Fig. 6).

Overall, higher loadings of Pd/C are better than lower loadings, 
and Pearlman’s catalyst is an all-around good catalyst for heterogene-
ous hydrogenations, two observations that are mirrored in the lit-
erature’s reactome51. The pH of hydrogenolysis deprotections have 
been reported to have a marked effect in selectivity of the reaction, 
although acidic conditions are usually preferential52. Dearomatiza-
tions, primarily performed on nitrogen-containing heterocycles in 
this dataset, are partial to acidic conditions53. For the yield of asym-
metric carbonyl reductions (six unique reactants), ligand structure 
was a key factor, with very little importance placed on the base. In the 
literature, preferential treatment is given to rigid-backboned ligands, 
as it is hypothesized that flexible backbones deform the chiral pocket, 
leading to lower stereoselectivities54,55. Indeed, even yield in this sub-
reactome is completely dominated by ligand structure, with the top 
performing ligand featuring a rigid six-member ruthenium metallo-
cycle of a Josiphos ligand. The middling ligands contain either seven- 
or eight-member metallocycles. The poorest performer is (dppb)
RuCl2AMPY, which boasts a more flexible backbone from the rotational 
bonds between the P–P bridge (Fig. 6)56. Once again, ligand visualiza-
tion reveals pockets of best- and worst-in-class ligand scaffolds, with 
clear distinctions between the best of the best-in-class ((R)-Josiphos 
SL J009-1 and Naud’s catalyst Ru; see Supplementary Fig. 11 for all 
structures of acronyms) and the worst of the worst-in-class (p-cymene 
and dppb/AMPY), further supporting our chemical understanding of 
ligand design in metal-mediated asymmetric carbonyl reductions. 
Gratifyingly, even among the very structurally similar C1-3## family 
of catalysts from Johnson Matthey, a noticeable delineation between 
the good and poor performers is visible (Fig. 4a). Finally, homogene-
ous alkene hydrogenations’ best-/worst-in-class analysis confirms its 
variable importances conclusions: across the subreactome as a whole, 
the choice of catalyst is not statistically relevant in the determination of 
yield. This is no doubt a case of dataset bias as all of HiTEA’s techniques 
failed to produce reasonable results: the random forest had low out of 
bag accuracy, the resulting random forest importances not including 
any catalysts, and the ANOVA deeming the catalysts as not statistically 
significant. A broader selection of alkene substrates and catalysts, or 
a subset of this dataset with less noise, would probably improve the 
utility of this subdataset.

Applications of HiTEA
The hidden chemical insights brought to light by HiTEA have a mul-
titude of potential applications. Three possible scenarios for HiTEA 
application are focused HTE, mechanistic interrogation and machine 
learning data preparation, which would be valuable for synthetic chem-
ists and data scientists.

Mechanistic interrogation
Keen understanding of the underlying reaction mechanism is advanta-
geous for reaction optimization, and oftentimes, a deep understanding 
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of a mechanism can lead to the development of new reactions and 
catalysts. However, many reaction mechanisms have seen only partial 
elucidation, especially those that feature organometallic transition 
states57. We imagine that HiTEA could identify hidden correlations 
between reaction inputs and measured reaction outcome, providing 
statistically robust evidence for or against mechanistic hypotheses. 

In the course of our manuscript, we discovered that solvent identity 
plays a substantial role in the yield of Ullmann couplings; however, 
unlike their Buchwald counterparts, the effect of solvent polarity on 
the multitude of potential halogen-atom transfer / single electron 
transfer catalyst intermediates has not been elucidated. As HiTEA has 
been designed to be applicable in even low data environments, it has 
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conceivable utility in the investigations of other reaction mechanisms with  
limited screening.

Bias identification for machine learning
Bias is detrimental to machine learning because it allows the model 
to ‘cheat’, relying on spurious correlations to get the right answer and 
leading to a lack of generalizability58. Take, for example, an image classi-
fication network recognizing a lion based on the savannah background 
rather than the animal’s own features59. Image classifiers now employ 
a variety of techniques to try to combat bias of this type in addition to 
using huge image datasets that will have images of their subjects in a 
variety of backgrounds, poses and distances.

