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Population assignment in autopolyploids

DL Field1, LM Broadhurst2, CP Elliott3 and AG Young2

Understanding the patterns of contemporary gene dispersal within and among populations is of critical importance to population
genetics and in managing populations for conservation. In contrast to diploids, there are few studies of gene dispersal in
autopolyploids, in part due to complex polysomic inheritance and genotype ambiguity. Here we develop a novel approach for
population assignment for codominant markers for autotetraploids and autohexaploids. This method accounts for polysomic
inheritance, unreduced gametes and unknown allele dosage. It can also utilise information regarding the origin and genotype of
one parent for population assignment of maternal or paternal parents. Using simulations, we demonstrate that our approach
achieves high levels of accuracy for assignment even when population divergence is low (FST ~0.06) and with only 12
microsatellite loci. We also show that substantially higher accuracy is achieved when known maternal information is utilised,
regardless of whether allele dosage is known. Although this novel method exhibited near identical levels of accuracy to Structure
when population divergence was high, it performed substantially better for most parameters at moderate (FST=0.06) to low
levels of divergence (FST=0.03). These methods fill an important gap in the toolset for autopolyploids and pave the way for
investigating contemporary gene dispersal in a widespread group of organisms.
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INTRODUCTION

Understanding contemporary patterns of dispersal are of crucial
importance in evolution, ecology and conservation biology. Since
the advent of diverse polymorphic markers (for example, microsa-
tellites), assignment methods (Paetkau et al., 1995; Rannala and
Mountain, 1997; Cornuet et al., 1999; Paetkau et al., 2003) have
allowed for rapid estimation of dispersal that would otherwise be
difficult and time-consuming to obtain through direct observations
(Berry et al., 2004). Population assignment is one such tool that aims
to identify the source population for specific individuals or assign
them to multiple populations in the case of recent admixture. These
methods have become important in forensics for identifying the
provenance of material of unknown origin, determining the frequency
of hybridization between species and the degree of connectivity among
recently fragmented populations (for example, Cain et al., 2000; Manel
et al., 2003; Paetkau et al., 2003; Berry et al., 2004). Although several
methods for population assignment exist for diploid organisms, there
are currently limited options for polyploids (but see Meirmans and
Van Tienderen, 2004; Falush et al., 2007). Polyploidy is a widespread
phenomenon of major ecological and evolutionary importance in
plants and animals (Otto and Whitton, 2000; Mable, 2004; Soltis et al.,
2004; Wood et al., 2009). However, few population genetic studies of
dispersal in polyploids have been conducted owing, in part, to a lack
of methods that appropriately account for the complexities of
polyploid data.
Although population assignment for diploids is relatively straight-

forward, several unique features of polyploids continue to provide
significant challenges for implementing these techniques in natural
populations. These partly depend on the presumed origin of whole-

genome duplication (Ramsey and Schemske, 1998). Polyploids are
commonly categorized broadly as either allopolyploid (derived from
interspecific hybridization) or autopolyploid (derived from chromo-
somal doubling of the same genome). In allopolyploids, bivalents are
mostly formed between pairs of homologous chromosomes (for
example, A1/A2, B1/B2), resulting in disomic inheritance similar to
that of diploids (Ronfort et al., 1998). In contrast, segregation patterns
in autopolyploids are considerably more complex because chromo-
somes either pair at random or form multivalents during meiosis.
Polysomic inheritance in autopolyploids can result in two alternative
segregation patterns. First, random chromosome segregation (RCeS),
where gametes arise from any random assortment of homologous
chromosomes but sister chromatids always end up in different
gametes. Alternatively, maximum equational segregation and random
chromatid segregation (RCdS) may occur where sister chromatids
behave independently and distribute into the same gamete, a process
that can result in double reduction (Bever and Felber, 1992). For
example, consider an autotetraploid individual with four distinct
alleles (abcd) at a locus. There are six possible gametes where sister
chromatids distribute to different gametes (ab, ac, ad, bc, bd and cd)
and four derived from double reduction (aa, bb, cc and dd). It is
therefore important to consider these complexities given that they can
influence segregation ratios, as well as expected gametic and genotype
frequencies, at the population level.
A further challenge for polyploids is genotype ambiguity such that,

for codominant markers (for example, microsatellites), allele dosage
(copy number) cannot be reliably determined (Obbard et al., 2006).
Molecular markers are only able to detect which alleles are present but
not how many of each there are. For example, in the case of a
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hexaploid individual, the presence of the two alleles (a, b) at a locus
could reflect five possible genotypes (aaaaab, aaaabb, aaabbb, aabbbb,
abbbbb). Therefore, many genotypes are indistinguishable and require
the use of phenotypes (that is, the unique alleles present, Table 1).
There is a long history of theory developed for understanding the
population genetics of autopolyploids that incorporate some of the
complexities of polysomic inheritance, double reduction and genotype
ambiguity (for example, Haldane, 1930; Mather, 1935; Geiringer,
1949; Moody et al., 1993; Ronfort et al., 1998; Wu et al., 2001; Luo
et al., 2006; Stift et al., 2008; Meirmans and Tienderen, 2013).
However, approaches that explicitly incorporate polysomic inheritance
and double reduction to examine contemporary patterns of gene
dispersal are currently unavailable for autopolyploids.
For diploids, population assignment is commonly achieved through

frequency-based likelihood or full Bayesian approaches. Frequency-
based methods such as GeneClass (for example, Cornuet et al., 1999)
use a sample of reference genotypes that provides information on the
allele frequencies from each of the known (fixed) candidate popula-
tions. Individuals of unknown origin are then assigned probabilisti-
cally to their most likely population of origin. In contrast, the Bayesian
method implemented in Structure (Falush et al., 2007) uses an iterative
algorithm (Markov Chain Monte Carlo) that randomly assigns
individuals into a number of groups (predefined clusters) and
converges when the assumption of Hardy–Weinberg and linkage
equilibrium is fulfilled. Thus Structure simultaneously identifies the set
of populations, their allele frequencies and the population member-
ship coefficient of each individual, and these are updated until the best
fit for the data is found. Currently, the only assignment approaches for
polyploid data include Genodive (Meirmans and Van Tienderen, 2004)
and Structure (Falush et al., 2007), although both programs do not
account for double reduction. Only Structure allows for phenotype
markers; however, it remains unclear how accurate the method is for
performing population assignment compared with a method that
allows for polysomic inheritance with double reduction for autopo-
lyploids. In addition, information on the maternal relationship for

individual offspring (if known) is not utilized in existing assignment
methods. However, in many cases, for example, seed collected from
individual plants, including information on the genotype of the known
maternal parent could increase the power of population assignment as
only the population origin of the paternal parent requires evaluation.
Here we develop novel methods of population assignment for

autotetraploid and autohexaploid species that explicitly account for
polysomic inheritance with double reduction and ambiguous geno-
types (implemented in the software AutoPoly). The main goal is to use
allele frequency information from predefined reference genotypes
sampled from a set of candidate populations and then assign a set
of genotyped individuals of unknown origin (that is, offspring) to their
most likely: (i) joint maternal and paternal source population, when
both maternal and paternal origins are unknown (for example, seed
dispersal), or (ii) paternal population of origin (for example, pollen
dispersal), given the maternal parent is known (genotype and
population of origin). For each of these approaches, we present
methods for genotype (allele dosage known) and phenotype markers
(allele dosage unknown). To assess the accuracy of these assignment
methods in relation to Structure, we conducted a power analysis using
simulated microsatellite (SSR) data and examined the effects of the
number of loci, degree of population differentiation (FST), genotype
ambiguity, maternal information, error rates and double reduction.
From this, we address the following questions: (i) what is the
difference in the accuracy of population assignment between genotype
and phenotype data? (ii) does the inclusion of maternal information
improve population assignment? (iii) how accurate is AutoPoly for
providing point estimates of migration rates? and (iv) how does the
accuracy of AutoPoly compare to Structure? Lastly, we test these
methods using an empirical data set for the autohexaploid plant
Eremophila glabra.

