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Strategies to enhance paracrine potency of transplanted
mesenchymal stem cells in intractable neonatal disorders
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Mesenchymal stem cell (MSC) transplantation represents the
next breakthrough in the treatment of currently intractable
and devastating neonatal disorders with complex multi-
factorial etiologies, including bronchopulmonary dysplasia,
hypoxic ischemic encephalopathy, and intraventricular
hemorrhage. Absent engraftment and direct differentiation
of transplanted MSCs, and the “hit-and-run” therapeutic
effects of these MSCs suggest that their pleiotropic protection
might be attributable to paracrine activity via the secretion of
various biologic factors rather than to regenerative activity.
The transplanted MSCs, therefore, exert their therapeutic
effects not by acting as “stem cells,” but rather by acting as
“paracrine factors factory.” The MSCs sense the microenviron-
ment of the injury site and secrete various paracrine
factors that serve several reparative functions, including
antiapoptotic, anti-inflammatory, antioxidative, antifibrotic,
and/or antibacterial effects in response to environmental
cues to enhance regeneration of the damaged tissue.
Therefore, the therapeutic efficacy of MSCs might be
dependent on their paracrine potency. In this review, we
focus on recent investigations that elucidate the specifically
regulated paracrine mechanisms of MSCs by injury type and
discuss potential strategies to enhance paracrine potency, and
thus therapeutic efficacy, of transplanted MSCs, including
determining the appropriate source and preconditioning
strategy for MSCs and the route and timing of their
administration.

Despite recent advances in neonatal intensive care
medicine, intractable neonatal disorders, including

bronchopulmonary dysplasia (BPD) (1,2), severe intraven-
tricular hemorrhage (IVH) (3), and hypoxic ischemic
encephalopathy (HIE) (4), remain major causes of mortality
and serious morbidities in survivors. Currently, few effective
therapies are available to ameliorate injuries resulting from
these disorders. Therefore, the development of new, safe, and
effective therapies to improve the outcomes of these
devastating neonatal disorders is an urgent issue.

Recently, several preclinical studies have demonstrated the
promise of stem cell therapies in attenuating tissue injuries in
newborn animal models of BPD (5–10), HIE (11), and IVH
(12–15). Furthermore, phase I clinical studies in newborn
infants with BPD (16), HIE (17), or severe IVH have shown
that stem cell treatments for newborn infants might be safe,
feasible, and potentially efficacious. Taken together, these
findings suggest that stem cells might represent a paradigm
shift in the treatment of currently intractable and devastating
neonatal disorders. However, stem cell therapies are still
experimental, and the precise mechanisms of action under-
lying them remain to be elucidated. This review summarizes
the therapeutic potential of stem cells for these neonatal
disorders. We focus on the paracrine protective mechanism
underlying the beneficial effects of stem cell therapies and
potential strategies to enhance the paracrine potency, and
thus therapeutic efficacy of MSC transplantation to facilitate
bench-to-bedside translation of stem cell therapies for these
disorders.

PROTECTIVE MECHANISMS UNDERLYING STEM CELL
THERAPIES
Pleiotropic Protective Effects of Stem Cell Therapies
Because the pathophysiological mechanisms of tissue injuries
after BPD (18–21), severe IVH (22,23), or HIE (24) are
complex and multifactorial, modulating only one factor might
not be sufficient to ameliorate the disease. Therefore, a
multifaceted therapeutic agent might be necessary to improve
outcomes of patients with these intractable neonatal dis-
orders. The pleiotropic beneficial effects of stem cell therapy,
such as antiapoptotic, anti-inflammatory, antifibrotic, and
antioxidative effects, have been observed in various animal
models of BPD (5–8,10), severe IVH (13–15), or HIE
(11,25,26). Furthermore, in addition to their beneficial anti-
inflammatory effects, antibacterial activity of transplanted
stem cells were observed in an animal model of Escherichia
coli pneumonia (27). Considering their manifold therapeutic
effects, stem cells, rather than other single therapeutic agents,
might be the most promising candidates for therapies aimed
at improving the prognosis of certain neonatal disorders.
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Engraftment and Regeneration
Recent insights into the biology of stem cells have ignited the
hope of regenerating damaged organs by stem cell transplan-
tation (28–34). Among various stem cell therapies (35,36),
mesenchymal stem cells (MSCs) have emerged as the most
promising therapeutic candidates in regenerative medicine, as
they are more ethically and socially acceptable and show less
tumorigenicity than embryonic stem cells. Because of their
multilineage differentiation potential, the protective effects of
MSC transplantation were initially ascribed to the engraft-
ment of these cells in injured tissues and their subsequent
transdifferentiation to repair and replace damaged cells
(37,38). However, the very low rate of in vivo engraftment
and differentiation of transplanted MSCs (8,15,39) suggests
that long-term survival of MSCs might not be essential for
their beneficial effects (28,40). Therefore, the therapeutic
effects of MSC transplantation might not be associated with
their differentiation and direct replenishment of damaged
tissue parenchymal cells.

