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In their recent article Nieto Feliner and colleagues discuss in
detail our previous article “How common is homoploid
hybrid speciation?” They conclude that our criteria for
homoploid hybrid speciation are so stringent that they will
cause researchers to overlook many of the important con-
tributions of hybridization to evolution and speciation
(Schumer et al. 2014; Nieto Feliner et al. 2017). In parti-
cular, the authors object to our proposal that for homoploid
hybrid speciation to be invoked, there should be evidence
that hybridization was important in generating reproductive
isolation between hybrids and their parental species. We
recognize that this view is one shared by many in the
community (Seehausen 2013; Liu et al. 2014; Lavretsky
et al. 2015; Nieto Feliner et al. 2017), yet it is still an area of
avid discussion and disagreement among evolutionary
biologists (Mavarez and Linares 2008; Hermansen et al.
2014; Capblancq et al. 2015; Payseur and Rieseberg 2016).

While Nieto Feliner et al. suggest that the criteria we
propose for establishing homoploid hybrid speciation may
limit our understanding of the importance of hybridization
in evolution, we argue here that such an approach is in fact
crucial for appreciating its importance.

As a field, our understanding of the extent of hybrid
ancestry in the genome has far outpaced our progress in
understanding its evolutionary impact. We view this as one
of the major challenges in contemporary evolutionary
biology. Whole-genome sequencing approaches in the past
decade have revealed dozens of cases of hybridization that
were previously unrecognized (Mallet 2005; Mallet 2008;
Abbott et al. 2013), with anywhere from ~ 2% of the gen-
ome up to nearly 50% of the genome derived from
admixture (e.g., Rieseberg et al. 2003a; Heliconius Genome
2012; Stukenbrock et al. 2012; Cui et al. 2013; Sankar-
araman et al. 2014; Trier et al. 2014; Vernot and Akey
2014; Sankararaman et al. 2016; Wall et al. 2016; Meier
et al. 2017). These empirical observations have caused a
massive shift in our views about the frequency and potential
importance of hybridization in evolution. In contrast, we
understand the ecological, evolutionary, or genetic factors
shaping hybrid ancestry in the genome in only a handful of
cases (e.g., Rieseberg et al. 2003a; Heliconius Genome
2012; Trier et al. 2014; Leducq et al. 2016).

Does empirical evidence of extensive hybrid ancestry in
the genome mean that hybridization has played an impor-
tant role in the diversification of that lineage? We focus on
an example from our own work that we find particularly
helpful in illustrating the complexity of this question. The
genome of the swordtail fish Xiphophorus nezahualcoyotl is
derived from admixture between a lineage ancestral to its
sister species Xiphophorus montezumae and another spe-
cies, Xiphophorus cortezi (we originally proposed this
species as a possible case of hybrid speciation; Cui et al.
2013). We estimate that this hybridization resulted in mix-
ture proportions of about 90% of the genome derived from
the X. montezumae lineage and 10% from the X. cortezi
lineage (Schumer et al. 2016). Strikingly, hybrid ancestry in
X. nezahualcoyotl’s genome has apparently rapidly stabi-
lized (i.e., fixed for one parental species ancestry or the
other) and has done so uniformly across its range. This type
of pattern is as or more extreme than genomic patterns that
have been interpreted as evidence of hybrid speciation in
other studies (e.g., Gompert et al. 2006; Buerkle and
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Rieseberg 2008; Stukenbrock et al. 2012). Importantly, X.
nezahualcoyotl falls under the definition by Nieto Feliner
et al. of a homoploid hybrid species—it is established,
persistent, and morphologically and ecologically distinct
from its parent species.

However, a closer examination of patterns of hybrid
ancestry in X. nezahualcoyotl’s genome complicates this
picture. We see evidence that hybrid ancestry from the X.
cortezi lineage is systematically depleted from functionally
important regions of the genome. Thus, with our current
data, it is difficult to reject the alternative hypothesis that the
extensive admixture we observe in X. nezahualcoyotl is the
neutral remnant of a process of purging hybrid ancestry
from the most functionally important regions of the
genome.

Just because there is evidence for extensive selection
against hybrid ancestry in the genome in cases like X.
nezahualcoyotl does not mean other mechanisms are not at
play—it is still possible that ecological, sexual, or genetic
traits derived from hybridization have importantly shaped
the evolution of this species and others—but this is a
hypothesis that should be tested. Such cases highlight our
view that as a field we have been making conclusions about
the role of hybridization in speciation based on too little
information. For example, using the definition proposed by
Nieto Feliner et al., a case where an already ecologically
and morphologically distinct species experiences neutral
gene flow from a closely related species could satisfy the
required evidence for hybrid speciation.

Several groups have implicitly used a more stringent
definition than that proposed by Nieto Feliner and collea-
gues—specifically that the morphologically or ecologically
distinct traits in the hybrid lineage are plausibly or
demonstrably a result of hybridization between the two
parental species. Though such observations can provide
evidence that admixture has had phenotypic effects, it will
also almost certainly be the case when large proportions of
the genome are derived from hybridization. To us, the
question remains of whether these hybridization-derived
phenotypes promote isolation through mechanisms such as
assortative mating, ecological, or genetic divergence or are
simply byproducts of admixture.