METHODS

Likelihood model for polyploid population assignment
In our model, individuals are autopolyploid with either four (Y4) or six (Y6) sets
of chromosomes (that is, 2n= 4x= tetraploid; 2n= 6x=hexaploid), but all
populations must have the same ploidy level for any given analysis. Random
mating is assumed within each reference population (both in terms of zygote
and gamete dispersal) and loci are assumed to be unlinked and in linkage
equilibrium. We allow segregation patterns at a given locus to follow
expectations for polysomic inheritance with multivalent formation under
random chromatid segregation (RCdS). To allow for any double reduction
rate (DRR), we use general formulas for DRR anywhere within the theoretical
bounds (for RCdS, tetraploids, 0oαo(1)/(7); hexaploids, 0oβo(3)/(11))
(Mather, 1936; Geiringer, 1949). Here we assume the maximum double
reduction follows that expected for RCdS rather than maximum equational
segregation (tetraploids, 0oαo(1)/(6); hexaploids, 0oβo(3)/(10)). We
assumed RCdS as this was more tractable for calculating general formulas for
segregation ratios and the specific requirements for maximum equational
segregation (that is, only one crossover event between locus and centromere) is
rather restrictive. Moreover, for most empirical data sets, DRR at a given locus
remains unknown (but see Stift et al., 2008) but probably lies somewhere
between the theoretical minimum and maximum. By always using general
formulas for α and β, we circumvent the problem of other methods that do not
allow for multivalent chromosome formation and double reduction (that is,
Structure and Genodive) or assume that double reduction is fixed at either the
theoretical minimum or maximum (for example, Buteler et al., 1997).
We consider a set of I discrete populations that exchange zygotes (for

example, seed) or gametes (for example, pollen). In each population, a
representative sample of n individuals are either genotyped (allele dosage
known) or phenotyped (allele dosage unknown). We let Gijm and Pijm denote
the genotype and phenotype at the jth locus (j= 1, 2, …, J) for the mth
individual (m= 1, 2, …, M) located in the ith population (i= 1, 2, …, I). For

Table 1 Genotype classes, phenotypes and general formulas for the

number of possible genotypes given k codominant alleles

Class Genotype Phenotype No. of genotypes k=6

Genotype Phenotype

Monoallele aaaaaa a k 6 6

Biallele I aaaaab ab k(k−1) 30 15

Biallele II aaaabb ab k(k−1) 30

Biallele III aaabbb ab k(k−1)/2 15

Triallele I aaaabc abc k(k−1)(k−2)/2 60 20

Triallele II aaabbc abc k(k−1)(k−2) 120

Triallele III aabbcc abc k(k−1)(k−2)/6 20

Quadriallele I aaabcd abcd k(k−1)(k−2)

(k−3)/6

60 15

Quadriallele II aabbcd abcd k(k−1)(k−2)

(k−3)/4

90

Pentallele aabcde abcde k(k−1)(k−2)

(k−3)(k−4)/24

30 6

Hexallele abcdef abcdef k(k−1)(k−2)

(k−3)(k−4)

(k−5)/720

1 1

Total 462 63

An example for the number of possible genotypes and phenotypes when k=6.
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example, an individual genotype (Gijm) lists the alleles detected where the total
alleles recorded must equal the ploidy level (for example, tetraploid, aabc;
hexaploid, aabcde), whereas a phenotype (Pijm) lists only the unique alleles
present (for example, tetraploid, abc; hexaploid, abcde). We let G= {Gijm} and
P= {Pijm} represent the matrix of genotypes or phenotypes of individuals in the
sampled population. The model only allows for resolved genotypes or
phenotypes for a given analysis (that is, cannot include both phenotypes and
genotypes). Although the majority of empirical data sets will consist of
phenotypes, we describe both approaches because beginning with unambiguous
genotypes is an easier starting point.
Our assignment method builds on techniques designed for diploids for

individual based population assignment using multilocus genotypes (Rannala
and Mountain, 1997; Cornuet et al., 1999) and consists of five main steps that
calculate: (1) allele frequencies in each candidate (reference) population, (2)
expected gamete frequencies at random mating equilibrium (RME) in each
population, (3) expected genotype frequencies at RME, (4) assignment
probabilities, and (5) simulations to determine the confidence intervals (CIs)
for assignment. For each step, we describe the methods for autotetraploids
followed by autohexaploids and, when required, derivations for both genotype
and phenotype data. For the assignment probabilities (step 4) we describe
separately the methods for: Model I= joint maternal and paternal
population assignment with a single population origin (for example, seed
dispersal), Model II= joint maternal and paternal population assignment with
an admixed population origin, and Model III=paternal population
assignment given the known maternal genotype of each offspring (for example,
pollen dispersal).

Allele frequencies
The first step in population assignment requires that allele frequencies are
estimated in each of the reference populations to be evaluated as potential
source populations. For genotype data, the frequency of each allele in a given
population can be directly counted from information in the genotype matrix at
each locus (Gij), as in diploids. In contrast, for phenotype data (Pij), only the
distinct alleles that are carried by an individual are known. We use two
alternative approaches: (i) Expectation-Maximization (EM)-based estimation,
and (ii) marginal (weighted) allele frequency. The EM method follows the
approach outlined by De Silva et al. (2005) and implemented in Polysat (Clark
and Jasieniuk, 2011) and we run this approach assuming no selfing (for
example, self-incompatible plants). One limitation of this method is that it
assumes only RCeS occurs, meaning that double reduction under RCdS is not
incorporated. To avoid the problem of using unknown priors or restricted
assumptions on the nature of polysomic inheritance, we also use an alternative
estimate based on the marginal allele frequency. This approach is equivalent to
summing the allele counts over the set of possible genotypes for each given
phenotype, which can be approximated by determining the number of
individuals in each phenotypic class and weighting these proportionally to
the number of alternative alleles. Here we let the vector pij= {p1ij,…,pkij}, where
pkij is the frequency of the kth allele at the jth locus in the ith population. Given
the vector of phenotypes Pij and Y4 (tetraploid), we find the frequency of the
kth allele as:

Pr pkjijPij;Y 4

� �
¼ nk4 þ ð4=3Þnk3 þ 2nk2 þ 4nk1

4Ni
ð1Þ

where we denote Ni as the total number of individuals in the ith population and
nk4, nk3, nk2 and nk1 are the number of quadriallele, triallele, biallele and
monoallele individuals carrying the kth allele, respectively. In the case of
quadriallele (first term nominator; nk4), the allele counts are unambiguous as
the genotype is known. For triallele phenotypes (the second term on the
nominator; (4/3)nk3), there can be four total copies of kth allele across three
alternative genotypes. Similarly, for biallele phenotypes (third term; 2nk2),
summing across possible genotypes there are a total of six copies for three
genotypes. Lastly, for monoallele phenotypes (last term nominator; 4nk1), these
are unambiguous as genotype is known. Following this same procedure, for Y6
(hexaploid):

Pr pkjijPij;Y 6

� �
¼ nk6 þ 1:2nk5 þ 1:5nk4 þ 2nk3 þ 3nk2 þ 6nk1

6Ni
ð2Þ

where nk6, nk5, nk4, nk3, nk2 and nk1 are the number of hexallele, pentallele,
quadriallele, triallele, biallele and monoallele individuals carrying the kth allele,
respectively. Compared with the EM-based estimation, the marginal allele
frequency method may result in a bias towards more uniform allele frequencies,
particularly when the population sample is small.