Paracrine Protection
Not only MSCs but also their conditioned media were able to
ameliorate hyperoxia-induced (41,42) or lipopolysaccharide-
induced (43) acute lung injuries. Moreover, therapeutic
efficacy of other cell types, including endothelial progenitor
and amniotic epithelial cells, in BPD has also been reported
(10,44,45). These findings suggest that the protective
mechanisms of MSC transplantation might mainly be related
to their ability to stimulate the survival and recovery of
damaged tissue by paracrine manners (Figure 1).
In various tissue injury models, transplanted MSCs exert

anti-inflammatory, antifibrotic, antioxidative, antiapoptotic,
antimicrobial, and permeability-decreasing paracrine effects
via secretion of soluble factors. These soluble factors include
various cytokines such as transforming growth factor-β (46)
and interleukin-10 (ref. 47), growth factors such as vascular
endothelial growth factor (48), hepatocyte growth factor (49),
keratinocyte growth factor (50) brain-derived neutrophic
factor (13,51), nerve growth factors (51), and neurotrophin-3
(ref. 51) insulin growth factor-1 (ref. 52), proteins such as
angiopietin-1 (ref. 53), tumor necrosis factor-stimulated gene
6 (ref. 54), interleukin-1 receptor antagonist (55), lipocalin-2
(ref. 56) LL-37 (ref. 57), defensin-2 (ref. 58) and others.
Recent reports also demonstrated that MSCs ameliorated and
resolved inflammation by producing proresolving lipid
mediators such as lipoxin A4 in acute lung injury (59) and
resolvins in animal models of sepsis (60).
Recently, in addition to the cytokines and other secreted

molecules mentioned above, MSC derived-extracellular vesi-
cles (EVs) or exosomes (28,40,61–63) were shown to be key
mediators of MSC therapeutic action (62–64). EVs derived
from MSCs show therapeutic effects on various tissue injury
in preclinical animal models by modulating immune response
(65), ameliorating oxidative stress (66), and decreasing
apoptosis (67), which is similar to what is achieved using
the originating MSCs themselves. In recent studies using

newborn animals, MSC-derived EVs protected neonatal lungs
after hyperoxic injury (68), fetal brains after hypoxia–
ischemia (64), and the intestine from experimental necrotiz-
ing enterocolitis (69).
The therapeutic mechanism of MSC-derived EVs or

exosomes has been known to be related to the transfer of
their vesicular cargo molecules, which mediate cell-to-cell
communication. These vesicular molecules are biologically
active and include proteins, RNAs such as messenger RNA,
microRNA, and transfer RNA, as well as bioactive lipids
(70,71). Detailed information regarding MSC-derived EVs or
exosomes can be found in other focused reviews (72,73).
However, as a paracrine mechanism of action of MSCs, the

importance of the presence of MSCs themselves rather than
the MSC secretome for early recovery from ventilator-induced
lung injury has been highlighted (74). In addition, attachment
of live MSCs to the alveolar epithelium in acute lung injury
was shown to be critical for mitochondrial transfer of
MSCs (75).
Recently, transfer of mitochondria from MSCs has been

demonstrated to be pivotal for the beneficial effects of MSCs
(76–78). Recent reports showed that mitochondrial transfer
occurred from MSCs to macrophages (78), partly through
tunneling nanotubes (77), and the transfer of functional
mitochondria in EVs is responsible for the anti-inflammatory
effects of MSCs on macrophages in the inflammatory milieu
(72,79).
Taken together, these findings suggest that the pleiotropic

protective effects of transplanted stem cells might be mediated
predominantly by paracrine action via the secretion of various
biologic factors—a “hit-and-run” mechanism (80,81)—rather
than by direct regenerative action (82–85). The use of a cell-
free preparation comprising MSC-derived EVs or exosomes in
place of stem cells shows excellent promise as a new
therapeutic approach for neonatal disorders, as it circumvents
side effects such as tumor formation that are associated with
treatments with live stem cells.

