Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Endoplasmic reticulum stress is attenuated by glycolysis in lymphatic malformations

Abstract

Background

This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation.

Methods

The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs.

Results

LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models.

Conclusions

These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs.

Impact

  • Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress.

  • Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition.

  • The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression.

  • Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model.

  • ER stress may be a promising and effective therapeutic target for the treatment of LMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of LPS on ER stress, proliferation, and apoptosis in HDLECs.
Fig. 2: LPS enhances the aerobic glycolysis in HDLECs.
Fig. 3: HK2 knockdown raises HDLECs sensitivity to ER stress-induced apoptosis.
Fig. 4: Co-expression of GRP78 (BIP), p-PERK and HK2 in LM LECs.
Fig. 5: Tunicamycin-induced ER stress suppresses the formation of LM lesions in Rat Models.
Fig. 6: Immunohistochemical staining of ki-67 and TUNEL staining in LM lesions of rat models.

Similar content being viewed by others

Data availability

The datasets used and/or analyses during the current study are available from the corresponding author on reasonable request.

References

  1. Ma, W. & Oliver, G. Lymphatic endothelial cell plasticity in development and disease. Physiol. (Bethesda) 32, 444–452 (2017).

    CAS  Google Scholar 

  2. Jiang, H. et al. Pyruvate kinase M2 mediates glycolysis in the lymphatic endothelial cells and promotes the progression of lymphatic malformations. Am. J. Pathol. 191, 204–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Edwards, P. D., Rahbar, R., Ferraro, N. F., Burrows, P. E. & Mulliken, J. B. Lymphatic malformation of the lingual base and oral floor. Plast. Reconstructive Surg. 115, 1906–1915 (2005).

    Article  CAS  Google Scholar 

  5. Elluru, R. G., Balakrishnan, K. & Padua, H. M. Lymphatic malformations: DiagNOSIS AND MANagement. Semin. Pediatr. Surg. 23, 178–185 (2014).

    Article  PubMed  Google Scholar 

  6. Walter, P. & Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. McGuckin, M. A., Eri, R. D., Das, I., Lourie, R. & Florin, T. H. Er stress and the unfolded protein response in intestinal inflammation. Am. J. Physiol. Gastrointest. liver Physiol. 298, G820–G832 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Galán, M. et al. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochimica et. biophysica acta 1843, 1063–1075 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karali, E. et al. Vegf signals through Atf6 and perk to promote endothelial cell survival and angiogenesis in the absence of Er stress. Mol. Cell 54, 559–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zeng, L. et al. Vascular endothelial cell growth-activated Xbp1 splicing in endothelial cells is crucial for angiogenesis. Circulation 127, 1712–1722 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Pereira, E. R., Liao, N., Neale, G. A. & Hendershot, L. M. Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 5, e12521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ghosh, R. et al. Transcriptional regulation of Vegf-a by the unfolded protein response pathway. PLoS One 5, e9575 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Warburg, O. On the origin of cancer cells. Sci. (N. Y., NY) 123, 309–314 (1956).

    Article  CAS  Google Scholar 

  15. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Pastorino, J. G. & Hoek, J. B. Hexokinase Ii: The integration of energy metabolism and control of apoptosis. Curr. medicinal Chem. 10, 1535–1551 (2003).

    Article  CAS  Google Scholar 

  17. Chai, M. et al. Bleomycin restricts the glycolysis of lymphatic endothelial cells by inhibiting dimeric Pkm2 formation: A novel mechanism for lymphatic malformation treatment. Biochem Pharm. 204, 115227 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Zou, Y., Wang, R., Zhao, J., Cai, Y. & Zhong, W. Increased M2 isoform of pyruvate kinase in fibroblasts contributes to the growth, aggressiveness, and osteoclastogenesis of odontogenic keratocysts. Am. J. Pathol. 191, 857–871 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, W. et al. Infiltration of M2-polarized macrophages in infected lymphatic malformations: Possible role in disease progression. Br. J. Dermatol 175, 102–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Morris, M. C., Gilliam, E. A. & Li, L. Innate immune programing by endotoxin and its pathological consequences. Front Immunol. 5, 680 (2014).