Population gametic probabilities
The next step requires the expected frequency of each gamete in each reference
population under the assumption of random mating (RME), given the allele
frequencies are known and a given DRR. For autopolyploids with RCdS, we
must first calculate the expected frequencies of all possible gametes at
equilibrium from the allele frequencies. In contrast to diploids, autopolyploids
do not reach equilibrium after one generation of random mating but approach
this asymptotically (Haldane, 1930; Geiringer, 1949; Bever and Felber, 1992).
However, this can be approximated with general limit formulas for RME under
segregation patterns intermediate between RCeS and RCdS (Geiringer, 1949).
We denote the vector gij= {g1ij,…,gmij}, where gmij is the expected frequency

of the mth gamete at the jth locus in the ith population at RME. Tetraploids can
transmit two allele copies and thus two classes of gametes are possible, either a
monoallele or a biallele which occur with the frequencies xkk and 2ykk′,
respectively (where allele k≠k′). For example, in a tetraploid population with
k= 2 unique alleles, there are three possible gametes. For clarity, we use
notation x11 in place of xkk, this gives x11, 2y12, and x22. To explicitly allow for
polysomic inheritance and any DRR, we use the general limit formulas derived
by Geiringer (1949) to calculate the equilibrium gamete frequencies for any
given probability of double reduction (0oαo0.1428) (also see Wricke and
Weber, 1986) as:

Pr x11jpij;Y 4

� �
¼ pkij

2 þ 3a
2þapkij 1� pkij

� �
Pr 2y12jpij; Y4

� �
¼ pkijqk0 ij

4�4a
2þa

ð3Þ

where pkij and qk′ij is the frequency of alleles k1 and k2 at the jth locus in the ith
population. When α= 0, the general limit formulas reduce to the binomial
expansion of (p+q,…,ki)

Y/2, where x11= p2, 2y12= 2pq and x22= q2.
Hexaploid gametes transmit three alleles and can be classified into three

classes in a hexaploid depending on the number of unique alleles they carry.
These include monoallele gametes (xkkk), biallele (3ykkk' and 3ykk'k') and triallele
gametes (6zkk'k''). For example, a hexaploid population with a total of k= 3
alleles, there are 10 possible gametes (x111, x222, x333, 3y112, 3y122, 3y223, 3y233,
3y113, 3y133 and 6z123). We used the general limit formulas (Equation 28;
Geiringer, 1949) to calculate the equilibrium gamete frequencies for any DRR
(0oβo0.2727). The probability of the ith population producing monoallele,
biallele and triallele gametes in a hexaploid population is:

Pr x111jpij;Y 6

� �
¼ 27 1�bð Þ 3�bð Þ

9þbð Þ 9þ2bð Þ p
3
kij þ 45b 3�bð Þ

9þbð Þ 9þ2bð Þp
2
kij þ 20b2

9þbð Þ 9þ2bð Þpkij

Pr 3y112jpij;Y 6

� �
¼ 27 1�bð Þ 3�bð Þ

9þbð Þ 9þ2bð Þ p
2
kijqk0 ij þ 15b 3�bð Þ

9þbð Þ 9þ2bð Þpkijqk0 ij
Pr 6z123jpij;Y6

� �
¼ 27 1�bð Þ 3�bð Þ

9þbð Þ 9þ2bð Þ pkijqk0 ijrk00 ij

ð4Þ

Where pkij, qk′ij, rk′′ij represent the observed frequency of allele k1, k2 and k3,
respectively. When β= 0, the general formulas reduce to the trinomial
expansion of (p+q+r,…,ki)

Y/2 (for example, x111=p
3, 3y112=3p

2q, 6z123= 6pqr).

Genotype and phenotype probabilities
For tetraploids, when the mother is unknown, the probability of observing the
genotype Gijm for individual m at locus j, given it is from population i, is
dependent on assuming the individual is solely from population i and the
vector of expected gametic frequencies from population i (gij) and
polyploidy=Y4. This equates to the genotype probabilities at RME, Pr(Gijm|i,
gij,Y4). Henceforth, to distinguish genotypes we denote alleles with letters and
their allele copy number with subscripts. The probability of observing each
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genotype class follows Geiringer (1949) as

Pr a4ji; g ij;Y 4

� �
¼ x11ð Þ2

Pr a3bji; g ij;Y4

� �
¼ 4x11y12

Pr a2b2ji; g ij; Y4

� �
¼ 4 y12ð Þ2 þ 2x11x22

Pr a2bcji; g ij;Y4

� �
¼ 4x11y23 þ 8y12y13

Pr abcdji; g ij;Y 4

� �
¼ 8y12y34 þ 8y13y24 þ 8y14y23

ð5Þ

Unlike for tetraploids, as far as we are aware, there are no general formulas to
calculate the expected genotype frequencies for hexaploids that take into
account double reduction. Therefore, we derived the expected genotype
frequencies for hexaploids at RME equilibrium that simply follows the random
union of gametes within each population (Appendix A1). We follow the same
notation for tetraploids. The probabilities of observing each genotype class
given the individual from population i are:

Prða6ji; g ij;Y 6Þ ¼ ðx111Þ2

Prða5bji; g ij; Y6Þ ¼ 6x111y112

Prða4b2ji; g ij; Y6Þ ¼ 6x111y122 þ 9ðy112Þ2

Prða3b3ji; g ij; Y6Þ ¼ 2x111x222 þ 18y112y122

Prða4bcji; g ij; Y6Þ ¼ 12x111z123 þ 18y112y113

Prða3b2cji; g ij; Y6Þ ¼ 6x111y223 þ 36y112z123 þ 18y113y122

Prða2b2c2ji; g ij;Y 6Þ ¼ 18y112y233 þ 18y133y122 þ 18y113y223 þ 36ðz123Þ2

Prða3bcdji; g ij; Y6Þ ¼ 12x111z234 þ 36y112z134 þ 36y113z124 þ 36y114z123

Prða2b2cdji; g ij; Y6Þ ¼ 36y112z234 þ 18y114y224 þ 18y114y223

þ 72z123z124 þ 36z134y122
Prða2bcdeji; g ij;Y 6Þ ¼ 36y112z345 þ 36y113z245 þ 36y114z235 þ 36y115z234

þ 72z123z145 þ 72z134z125 þ 72z124z135

Prðabcdef ji; g ij; Y6Þ ¼ 72ðz123z456 þ z124z356 þ z125z346 þ z126z345

þ z134z256 þ z135z246 þ z136z245 þ z145

z236 þ z146z235 þ z234z156Þ
ð6Þ

For hexaploids, this gives 11 distinct genotype classes (Table 1). Although the
number of possible genotypes increases rapidly with the number of alleles (for
example, when k= 6, gives 462 genotypes), the expected genotype frequencies
at RME for each can be calculated on the basis of their respective
genotype class.
For phenotypes, the expected frequency of full homozygotes and hetero-

zygotes (for example, monoallele and hexallele for a hexaploid, respectively) are
equal to genotype frequencies at RME. To evaluate genotype probabilities for
partial heterozygotes, we must account for the lack of allele copy number. To
address this problem, we take the sum of the probabilities of obtaining each of
the possible genotypes. For example, for a phenotype with three unique alleles
detected, abc, the set of possible genotypes is Gijm∈ {Pijm}= {aabc, abbc, abcc}.
Therefore, the probability of obtaining each of the alternative genotypes is
proportional to their frequencies at RME, which depends on the equilibrium
gametic frequencies in the ith population (gij and ploidy (Yx), given the
population from which the individual was sampled,