Environmental Cues Trigger the Secretion of Paracrine Factors
Accumulating evidence indicates that MSCs release cytopro-
tective paracrine factors strictly in response to environmental
cues (86,87). We observed that despite the use of the same
human umbilical cord blood (UCB)-derived MSCs, pivotal
cytoprotective paracrine factors varied by disease animal
model. The protective effects of human UCB-derived MSC
transplantation on hyperoxic neonatal lung injuries were
associated with significant upregulation of hyperoxia-induced
vascular endothelial growth factor (VEGF) and hepatocyte
growth factor (11). Furthermore, knockdown of VEGF
secreted by MSCs (7) transfected with small interfering RNAs
specific for human VEGF abolished the protective effects of
MSCs, such as attenuation of impaired alveolarization and
angiogenesis, reduction of increased terminal deoxynucleoti-
dyl transferase nick-end labeling - and ED-1-positive cells,
and downregulation of proinflammatory cytokine expression,
indicating that VEGF secreted by transplanted MSCs (7) and
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contained within MSC-derived exosomes (not yet published)
is a critical paracrine factor that plays seminal roles in
attenuating hyperoxic neonatal lung injuries. Although the
same human UCB-derived MSCs as those used to treat
neonatal hyperoxic lung injuries were transplanted into a
newborn animal model of severe IVH, we observed significant
upregulation of brain-derived neurotrophic factor (BDNF)
both in DNA and antibody microarray analyses (13).
Furthermore, in newborn rats with severe IVH, knockdown
of BDNF secreted by MSCs abolished the neuroprotective
effects of MSCs, such as significantly reduced posthemor-
rhagic hydrocephalus and impaired behavior, increased
apoptosis, inflammation, and astrogliosis, and reduced
myelination, indicating that BDNF secreted by transplanted
MSCs is a critical paracrine factor that plays critical roles in
attenuating severe IVH-induced brain injuries in neonatal
rats. Additionally, Toll-like receptor-4 (TLR-4) signaling in
transplanted MSCs and the subsequent secretion of β-
defensin 2 was essential in mediating the antibacterial and
anti-inflammatory protective effects of MSCs in acute lung
injuries following E. coli-induced pneumonia (27). Our
conflicting data on the critical role of the proinflammatory
phenotype of TLR-4-primed MSCs (88), which exerted anti-
inflammatory properties in E. coli-induced acute lung injuries,

suggest that MSCs sense and control host inflammation by
switching between their roles as proinflammatory or anti-
inflammatory mediators (89). In addition, TLR-4 in MSCs
plays pivotal roles in eliminating pathogens by augmenting
antibacterial effects and reducing host tissue injuries by
attenuating the inflammatory response (90,91). Collectively,
these studies suggest that key paracrine factors secreted by
MSCs from the same source play important roles in mediating
the therapeutic effects of MSCs in different preclinical disease
models (11,13,48), suggesting that there is a crosstalk and
interplay between the host tissue and transplanted MSCs
(61,92). Therefore, unlike drug treatments that deliver a single
agent at a specific dose, transplanted MSCs act as a “paracrine
factors factory” that sense the microenvironment of the injury
site and secrete various paracrine factors that exert several
reparative functions, including antiapoptotic, anti-inflamma-
tory, antioxidative, antifibrotic, and/or antibacterial effects in
response to local microenvironmental cues to enhance the
regeneration of damaged tissue (86).
Moreover, recently, the change of the name of MSCs into

“medicinal signaling cells” were proposed instead of calling as
“stem cells” because transplanted MSCs to treat the diseases
act their primary beneficial and medicinal function at the
injury sites of the body through their secretory action (93).