For chemistry, HTE data has been noted as a valuable source of 
data for machine learning algorithms, as it is one of the best ways to 
generate moderate-to-large scale amounts of data in a parallel fashion. 
However, these data will also have some bias: the reagents chosen by 
the chemist running the screen, the reaction is known to fail with spe-
cific motifs thus those motifs are left out of the dataset, or the simple 
fact that HTE is limited to the set of synthesizable molecules, which 
can be thought of as a bias, albeit one that we may want the network 
to learn or to operate in. As observed in the previous sections, HiTEA 
is adept at finding areas of bias in datasets, which usually take the 
form of substrate bias. When using these biased datasets for machine 
learning, one can either (1) augment the dataset with further rounds 
of HTE or additional datasets or (2) take a subset of the dataset that is 
less noisy and less biased; a removal of outliers. Both tasks can be aided 

by HiTEA through iterative augmentations or reductions followed by 
HiTEA. Stable and chemically sound HiTEA results (the removal of 
the surprising insights) indicate a dataset that is relatively robust and 
superior for consistent modelling.

HiTEA for future HTE screens
The most straightforward application of HiTEA is for future reaction 
optimization reactions, either in high-throughput or in batch. While 
HTE can explore swaths of chemical space, the combinatorial cross 
of all possible reagents × catalysts × ligands × additives with even a 
limited set of reactants is unfeasible. HiTEA can give a visualization of 
the breadth of the scope and rapidly assess the statistically significant 
best and worst reagents, guiding the chemist to optimal reaction out-
come. One could imagine HiTEA being used in conjunction with Shields 
et al.‘s Bayesian optimizer for even faster optimization60. Additionally, 
temporal analysis is straightforward to run to visualize trends in poor 
and excellent conditions over time, adding further versatility to HiTEA’s 
utility in reaction screening.

Conclusions
Dataset exploration is an overlooked but critical area of research 
in data-driven chemistry. The experimentalist is often blind to the 
chemical insights that have been locked into these datasets, missing 
key directions towards areas of exploration. With the development of 
HiTEA, a meaningful step in addressing this challenge has been made. 
We uncovered several interesting areas of exploration within Ullmann 
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reactomes and identified several reactomes, which would mostly ben-
efit from additional HTE. We hope that this publication serves as a call 
to arms to the chemical community to collect, publish and analyse 
additional chemistry HTE data, providing further opportunities to 
explore the uncharted territories of the chemical reactome.
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Methods
Materials
The random forest analysis was performed with Scikit’s sklearn.
en-semble.RandomForestRegressor() (Scikit version 1.0.1) with python 
3.7. Canonicalization of the molecule SMILES strings was performed 
with rdkit (version 2020.09.01). Visualization of the Tanimoto squares 
was performed with matplotlib.pyplot() version 3.3.4. Morgan fin-
gerprints were formed with rdkit’s Chem.rdMolDescriptors.GetMor-
ganFingerprintAsBitVect() using 2,048 bits. PCA visualization of the 
ligand Morgan fingerprints was performed with sklearn.decompo-
sition.PCA(). All other analyses were performed in R (version 3.4.4) 
with RStudio as the integrated development environment. However, 
corresponding python code for all R analyses has been provided in the 
GitHub repository61. Correlations were performed with R’s built-in cor() 
function; ANOVA and Tukey tests were run with aov() and TukeyHSD(), 
respectively. One-hot encoding was achieved with the mltools library’s 
one_hot() function. All data manipulation in R was performed on data 
tables, with the data.table library.

Example dataset cleanup
Reactions with missing temperature entries were removed. Duplicated 
rows, duplicated reagents and nonsensical reagents were also removed. 
Reactions whose profile did not fit the standard reaction profile (for 
example, no catalyst, no base, unusual substrates or reagents identified 
via visual inspection) were flagged for manual evaluation and corrected 
or discarded as necessary. Reactants were then split into their reacting 
components (for example, nucleophile/electrophile). Manual inspec-
tion of any outliers was always performed to confirm correct sorting. 
If catalysts were present, metal sources were separated from ligands. 
Each reagent, reactive substrate(s) and catalyst–ligand pair were then 
one-hot encoded and checked for correlation. Any variable with a cor-
relation of 85% or higher was combined with its correlated variable.

Data availability
Further details of the analysis is available in the supplementary mate-
rials. The full dataset is available for download at our corresponding 
GitHub repository (https://github.com/emmaking-smith/HiTEA).

Code availability
Code and datasets can be found at https://github.com/emmaking- 
smith/HiTEA.
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