Pr Pijmji; gij;Yx

� �
¼

X
GijmAfPhg

PrðGijmji; gij; YxÞ ð7Þ

Assignment probabilities
Model I. Population assignment (single candidate, mother unknown). Here we
assume individual m is from two unknown parents that belong to a single
candidate population. This probability comes directly from the probability of
observing the genotype at each of the candidate populations. Assuming the
alleles at the J loci are independent (no linkage), we calculate the probability of
observing the multilocus genotype Gim, or phenotype Pim, at a given candidate

population i as the product of the probabilities at each locus:

Pr Gimji; gi;Yx

� � ¼ YJ
j¼1

Pr Gijmji; gij; Yx

� �

Pr Pimji; gi;Yx

� � ¼ YJ
j¼1

Pr Pijmji; gij;Yx

� � ð8Þ

when an allele is absent from population i, this results in a zero probability of
gametes and genotypes that carry that allele. This reduces the probability of the
multilocus genotype/phenotype to zero, although the particular allele may be
rare in the population or missing among the reference individuals (Cornuet
et al., 1999). To account for this problem, we follow Rannala and Mountain
(1997) and let the frequency of the absent allele be proportional to the inverse
of the number of gene copies at the locus, adjusted by the number of observed
alleles as, pkji*= (1/Kj)/NijY, where Kj is the total number of alleles detected
across all populations for the jth locus, Ni are the total number of individuals
sampled in the ith candidate population and Y is the ploidy level (for example,
Y= 6 for hexaploid). Given this allele frequency, we re-calculate allele
frequencies proportionally so that the sum of allele frequencies in each
population sums to one and then re-calculate the probability of all possible
gametes and phenotypes/genotypes.

Model II. Population assignment (admixed individuals). We now consider the
situation in which we assume one parent is a resident of population i and
assume the other parent belongs to a different candidate population i′. We
denote this first-generation admixed genotype as G[i,i']jm, where one gamete is
from the resident population i (that is, g[i]j{..}) and the other gamete is from
population i' (that is, g[i,i']j{..}). For tetraploids, the probability of observing
individual m which is a mixed (F1) genotype G[i,i']jm at locus j depends on the
gametic frequencies in each of the two populations (gij, gi'j) and can be written
as Pr G i;i

0½ �jmji; i
0
; gij; gi0 j;Y 4

� �
. We replace the term G i;i

0½ �for each specific
genotypic class as follows:

Pr a4 i; i′½ �jmji; i′; gij; gi′j;Y 4

� �
¼ x11½i�x11½i0 �

Pr a3b i;i′½ �jmji; i′; gij; gi′j;Y 4

� �
¼ 2x11½i�y12½i′� þ 2x11½i′�y12½i�

Pr a2b2 i; i′½ �jmji; i′; gij; gi′j;Y 4

� �
¼ x11½i�x22½i′� þ x11½i′�x22½i� þ 2y12½i�y12½i′� þ 2y12½i′�y12½i�

Pr a2bc i;i′½ �jmji; i′; gij; gi′j; Y 4

� �
¼ 2x11 i½ �y23 i′½ � þ 2x11 i′½ �y23 i½ � þ 4y12 i½ �y13 i′½ � þ 4y12 i′½ �y12 i½ �

Pr abcd i;i′½ �jmji; i′; gij; gi′j;Y 4

� �
¼ 4y12 i½ �y34 i′½ � þ 4y12 i′½ �y34 i½ � þ 4y13 i½ �y24 i′½ � þ 4y13 i′½ �y24 i½ �
þ 4y14½i�y14½i′� þ 4y14½i′�y14½i�

ð9Þ
Similarly, the probability of mixed genotypes for a hexaploid individual is
Pr G i;i

0½ �jmji; i
0
; gij; gi0 j; Y6

� �
and are described in Appendix A2.

Phenotype data are treated as outlined for the case of non-admixed
individuals (Equation 7). Similarly, the probability of observing the multilocus
genotype G[i,i']m, or phenotype P[i,i']m, assuming it is an F1 between population i
and i', follows that of Equation 8.

Model III. Population assignment (paternal origin given mother known). Now
we consider a situation where individual offspring are sampled and the identity
of the female (mother) and her population of origin and genotype/phenotype
are known, but the location and identity of the male (father) is unknown. The
location of the unknown father may be in any of the candidate populations,
including that of the known female. The intent is to determine for a given
offspring (o), the most likely source of the male gamete (xm), given that the
female parent (f) is known. This can be expressed in a similar framework used
for paternity analysis (for example, Meagher, 1986). We evaluate the probability
of obtaining the offspring genotype (Goj) given the following relationship: f is a
parent of o and the male parent, mi, is located in the ith population. We make
the assumption that the female and male parents are not F1 or recent
immigrants to the population in which they were sampled. The probability
depends on the gamete frequencies in the ith population (gij), ploidy (Yx), and
the DRR (αj or βj) at the jth locus and can be written as:

Pr GojjGf j; gij;Yx; aj;bj
� �

¼
X
xf

PrðGojjxf ÞPrðxf jGf iÞPrðxmjgijÞ ð10Þ
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where xf and xm are the female and males gametes, respectively, P(xf|Gfj) is the
gamete segregation probability from a given female genotype and P(xm|gij) is the
probability of the male gamete given the expected gamete frequencies in a
candidate population (Equations 3 and 4). For polyploids, there can be many
alternative gametes that two parents could have contributed towards the
offspring, hence we sum over all the possible gametes segregating from the
known female parent. Although gametic segregation ratios have been described
previously for autohexaploids for fixed RCeS or RCdS, most loci
probably exhibit intermediate DRR between the two extremes. Therefore, for
hexaploids we derived generalized segregation probabilities for any value of β
(Appendix A3).

Likelihood of population assignment
For each individual, we evaluate the likelihood of population assignment to
each of the candidate populations and, being a first generation, between all
pair-wise candidate populations. Following Cornuet et al. (1999), for Model I
we take the logarithms of the genotype probabilities in each candidate
population (i= 1, 2,…, I). For Model II, we take the logarithms of each hth
population pair (h= 1, 2,…, H), where the number of admixed population
genotype/phenotype possibilities is H= I(I− 1). In the case of two candidate
populations i and i′, for example, the log-likelihoods of the observing individual
m, assuming it is solely from population i, or assumed m is an admixed
genotype originating from two populations [i, i′] would be:

ln½Pr Gimjgi;Yx

� ��
ln½PrðGi

0
mjgi0 ; Y6Þ�

ln½PrðG½i;i0 �mjgi; gi0 ;Y6Þ�
ð11Þ

Each individual is assigned to the population or admixed population pair in
which the likelihood of observing the individual’s genotype/phenotype is the
highest. Using this method, a candidate population or mixed population pair is
always assigned from among the set of reference populations. In order to
discriminate between the most likely candidates, we use the statistic, ln D, as the
difference in the log-likelihood of the most likely candidate (ln1) and the
second most likely (ln2):

ln D ¼ ln1 � ln2 ð12Þ

Confidence intervals
We used simulations to assess the accuracy of assignment procedures and
identify the critical values of ln D. The aim here is to provide a measure of
confidence that an individual belongs to the assigned candidate population or
jointly to two populations in the case of admixed genotypes/phenotypes. We
generated new sets of multilocus genotypes/phenotypes for each population by
drawing gametes according to their expected frequencies in the reference
samples. Similarly, for population assignment when the mother is unknown, we
generated new sets of mixed multilocus genotypes/phenotypes for each of the
hth population pairs (h= 1, 2,…, H). Next we compare ln D between groups of
simulated individuals that were assigned correctly and incorrectly. Critical
values for population assignment were approximated from the distribution of
ln D values of the simulated data (typically n= 10 000; see Supplementary
Information S1 and Supplementary Figure S1 for more details).