Neonatal intractable disorders

BPD

Disease-specific milieu

Optimal source
Optimal dose
Optimal route

MSCs

Paracrine action

Anti-inflammatory
Anti-fibrotic
Anti-oxidative
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Anti-bacterial
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Optimal timing
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Paracrine potency
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Figure 1. Schematic showing paracrine mechanism of pleiotropic biomodulation and protection provided by mesenchymal stem cells (MSCs) against
neonatal intractable disorders such as bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), hypoxic–ischemic encephalopathy (HIE),
and others. Phase I clinical trials in newborn infants have shown that stem cell transplantation is safe and feasible in BPD, IVH, and HIE. Several
preclinical evidences of protection against other diseases such as necrotizing enterocolitis (NEC), pneumonia, and sepsis post-MSC transplantation or
application of MSC-secreted extracellular vesicles or exosomes in animal models are available. MSCs locally or systemically transplanted into various
tissue injuries exert anti-inflammatory, antifibrotic, antioxidative, antiapoptotic, antibacterial, and permeability-stabilizing paracrine actions through
the secretion of soluble paracrine molecules. Among them, MSC-derived extracellular vesicles or exosomes are known as the key mediators of MSC
therapeutic effects. Moreover, transfer of mitochondria from MSCs to host cells is one of the important paracrine mechanisms underlying the
beneficial effects of MSCs. The paracrine potency of MSCs are associated with disease-specific environmental milieu, and potential strategies for
enhancing the paracrine potency of MSCs include optimal determination of cell source, dose, route, and timing for MSC transplantation. Furthermore,
various preconditioning and genetic engineering of MSCs can potentiate the paracrine potency of MSCs. MSC-secreted vascular endothelial growth
factor (VEGF) and brain-derived neurotrophic factor (BDNF) are critical paracrine factors mediating protection obtained after MSC transplantation
against BPD and severe IVH, respectively.

Review | Park et al.

216 Pediatric RESEARCH Volume 83 | Number 1 | January 2018 Copyright © 2018 International Pediatric Research Foundation, Inc.



POTENTIAL STRATEGIES TO ENHANCE PARACRINE
POTENCY OF STEM CELL THERAPIES
As the therapeutic efficacy of MSCs seems to be dependent on
the paracrine potency of MSCs, the following potential
strategies to enhance the paracrine potency of MSCs,
including determining the best source, route, timing, and
preconditioning approach for MSCs, might improve the
therapeutic efficacy of transplanted MSCs (9,35,82,84,94,95).

Paracrine Potency Assay
As implied by the relatively loose minimal criteria for defining
MSCs, including their fibroblast-like morphology, plastic
adherence in culture, defined cell surface marker expression
profiles (CD 73-, 90-, and 105-positive and CD 45-, 34-, 14-,
and 11b-negative), and capacity for differentiation into cell
types such as adipocytes, chondrocytes, and osteoblasts (96),
MSCs might represent a heterogeneous cell population
(83,96). Therefore, their paracrine potency and therapeutic
efficacy might vary with source (97–99) and batch (100) of
MSCs. Therefore, identifying a specific marker or feature to
predict the in vivo therapeutic potential of transplanted MSCs
is the Holy Grail in clinical translation of MSCs transplanta-
tion for use in neonatal disorders (101,102).
The close association of the therapeutic efficacy of MSCs

with their paracrine potency suggests that measuring para-
crine potency of MSCs might be a surrogate measure of their
in vivo therapeutic efficacy. The expression of soluble tumor
necrosis factor receptor-1 in MSCs was quantitatively assayed
as a surrogate measure of potency for the treatment of
steroid-resistant acute graft-vs-host disease (103). However, as
the clinical trial failed to meet the primary criterion of
therapeutic efficacy, it remains unknown whether soluble
tumor necrosis factor receptor-1 by MSC expression levels are
predictive of the in vivo therapeutic efficacy of MSCs. An
in vitro assay measuring IL-10 released from blood cells might
be useful in analyzing the potency of MSC-conditioned media
and MSC lysates (104). Our data indicating a critical role for
VEGF secreted by MSCs in BPD (7) and in BDNF and severe
IVH (13) suggests that quantification of these factors might be
used as a potency biomarker assay to select MSCs with the
best predicted in vivo therapeutic efficacy for application in
neonatal disorders. Further studies will be necessary to
identify robust and predictive markers of therapeutic efficacy
and develop quantitative assays that measure the paracrine
potency of transplanted MSCs and predict their in vivo
efficacy.