    PubMed  Google Scholar 

  21. Oyadomari, S. & Mori, M. Roles of Chop/Gadd153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Roberts, D. J. & Miyamoto, S. Hexokinase Ii integrates energy metabolism and cellular protection: Akting on mitochondria and torcing to autophagy. Cell Death Differ. 22, 248–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Fukunaga, M. Expression of D2-40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology 46, 396–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Medzhitov, R. Origin and physiological roles of Inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, F. Q. et al. M2-polarised macrophages in infantile haemangiomas: correlation with promoted angiogenesis. J. Clin. Pathol. 66, 1058–1064 (2013).

    Article  PubMed  Google Scholar 

  26. Chae, B. S. Pretreatment of low-dose and super-low-dose Lps on the production of in vitro Lps-induced inflammatory mediators. Toxicol. Res. 34, 65–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, K. et al. Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine 2, 324–333 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cao, S. S. & Kaufman, R. J. Unfolded protein response. Curr. Biol.: CB 22, R622–R626 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Nakayama, Y. et al. Molecular mechanisms of the Lps-induced non-apoptotic Er stress-chop pathway. J. Biochem 147, 471–483 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Li, W. et al. Crosstalk between Er stress, Nlrp3 Inflammasome, And Inflammation. Appl. Microbiol. Biotechnol. 104, 6129–6140 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Díaz-Bulnes, P., Saiz, M. L., López-Larrea, C. & Rodríguez, R. M. Crosstalk between hypoxia and Er stress response: A key regulator of macrophage polarization. Front Immunol. 10, 2951 (2019).

    Article  PubMed  Google Scholar 

  32. Duvigneau, J. C. et al. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 124, 154577 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Blesinger, H. et al. Pik3ca mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations. PLoS One 13, e0200343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, L. J., Chai, Y., Guo, X. J., Chu, S. L. & Zhang, L. S. Effects of endoplasmic reticulum stress on autophagy and apoptosis of human leukemia cells via inhibition of the Pi3k/Akt/Mtor signaling pathway. Mol. Med. Rep. 17, 7886–7892 (2018).

    CAS  PubMed  Google Scholar 

  35. Pang, X. L., He, G., Liu, Y. B., Wang, Y. & Zhang, B. Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation. World J. Gastroenterol. 19, 1736–1748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, S., Lim, W., Bazer, F. W. & Song, G. Naringenin induces mitochondria-mediated apoptosis and endoplasmic reticulum stress by regulating Mapk and Akt signal transduction pathways in endometriosis cells. Mol. Hum. Reprod. 23, 842–854 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Hetz, C. The unfolded protein response: Controlling cell fate decisions under Er stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, W. et al. Pkm2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (NSFC) grant 82370978, 81741082 (Y.C.), grant 81800994 (W.Z.), grant 81972548 (C.H.), National Health Commission of the People’s Republic of China grant 2019ZX09302011 (D.M. and Y.C.), Wuhan Science and Technology Bureau grant 2020020601012212 (Y. C.).

Author information

Authors and Affiliations

Authors

Contributions

W. Z., X. L. and H. J.: acquisition of data, analysis and interpretation of data; P. W.: interpretation of data; M. C., T. Z. and J. L.: analysis and interpretation of data. S. Y., D. M. and X. Z.: acquisition of data. C. H.: revising it critically for important intellectual conten; W. Z. and Y. C.: conception and design interpretation of data, revising it critically for important intellectual content and final approval of the version to be published.

Corresponding author

Correspondence to Yu Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Statement of the patient consent

All the patients have signed the informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhong, W., Jiang, H. et al. Endoplasmic reticulum stress is attenuated by glycolysis in lymphatic malformations. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03181-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03181-9

Search

Quick links