Genotyping errors
To examine the effects of genotype/phenotype errors on critical values, we
modified the simulated individuals according to two sources of error, e1 and e2,
where e1 is the probability of allelic dropout (removing an allele from a
phenotype or genotype) and e2 is the probability of an allele being mis-scored.
For the latter, e2, an allele is replaced with an alternative proportional to the
allele frequencies in the sampled population. These simulations did not
explicitly model null alleles; however, increasing rates of allelic dropout will
generate similar effects on critical values.

Power analysis with simulated data sets
In order to compare the performance of these different polyploid assignment
methods, we simulated populations using an individual-based model with

polysomic inheritance and double reduction. Briefly, this simulation considered
a finite island model with migration between 10 populations of constant size,
each containing 1000 hermaphrodite individuals (with no selfing) with 24
microsatellite loci and a mutational rate (μ= 2× 10− 4). By running separate
simulations with different migration rates, we obtained replicate data sets with
five different levels of average population differentiation (FST: 0.03, 0.06, 0.09,
0.13 and 0.20; see Supplementary Information S2 for more details).
We ran each combination of FST (0.03, 0.06, 0.09, 0.13 and 0.20), with three

different number of loci (6, 12 and 24), two marker types (genotype,
phenotype) and two model approaches (mother unknown (Models I and II)
and mother known (Model III)) for two ploidy levels (tetraploid and
hexaploid). Once the model was at mutation–migration equilibrium, we
randomly sampled a set of reference samples (n= 60 from each population)
and generated a set of offspring (n= 10 000). Here, among the final set of
offspring, the migration rate was increased to m= 0.5, so that ~ 5000 were
generated from random mating within populations and the remaining from
interpopulation mating. Although this represents an atypically high migration
rate, this facilitated comparisons of accuracy on the equal sample size between
different metapopulations with different FST. Owing to computational con-
straints for forward-time simulation of polyploid populations, we obtained 10
replicates for each combination of the above parameters (total n= 1200
simulations). Low s.e. for accuracy among replicates, particularly for higher
FST 0.13 and 0.20 and 412 loci (s.e. in accuracy o1%) suggests that this
number was sufficient to demonstrate differences in the various assignment
methods. Given that the incorrect choice of α and β had little impact on
accuracy (Supplementary Information S2), we drew a random DRR at each
locus between the theoretical minimum and maximum values for RCdS for α
(0–0.14) and β (0–0.2727). With AutoPoly, individuals were assigned to their
most likely paternal population of origin at 80% confidence calculated from
simulating n= 10 000 individuals with error rates (e1= 0.005 and e2= 0.005).

Migration rate point estimates
We also examined the performance of AutoPoly to provide estimates of
interpopulation migration rates. Although population assignment is not
designed to explicitly estimate migration rates, point estimates can be obtained
by dividing the number of detected immigrants by the total sample size (Manel
et al., 2003). Here we simulated autohexaploid populations with different
migration rates for populations with different degrees of population differ-
entiation (FST) and number of loci that resemble data typically available for
studies of natural populations. Following the same procedure described in the
power simulations, once the simulation reached drift-mutation equilibrium, we
generated a final set of offspring (n= 10 000 from each population). For the
progeny, the migration rate, m, is the probability that individual offspring were
generated through interpopulation mating, while 1−m were generated from
random mating within populations. We ran 10 replicates for each of the
following combination of parameters: migration rate m (0.02, 0.1, 0.2), FST
(0.03, 0.06, 0.09), and number of loci (6, 12). Here we examined phenotype
markers, mother known (Model III) and a fixed intermediate DRR (β= 0.136)
(that is, n= 180 simulations), which was assumed known in the assignment
test. Individuals were assigned with the same conditions in the previous power
simulations.

AutoPoly and Structure
In order to compare the performance of AutoPoly with Structure, we use a
subset of the same simulated data detailed above for the power simulations.
Here we focus on tetraploid populations with lower levels of population
differentiation (FST: 0.03, 0.06, 0.09). Initial simulations identified little
difference in accuracy between the programs with higher levels of FST (both
methods 498% accuracy).
With AutoPoly, individuals were assigned as in the above simulations. We

used Structure version 2.3.4 (Falush et al., 2007) to assign individuals to their
most likely candidate population or admixed population pair. Here we used the
admixture model, updated allele frequencies only for the reference individuals,
set the number of genetic clusters to K= 10 and used sampling location as prior
information (LOCPRIOR). Therefore, unlike studies that aim to search for the
most likely number of clusters, here we assume K is known and equal to the
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number of demes in the simulated metapopulation. All data sets were run for a
burn-in period of 20 000 and 200 000 iterations of the Markov Chain Monte
Carlo (see Supplementary Information S2 for more details). The POPINFO
parameter is not available for ploidy 42. Therefore, we assigned each
individual using the membership coefficients (that is, ancestry proportion)
Qk, which represents the posterior probability of membership to each of the
K= 10 clusters (here Q1, Qk+1,…,Q10). We assigned an individual to belong
solely to the kth population if Qk4AQ, where AQ is the threshold Qk value for
assignment. We tested a range of AQ thresholds (0.9, 0.8, 0.7, 0.6). If all
coefficients were in the bounds of (1–AQ)oQoAQ, an individual was instead
assigned as admixed, with the most likely population pair involved being the
two populations with the first and second highest Q values.

Autohexaploid empirical example
As an empirical test of this method, we used microsatellite (SSR) data available
for the autohexaploid bird-pollinated shrub Eremophila glabra ssp. glabra from
central Australia. At the study site, E. glabra is found in a series of discrete
populations that are separated by agriculture. In this ~ 15× 15 km2 area,
reference landscape grids were delineated and intensively surveyed for E. glabra
plants, identifying 15 discrete populations. To obtain reference allele frequen-
cies, 32–62 individuals at each population were phenotyped at six highly
polymorphic microsatellite markers (allelic dosage cannot be resolved in E.
glabra). For four populations, 7–11 seed were phenotyped from up to 11
known plants. DNA extraction methods and SSR protocols follow those of
Elliott (2009). Diversity and divergence measures were calculated using the
adult samples from each of the 15 populations (see Supplementary Information
S3 for more details).
We performed population assignment for each of the offspring phenotypes

using AutoPoly when the mother is known (Model III). Therefore, we are
assessing the most likely origin of the paternal (pollen) parent that may be the
same population as the mother or any of the other 14 candidate populations
sampled. Given E. glabra is bird pollinated, it is feasible that pollen could be
dispersed among any of the candidate populations within the 15× 15 km2 area.
To calculate CIs, we simulated five replicates of n= 10 000 individuals at each
of the two different total error rates E= 0.01 and 0.03 (where E= e1+e2 and
e1= 0.005 and 0.015 and e2= 0.005 and 0.015). To examine the effect of using
the incorrect DRR, we used randomly drawn values between the theoretical
minimum and maximum in the simulations ‘true DRR’ but drew another set of
randomly drawn ‘assumed DRR’ to use in the assignment calculations of the
individual data and compare to when these values are the same. We used
random values because real loci are more likely to vary somewhere between the
theoretical minimum and maximum due simply to variation in marker position
on the chromosome and distance from the centromere. As we discovered in the
power simulations for data sets with low FST (0.03) and marker number (that
is, 6 loci), Structure would not give consistent results with the E. glabra data due
to a lack of model convergence.