Optimal Cell Source
MSCs obtained from gestational tissues such as UCB (105),
Wharton’s jelly, or umbilical cords (106) showed increased
secretion of chemokines, proinflammatory proteins, and
growth factors, as well as higher rate of cell proliferation,
than MSCs obtained from adult adipose tissue or bone
marrow. Furthermore, in our recent study comparing the
in vivo therapeutic efficacy of adipose tissue- and UCB-
derived MSCs and UCB-derived mononuclear cells in

protecting against hyperoxic lung injuries in newborn rats,
UCB-derived MSCs exhibited better therapeutic efficacy in
attenuating hyperoxic lung injuries, with effects such as
impaired alveolarization and angiogenesis, increased cell
death, alveolar macrophages, and proinflammatory cytokines,
and increased secretion of VEGF and hepatocyte growth
factor, compared with that of adipose tissue MSCs or UCB-
derived mononuclear cells (10). Collectively, as donor age
negatively impacts the paracrine potency of stem cells and
thus the therapeutic efficacy of stem cell therapies, birth-
associated tissues such as UCB or Wharton’s jelly might be
the optimal source for MSCs in future clinical applications to
protect against intractable neonatal disorders (107).

Preconditioning of Stem Cells
There is growing evidence that in vitro preconditioning of
MSCs can optimize their paracrine potency and thus their
therapeutic potential (82,108–110). Preconditioning of MSCs
includes exposure of in vitro MSCs to hypoxic or anoxic
conditions (111–114); e.g., the addition of growth factors such
as epidermal growth factor (115), glial cell-derived neuro-
trophic factor (116), insulin-like growth factor-1 (ref. 117);
cytokines such as tumor necrosis factor-α (118), or stromal
cell-derived factor-1 (ref. 119); hormones such as angiotensin-
II (ref. 116), melatonin (120), or lipopolysaccharides (121);
and pharmacologic or chemical agents such as hydrogen
peroxide (122), deferoxamine (123), or diazoxide (124).
Although manifold mechanisms, including improved in vivo
survival and engraftment after transplantation (125), might be
involved, enhancement of the therapeutic potential of MSCs
by preconditioning seems to be mediated primarily by
stimulating the secretion of growth factors, cytokines, and
other proteins, as well as the release of exosomes and EVs
from MSCs (114). Enhanced secretion of paracrine factors by
preconditioned MSCs has various trophic, immunomodula-
tory, antiapoptotic, and proangiogenic effects (82). However,
the paracrine profiles of the secretomes obtained from
preconditioned MSCs are known to vary according to the
preconditioning regimen used. Therefore, although encoura-
ging preclinical data increases the hope that preconditioning
can enhance the reparative and regenerative capacities of
MSCs, additional comprehensive studies will be necessary to
decipher the whole secretomes of MSCs, including exosomes
secreted after different preconditioning regimens (125), and,
based on these data, to establish the optimal preconditioning
regimen and schedule to ensure maximal paracrine potency
and therapeutic efficacy of transplanted MSCs.

Genetic Engineering of Stem Cells
One promising therapeutic strategy is enhancing the release of
a specific paracrine regenerative factor from stem cells by
overexpressing it through genetic engineering (108). In
agreement with this hypothesis, overexpression of VEGF in
MSCs enhanced stem cell-mediated therapeutic efficacy in
neural and cardiac repair (126), and intracerebral transplan-
tation of BDNF gene-modified MSCs 1 day after middle
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cerebral artery occlusion promoted functional recovery and
reduced infarct sizes in rats (127). In contrast, intranasal
transplantation of BDNF-overexpressing MSCs 3 days after
neonatal stroke failed to promote recovery from middle
cerebral artery occlusion-induced brain injuries (128). Over-
all, these findings suggest that several details, including route,
timing, and dose, might be confounding variables that
determine the success or failure of transplanting genetically
engineered MSCs. Further studies will be necessary to confirm
this. Apart from therapeutic efficacy, safety issues are major
limitations to future clinical therapeutic applications of
genetically engineered MSCs, as viral integration in the host
genome increases tumorigenicity (129). Although the risk of
tumorigenicity can be reduced by using an adenovirus vector
that does not integrate into the host genome instead of lenti-
or retroviruses, further studies that closely monitor the fate of
transplanted gene-modified MSCs will be necessary to address
these safety concerns.