One concern raised by Nieto Feliner et al. is that the
criteria for homoploid hybrid speciation that we propose
will lead to an under-appreciation of the importance of
hybridization in generating new species because few species
will be well-studied enough to satisfy these criteria. On the
other hand, less-stringent definitions of hybrid speciation
have led to a rapid increases in the number of proposed
cases (see Fig. 2 from Schumer et al. 2014). Because so
many species have hybrid ancestry in their genomes, and
are also morphologically and ecologically distinct from the
taxa from which this hybrid ancestry was derived (e.g., Cui

et al. 2013; Li et al. 2016; Schumer et al. 2016; Malinsky
et al. 2017; Meier et al. 2017; Tung and Barreiro 2017;
Turissini and Matute 2017), the definition proposed by
Nieto Feliner et al. could lead to the conclusion that a huge
number of species originated by hybrid speciation instead of
forms of speciation historically thought to be more com-
mon, particularly in animals (e.g., allopatric speciation
followed by secondary gene flow; but see Grant 1971).
Although possible—and it is important not to reject the
possibility of hybrid speciation offhand—our argument is
that we do not yet have enough information in most cases to
link the presence of hybrid ancestry in the genome to the
process of speciation by hybridization.

This highlights the crux of the problem from our per-
spective: despite a wealth of recent studies demonstrating
the nature and extent of hybridization between species,
many fewer ask about its function and the evolutionary
processes shaping it. This is in part because we have just
begun to ask these questions from a genomic perspective
and much foundational work documenting the nature of the
problem was needed. The challenge we face now is
understanding the function of hybridization in the genome,
how and in what scenarios hybrid ancestry experiences
selection, and ultimately how it may contribute to specia-
tion. On the one hand, hybridization may introduce genes
that through recombination or epistasis generate phenotypic
novelty that allows hybrids to thrive in new ecological
niches (Gross and Rieseberg 2005; Rieseberg et al. 2003b),
or provide sufficient “raw material” for the evolution of a
novel hybrid lineage (Seehausen 2013). On the other,
hybridization can unleash an avalanche of genetic conflict
with deleterious effects (e.g., Masly and Presgraves 2007).
Nor are these possibilities mutually exclusive, as exempli-
fied by the work on human–Neanderthal admixture (San-
kararaman et al. 2014; Vernot and Akey 2014; Juric et al.
2015; Racimo et al. 2015; Harris and Nielsen 2016).
Teasing apart the impacts of selection against hybrid
ancestry genome-wide and positive selection on individual
hybrid traits is a complex challenge that will require new
ideas, theory, and approaches, particularly because genome-
wide signals of selection against hybridization may swamp
out adaptive signals at fewer loci. Further, functional work
addressing the evolutionary ecology of hybrid phenotypes
can provide an important complement to this work (e.g.,
Rieseberg et al. 2003a). These approaches present sub-
stantial intellectual and technical challenges but will ulti-
mately be necessary in moving as a field from
understanding patterns of hybrid ancestry to understanding
the evolutionary processes at play.

We think a notable parallel to the debate over homoploid
hybrid speciation is the neutralist–selectionist debate in
population genetics of the 1970s and 1980s. The neutral
theory, which proposed that effectively all variation
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observed at the DNA level within and between species is
either neutral or slightly deleterious, was an important
model for understanding genetic variation (Kimura 1968;
Kimura 1983), and provided clear, testable hypotheses for
researchers searching for evidence of adaptation at the
molecular level. Though it is now apparent that the neutral
theory cannot explain many features of genetic variation, it
provided a simple and powerful framework for under-
standing how evolutionary forces act on the genome and at
the same time has allowed us to more clearly understand
cases in which it fails (Kreitman 1996). We think a similar
argument can be made about the importance of carefully
evaluating alternative hypotheses in studies of hybrid spe-
ciation. For the neutralist–selectionist debate the develop-
ment of new theory and methods in the last two decades
(e.g., Hudson et al. 1987; Tajima 1989; McDonald and
Kreitman 1991; Zhang et al. 1998), in combination with
more data, has made it clear that neutral evolutionary pro-
cesses fail to explain certain patterns in the data (Kreitman
1996; Fay and Wu 2001; Hahn 2008; Sella et al. 2009).
Seriously considering the simple models of neutral or
deleterious admixture when evaluating putative cases of
hybrid speciation may similarly lead to new approaches that
substantially change our views about the frequency of
homoploid hybrid speciation. In other words, we
acknowledge that our view that homoploid hybrid specia-
tion is relatively rare (Schumer et al. 2014) could reflect a
lack of the appropriate kind of evidence rather than the
scarcity of the phenomenon. Distinguishing between these
alternatives should be a key focus of research going
forward.

One important issue raised by Nieto Feliner et al. is that
their definition of homoploid hybrid speciation addresses
the challenge faced by empiricists of understanding the
evolution of genomes and species in the context of hybri-
dization. Since hybridization is an important feature of the
evolutionary history of these species, we agree that
describing the nature of hybrid ancestry in a lineage is
essential, but propose that it can be done without invoking a
particular speciation mechanism in cases where direct evi-
dence is lacking. Specifically, observing hybrid ancestry in
the genome provides direct evidence that the species has an
admixed genome (or even a genome of hybrid origin) but
does not necessarily tell us about the evolutionary processes
that gave rise to that species. Thus, although we fully agree
with Nieto Feliner et al. that hybridization is an important
force driving the evolution of genomes and species, we
believe that understanding the evolutionary importance of
hybridization requires acknowledging its ubiquity while
carefully asking questions about its functional con-
sequences, including whether hybridization frequently leads
to reproductive isolation between hybrids and their parental
species.
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