RESULTS

Power analysis
The accuracy of the population assignment for both tetraploids
(Figure 1) and hexaploids (Figure 2) increased with more loci and
higher population differentiation. The accuracy was generally similar
between ploidy levels, with 0.5–3% greater accuracy for hexaploids
compared with tetraploids. Accuracy can be improved by increasing
the confidence threshold, although this comes at the expense of the
number of individuals that can be assigned for data with low
information content. For example, for only 6 loci, phenotypes and
mother known, a mean of ~ 84% could be assigned at 80%
confidence, compared with mean 35% assigned at 95% confidence.
However, the accuracy improves rapidly (exceeds 90%) under
moderate levels of population differentiation (FST= 0.09) even with
only six loci regardless of marker type or model approach.
The difference in assignment accuracy between genotype and

phenotype markers was relatively low for most simulation parameters
but was most evident at lower population differentiation. For example,

with 6 loci, genotypes had between 3% (FST= 0.03) and 0.5%
(FST= 0.20) greater accuracy for tetraploid data when using Model
III (mother known; Figure 1). Greater differences in accuracy between
genotypes and phenotypes were observed with increasing error rates
and under mother unknown models. For example, with a total error
rate= 0.03 and assuming that the mother was unknown, genotypes
had 14.1% (FST= 0.03) to 9.9% (FST= 0.20) greater accuracy than
phenotypes.
The inclusion of maternal information (Model III—mother known)

resulted in a large improvement in the accuracy of population
assignment compared with Models I and II (mother unknown). For
example, with phenotypes, the mother known model had 19.1%
(FST= 0.03) to 4.4% (FST= 0.20) greater accuracy than mother
unknown (Figures 1 and 2). The difference between these model
types was most evident at low levels of population differentiation and
when only 6 or 12 loci are available. With 24 loci and FST⩾ 0.13, there
was no difference in assignment accuracy.

Migration rates
The power simulations suggest that false positives can substantially
inflate the estimated number of immigrant genotypes (Figure 3).
Substantial inflation of immigrant genotypes of ~ 25% above the true
value was generated when population differentiation was low
(FST= 0.03) and few loci are simulated (n= 6) (Figure 3a). Genotyping
individuals for more loci (n= 12) reduced this bias to ~ 10%, while
scenarios with higher population differentiation of FST= 0.06 and
FST= 0.09 reduced this bias further to ~ 2% (Figure 3b) and o1%
(Figure 3c), respectively (assuming loci= 12). Although the degree of
bias is considerable for data sets with low power, the bias observed in
the estimated migration rate is relatively consistent across different
values of the true migration rate.

AutoPoly and Structure
We found that the two programs exhibited very similar results when
more marker data was available (number of loci= 12 or 24) and
population differentiation was high (FST= 0.09) (Figure 4). In con-
trast, the performance of Structure (with a threshold Q value of
AQ40.7) was substantially lower than AutoPoly for all parameters
combinations with six loci and FST= 0.06 and with ⩽ 12 loci for the
lowest differentiation of FST= 0.03. In some cases, this prevented
Structure from running with data sets of six loci for either genotype or
phenotype (that is, missing data points; Figures 4a and b).
The impact of marker type had drastically different effects on the

accuracy of the two methods. In the case of AutoPoly, the accuracy of
genotypes was only slightly higher than phenotypes (see above). In
contrast, Structure exhibited much higher accuracy (up to ~40%) with
genotypes than with phenotypes for the exact same parameters, except
when 24 loci were available or population differentiation was high
(FST= 0.09).

Population assignment in E. glabra
In the E. glabra populations, we detected an average of 14.5–23 alleles
across loci in each population (A, Supplementary Table S1). Mean
pair-wise population differentiation was low (Rho= 0.082± 0.031 s.d.;
Supplementary Table S2) and similar to the lowest differentiation
examined in the power testing simulations (that is, FST= 0.03;
Rho= 0.11± 0.01 s.d., Supplementary Tables S3–S7).
Using simulations of mating events within and among populations

of E. glabra, the number of individuals that could be assigned at a
given confidence threshold was generally lower than suggested from
power simulations. Simulations of E. glabra data indicate that between
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71.7% and 63.1 % of individuals (n= 10 000) could be assigned at
95% confidence using total error rates 0.01 and 0.03, respectively
(Table 2). As found in the power testing simulations (Supplementary
Information S2), using the correct DRR versus randomly drawing a
new set of DRR for each locus (that is, DRR known versus unknown)
had little impact on assignment (71.7% and 71.5% assigned, at 95%
CI, respectively; Table 2).
With the actual E. glabra individuals, 57% and 77% of 467

individuals could be assigned at 95% and 90% confidence, respectively
(with simulated error= 0.01). Using a 90% confidence threshold
resulted in 2–8% higher immigration rates, suggesting that the strict

threshold may reduce false positives at the expense of having fewer
assigned individuals.

DISCUSSION

Ever since the pioneering theory on autotetraploids by Haldane
(1930), investigating the population genetics of natural polyploid
populations has remained an ongoing challenge for biologists. We
provide a new framework for population assignment for autopoly-
ploids that complements existing methods implemented in Structure
(Falush et al., 2007). The performance simulations imply that these
new methods fill an important gap, enabling population assignment
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Figure 1 Simulations of autotetraploid populations showing the percentage of individuals assigned to the correct population for different levels of population
differentiation (FST), number of loci (6, 12 and 24), marker types (genotype and phenotype) and model conditions (mother known and mother unknown).
Indicated is the mean accuracy (percentage of individuals correctly assigned) (n=10 replicates) for 10 000 simulated progeny when the mother information
of each progeny is included in the analysis and when the mother information is not included. Individuals assigned at 95% confidence levels. The actual
proportion of immigrants among the progeny was fixed to 50% for all replicates (see Methods section for more details).

Population assignment in polyploids
DL Field et al

395

Heredity



when population differentiation is low and when few polymorphic
markers are available. We discuss the main factors that influence the
performance of these methods and its application to empirical data.
We then conclude by considering current challenges and future
directions for population assignment in polyploids.

Accuracy of population assignment methods
Using a likelihood method that utilizes phenotypes and accounts for
polysomic inheritance, we show that population assignment with
microsatellite markers can reliably detect the origin of individuals or
their gametes (for example, pollen). Based on the power simulations,
knowledge of the degree of population differentiation, either FST or
Rho (Ronfort et al., 1998), can be used to predict the performance of

polyploid population assignment. Despite some inherent differences in
allelic diversity found in polyploids, these simulations showed similar

levels of performance to methods reported for diploids (Rannala and

Mountain, 1997; Cornuet et al., 1999). When using maternal parent

information, assignment accuracy is high (~95%) at relatively low FST
(0.06) and with a modest number of loci (6). For plant studies, this

will assist in the improvement of assignment accuracy of pollen

dispersal, although assignment of seed will remain more challenging

and may require genotyping more loci. Considering that investigations

of contemporary dispersal patterns in plants often involve the

collection of open pollinated seed arrays from known maternal

parents, these results highlight the benefits of including maternal

information for population assignment.
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Figure 2 Simulations of autohexaploid populations showing the percentage of individuals assigned to the correct population for different levels of population
differentiation (FST), number of loci (6, 12 and 24), marker types (genotype and phenotype) and model conditions (see Figure 1 legend for more details).
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The methods we present for autopolyploids, like those of Structure,
are not designed to specifically estimate migration rates. However,
rough point estimates can be obtained by dividing the number of

detected immigrants by the total sample size (Manel et al., 2003).
Although it may be tempting to obtain migration rates among
polyploid populations with this method, our simulations predict that
significant overestimates of migration rates will be obtained using
point estimates under some scenarios (that is, 6 loci and FST= 0.03).
Nevertheless, genotyping more loci can substantially reduce the
amount of bias. For example, at FST= 0.06 and migration 2%, the
~ 8% overestimate at six loci reduces to 2% with 12 loci. Until further
theory is developed that explicitly models migration rates for
autopolyploids (for example, Wilson and Rannala, 2003), similar
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Figure 3 Simulations of autohexaploid populations showing the actual proportion of simulated immigrants between populations against the proportion
estimated by AutoPoly. Shown are three different levels of population differentiation (FST) and two number of loci (6, 12) for phenotype data with mother
known model. Arrow indicates the simulated population parameters most similar to E. glabra data. The dotted line indicates when simulated and estimated
values are equal.
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Figure 4 The percentage of simulated autotetraploid individuals assigned to
the correct population using AutoPoly (circles) and Structure (squares) for (a)
genotype (allele copy number known) and (b) phenotype markers (allele copy
number unknown). Mean accuracy (percentage of individuals correctly
assigned) (n=10 replicates) for 10 000 simulated progeny for each
combination of parameters, including three levels of population
differentiation (FST: 0.03, 0.06, 0.09) and number of loci (6, 12 and 24).
For AutoPoly, individuals assigned at 95% confidence levels and the models
tested include mother unknown (Models I and II; open circles) and mother
known (Model III; filled circle). For Structure, we assigned each individual to
their most likely source using thresholds of the membership coefficient Q of
AQ40.9 (open square) or AQ40.7 (closed square) (see Methods section for
details). The actual proportion of immigrants among the progeny was fixed to
20% for all replicates.