Optimal Route of Administration
Determining the optimal route for stem cell transplantation
might be a critical issue for clinical translation of this therapy.
Systemically or intravenously administered MSCs are known
to migrate and localize chemotactically to injury sites in host
tissue (34,130). Furthermore, systemically injected MSCs are
usually retained mainly in the lungs and other organs such as
liver, spleen, and kidneys (42,131). In addition, systemic
intravenous or intraperitoneal routes of MSC transplantation
are less invasive and might be more suitable for use in
unstable newborn infants than the more invasive local route
of administration such as intratracheal or intracerebroven-
tricular injection. However, systemically transplanted MSCs
have the disadvantage of nonspecific targeting because of their
broad dissemination and ability to cross an intact blood–brain
barrier. In our previous studies, although four- to fivefold
higher doses of MSCs were administered intravenously or
intraperitoneally (systemically) than administered intratra-
cheally or intraventricularly (locally), significantly higher
numbers of donor MSCs were correctly localized in the lungs
or brains of a newborn rat model of hyperoxia (5) or severe
IVH (14), respectively. Moreover, local, rather than systemic,
transplantation of MSCs was associated with greater paracrine
potency in the production of trophic factors such as VEGF
and hepatocyte growth factor (11), and thus better therapeutic
efficacy against newborn BPD (5) and severe IVH (14) in
animal models. Paracrine signals are transmitted only over
short distances via factors that exert local effects (82). The
cross-talk between the microenvironment of injured host
tissues and MSCs activates MSCs to produce cytoprotective
paracrine factors. Therefore, proximity of the donor cells to
the injury site is essential for their paracrine-protective effects.
Collectively, these findings support the assumption that local,
rather than systemic, administration of MSCs might be the
optimal route for MSC transplantation to enhance tissue
repair.

Determining the Optimal Timing
Determining the optimal timing for MSC transplantation is
another important factor in clinical translation of this therapy.
Although the therapeutic windows for MSC transplantation
to address neonatal disorders vary widely according to the
animal model used and the severity of tissues injury, early
rather than late transplantation of MSCs better attenuated
hyperoxic lung injuries (6), severe IVH (132), neonatal stroke
(133), and hypoxic–ischemic encephalopathy (11). Moreover,
our data on upregulation of growth factors such as VEGF and
hepatocyte growth factor with early but not with late
transplantation of MSCs, despite higher donor cell localiza-
tion in neonatal hyperoxic lung injuries (6), suggest that the
protective effects of MSCs, including proangiogenic, antiox-
idative, anti-inflammatory, antifibrotic, and antiapoptotic
effects, might be associated with or mediated by enhanced
secretion of these paracrine growth factors (134). In contrast,
prolonged survival and engraftment of donor cells might not
be essential for their paracrine potency (28,40). Moreover, as
inflammation might affect the secretion of these growth
factors by MSCs (135), MSC transplantation soon after injury
might be essential for their paracrine potency and the
resultant therapeutic efficacy. Overall, the therapeutic time
window for stem cell therapy might be narrow, and MSC
transplantation as close as possible to the time of brain insult
might be optimal for increased paracrine potency and
therapeutic outcomes. Further studies will be necessary to
confirm this.

Determining the Optimal Dose
Considering various preclinical data showing wide variations
in the paracrine potency and therapeutic efficacy of
transplanted MSCs according to the timing and route of
stem cell administration in different animal models of BPD
(6,11), HIE (136), and IVH (14), optimal doses need to be
determined at the specific injury site and with the specific
timing and route of MSC transplantation.

CONCLUSION
Recent preclinical and clinical studies suggest that MSC
transplantation could be a game changer for treating currently
intractable neonatal disorders with complex multifactorial
etiologies, including BPD, HIE, and IVH. MSCs act as
“paracrine factors factory” by secreting various paracrine
factors are responsible for their pleiotropic effects in response
to microenvironmental cues in the injured host tissues.
Therefore, MSC transplantation might open a new chapter in
tailor-made neonatal medicine. However, further meticulous
studies to delineate the paracrine-protective mechanisms of
MSCs with specific injuries and to determine strategies,
including the best source, preconditioning regimen, route,
timing, and dose of transplanted MSCs, to enhance the
paracrine potency and, thus, the therapeutic efficacy of MSCs
will be necessary for successful clinical translation of these
therapies.
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