Table 2 The percentage of simulated Eremophila glabra individuals

assigned to each of the 15 populations at 95, 90 and 80%

confidence

Errora DRRb Strict (95%) Moderate (90%) Relaxed (80%)

0.01 Correct 71.7 85.6 100

0.03 Correct 63.1 78.9 100

0.01 Random 71.5 85.4 100

0.03 Random 62.3 78.5 100

Abbreviation: DRR, double reduction rate.
aTotal proportion of the simulated error (error= e1+e2) due to allelic drop out (e1=0.005,
0.015) and mistyping (e2=0.005, 0.015).
bDRR is either: (1) correct, we randomly chose a DRR for each locus from a uniform distribution
(0⩽ β⩽0.2727) and used the same values in calculation of assignment likelihoods, or (2)
random, we randomly chose a DRR for each locus as in (1) but use a different random draw of
DRR at each locus for the calculation of assignment likelihoods.

Table 3 An example of the generalized gametic segregation

frequencies for the three possible biallelic hexaploid genotypes

carrying two alleles (k=2)

Genotype Gametic frequencies

aaa aab abb bbb

a5b
3þb
6

3�2b
6

b
6 —

a4b2
3þ3b
15

9�5b
15

3�b
15

b
15

a3b3
1þ3b
20

9�3b
20

9�3b
20

1�3b
20

The proportion of double reduced gametes= β. For the full set of gametic segregation
frequencies, see Supplementary Table S7.
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simulations will be required to assess the power of individual empirical
data sets and the extent of the overestimation bias.

Polysomic inheritance, double reduction and unknown allele
dosage
Contrary to expectations of substantially lower phenotype perfor-
mance, we found only small differences between genotype and
phenotype methods. Similarly, we found that the uncertainty in the
DRR had little impact on the accuracy of population assignment. It is
often assumed that these aspects are major limiting factors for
population genetic analysis of polyploids. This has led to the
development of methods to infer full genotypes by estimating the
allele copy number from isozyme band intensity (Young and Brown,
1999) or electropherogram peak areas (Esselink et al., 2004). Methods
have also been developed to estimate allele frequencies from pheno-
type markers using maximum likelihood (De Silva et al., 2005) or
iterative-based procedures (Markwith et al., 2006). These methods
exhibit their own error and require prior information that may be
unavailable (for example, selfing rate); this, together with the small
difference we detected between phenotype and genotypes, suggests that
our simple approach using marginal allele frequencies may be
sufficient for likelihood-based population assignment.

AutoPoly versus Structure
Comparison of the two methods showed that, at low population
differentiation, two to three times as many microsatellite loci may be
required to use Structure compared with AutoPoly. Although they
exhibited near identical levels of accuracy when population divergence
was high, AutoPoly performed substantially better for most parameters
at moderate (FST= 0.06 with o12 loci) to low levels of divergence
(FST= 0.03) and performed better with phenotypes. With phenotype
markers and few loci, we observed greater variance in Q values and in
some cases a lack of model convergence (that is, missing data points;
Figures 4a and b). It seems unlikely that the lower accuracy of
Structure with phenotypes and low information content is due to
AutoPoly explicitly incorporating double reduction, as using the
correct DRR had little impact on assignment accuracy. One possibility
is that phenotype data with low FST makes it difficult for Structure to
accurately estimate allele frequencies in each population while
simultaneously assigning individuals to clusters. In contrast, for
AutoPoly allele frequencies in each of the candidate populations are
given, and the assignment directly comes from the probability of
obtaining the phenotype given the individual is from each candidate
population.

Empirical example
With the autohexaploid E. glabra, population assignment with six SSR
markers using phenotypes with maternal information could identify
the origin of about half of the offspring samples (at 95% confidence).
This was less than the proportion predicted from simulating the actual
E. glabra data, which suggested that 63% of the offspring could be
assigned at 95% confidence. The simulations suggest that the level of
population differentiation and number of loci currently available for
the E. glabra data set contains too little power to estimate population
assignment with high accuracy. This effect has been noted previously
in diploid organisms (see Rannala and Mountain, 1997) and may be
partially overcome by genotyping more loci. The decision on whether
to generate more marker data or increase confidence thresholds (at the
cost of fewer assignable individuals) will depend on the biological
question and the importance of minimizing false positives versus false
negatives.

Lower assignment success between the power simulations and the
Eremophila data also suggests that some complexities encountered in
natural populations may need to be incorporated into the theory.
Contributing factors likely include higher marker error rates (including
null alleles), the presence of close relatives and more variable population
differentiation among natural populations. We also assume that all
possible source populations have been sampled, populations are randomly
mating and dispersal occurs randomly with respect to the surrounding
populations. However, isolation by distance and recent bursts of dispersal
may generate complex genetic compositions in the candidate reference
data (that is, due to recent admixture) and the offspring pool. Incorrect
assumptions on the demography and extent of relatedness among
individuals can result in the mis-specification of the simulations and
introduce bias into estimates of the CIs. Future efforts will be required to
quantify which of these factors contribute most to the overall number of
type I and type II errors and what level of migration we can expect to
detect for a given set of population parameters and sample size.

CONCLUSIONS

Population assignment using genetic markers holds the promise of rapid
estimation of contemporary dispersal patterns in natural populations.
There are, however, significant challenges when applying these methods
to natural polyploid populations. Further development of the theory may
benefit from explicitly modelling error rates, double reduction and the
probability of unsampled data (alleles and candidate populations). This
could be achieved in a full Bayesian framework (for example, Hadfield
et al., 2006), although the computational burden of higher ploidy level
and genotype uncertainty would make this a non-trivial task. As for
diploids, the marker power as well as the sampling strategy will
determine what level of accuracy can be achieved and how many
individuals can be assigned with a high degree of confidence. Trade-offs
exists between the number of individuals sampled for estimating allele
frequencies and the number of individuals used to assess mating patterns
(Meirmans, 2015). This will also depend on the ecology (for example,
dispersal vector) of the organism and the demographic context in which
each discrete population resides. When dispersal rates are low among
populations, few immigrants will be generated, making it difficult to
quantify migration rates without very large sample sizes (Manel et al.,
2003). We should therefore always remain cautious when inferring
dispersal rates from genetic data and interpret these patterns using
knowledge about the ecology and demography of the study organism.
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APPENDIX A1

We use a similar approach that Wricke and Weber (1986) used for
tetraploids, to derive general formulas for expected genotype frequen-
cies in an autohexaploid at RME. First, we generated a pair-wise
multiplicative matrix (Table A1) between each of the possible gametes
using the general formulas above (Equation 4). Next, we obtain the
sum of each of the off-diagonal elements. For example, the genotype
a4b2 can arise through the union of either the gametes, (i) x111 (aaa)
and 3y122 (abb) or (ii) 3y112 (aab) and 3y112 (aab). The sum of these
frequencies gives us the expected genotype frequency of each
(genotype) class given the gametic frequencies at RME. For this
example, this equates to the sum of the these terms (see elements in
bold, Table A1) as

Pr a4b2ji; g ij;Y 6

� �
¼ 3x111y122 þ 3x111y112 þ 9 y112ð Þ2
¼ 6x111y112 þ 9ðy112Þ2

Table A1 Genotype frequencies at random mating equilibrium

for a hexaploid population, an example of the approach with

k=2 alleles

x111 (aaa) 3y112 (aab) 3y122 (abb) x222 (abb)

x111 (aaa) (x111)2

(aaaaaa)
3x111y112
(aaaaab)

3x111y122
(aaaabb)

x111x222
(aaabbb)

3y112 (aab) 3x111y112
(aaaaab)

9(y112)2

(aaaabb)
9y112y122
(aaabbb)

3y112x222
(aaabbb)

3y122 (abb) 3x111y122
(aaaabb)

9y112y122
(aaabbb)

9(y122)2

(aabbbb)
3y112x222
(aabbbb)

x222 (abb) x111x222
(aaabbb)

3x222y112
(aaabbb)

3x222y122
(aabbbb)

(x222)2

(bbbbbb)

All elements involved in generating genotype a4b2 are listed in bold.

APPENDIX A2

Using the same principles described for tetraploids, the probability of
obtaining mixed genotypes for hexaploid individuals is
Pr G i;i

0½ �jmjgij; gi0 j; Y 6

� �
; where the probabilities for each genotype

class are

Pr a6 i;i0½ �jmji; i0; gij; gi0 j; Y 6

� �
¼ x111½i�x111½i0 � þ x111½i0 �x111½i�

� �
=2

Pr a5b i;i0½ �jmji; i0; gij; gi0 j; Y 6

� �
¼ 3 x111½i�y112½i0 � þ x111½i0 �y112½i�

� �

Pr a4b2 i;i0½ �jmji; i0; gij; gi0 j;Y 6

� �
¼ 3 x111½i�y122½i0 � þ x111½i0 �y122½i� þ 3y112½i�y112½i0 �

� �

Pr a3b3 i;i0½ �jmji; i0; gij; gi0 j; Y 6

� �
¼ x111½i�x222½i0 � þ x111½i0 �x222½i�

þ 9 y112½i�y122½i0 � þ y112½i0 �y122½i�
� �

Pr a4bc i;i0½ �jmji; i0; gij; gi0 j;Y 6

� �
¼ 6 x111½i�z123½i0 � þ x111½i0 �z123½i�

� �

þ 9 y112½i�y113½i0 � þ y112½i0 �y113½i�
� �

Pr a3b2c i;i0½ �jmji; i0; gij; gi0 j;Y 6

� �
¼ 3 x111½i�y223½i0 � þ x111½i0 �y223½i�

� �

þ 18 y112½i�z123½i0 � þ y112½i0 �z123½i�
� �

þ 9 y113½i�y122½i0 � þ y113½i0 �y122½i�
� �

Prða2b2c2 i;i0½ �jm ji; i0; gij; gi0 j; Y 6Þ ¼ 9ðy112½i�y233½i0 � þ y112½i0 �y233½i�

þ y133½i�y122½i0 � þ y133½i0 �y122½i�

þ y113½i�y223½i0 � þ y113½i0 �y223½i�

þ 2z123½i�z123½i0 �Þ

Prða3bcd i;i0½ �jmji; i0; gij; gi0 j; Y 6 Þ ¼ 6ðx111 i½ �z234 i0½ � þ x111 i0½ �z234 i½ �Þ
þ 18ðy112 i½ �z134 i0½ � þ y112 i0½ �z134 i½ �

þ y113 i½ �z124 i0½ � þ y113 i0½ �z124 i½ �

þ y114 i½ �z123 i0½ � þ y114 i0½ �z123 i½ �Þ

Prða2b2cd i;i0½ �jmji; i0; gij; gi0 j;Y 6Þ ¼ 18y112 i½ �z234 i0½ � þ 18y112 i0½ �z234 i½ �

þ 9y113 i½ �y224 i0½ � þ 9y113 i0½ �y224 i½ �

þ 9y114 i½ �y223 i0½ � þ 9y114 i0½ �y223 i½ �

þ 36z123 i½ �z124 i0½ � þ 36z123 i0½ �z124 i½ �

þ 18z134 i½ �y122 i0½ � þ 18z134½i0 �y122 i½ �

Prða2bcde i;i0½ �jmji; i0; gij; gi0 j;Y 6Þ ¼ 18ðy112 i½ �z345 i0½ � þ y112 i0½ �z345 i½ �

þ y113 i½ �z245 i0½ � þ y113 i0½ �z245 i½ �

þ y114 i½ �z235 i0½ � þ y114 i0½ �z235 i½ �

þ y115 i½ �z234 i0½ � þ y115 i0½ �z234 i½ �Þ
þ 36ðz123 i½ �z145 i0½ � þ z123 i0½ �z145 i½ �

þ z134 i½ �z125 i0½ � þ z134 i0½ �z125 i½ �

þ z124 i½ �z135 i0½ � þ z124 i0½ �z135 i½ �Þ

Prðabcdef i;i0½ �jmji; i0; gij; gi0 j;Y 6Þ
¼ 36ðz123 i½ �z456 i0½ � þ z123 i0½ �z456 i½ � þ z124 i½ �z356 i0½ �

þ z124 i0½ �z356 i½ � þ z125 i½ �z346 i0½ � þ z125 i0½ �z346 i½ �

þ z126 i½ �z345 i0½ � þ z126 i0½ �z345 i½ � þ z134 i½ �z256 i0½ �

þ z134 i0½ �z256 i½ � þ z135 i½ �z246 i0½ � þ z135 i0½ �z246 i½ �

þ z136 i½ �z245 i0½ � þ z136 i0½ �z245 i½ � þ z145 i½ �z236 i0½ �

þ z145 i0½ �z236 i½ � þ z146 i½ �z235 i0½ � þ z146 i0½ �z235 i½ �

þ z234 i½ �z156 i0½ � þ z234 i0½ �z156 i½ �Þ ðA1Þ

APPENDIX A3

For an autohexaploid, the number of possible gametes under RCeS
that can originate at a given locus is given by drawing without
replacement three alleles from a set of six by simply using the binomial

coefficient
6
3

� �
¼ 20. However, for RCeD there are many possible

gametes due to random chromatid assortment. In this case, we draw
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without replacement 3 alleles from 12 to account for the independence

of sister chromatids
12
3

� �
¼ 220. The expected frequency of each

gamete from a given genotype then follows the hypergeometric
multinomial distribution as:

K1

k1

� �
K2

k2

� �
K3

k3

� �
K4

k4

� �
K5

k5

� �
K6

k6

� �

C
n

� � ðA2Þ

Where the number of copies of the ith allele in the parental genotype
is Ki and the number of the ith allele present in the gamete is ki. For
RCeS: ki⩽Ki, and ∑Ki= 6 and ∑ki=3, while for RCdS: ∑K= 12 and
∑k= 3. The values C and n are as described above for a binomial
coefficient.
To demonstrate how to derive the general formulas for β, we use a

hypothetical individual hexaploid at a single locus with the genotype,
a4bc. Assuming complete random chromosome segregation (RCeS),
there are four possible unique gametes (aaa, aab, aac, abc), whereas

for complete random chromatid segregation (RCdS), three unreduced
gametes (aaa, aab, aac) and five double reduced gametes are possible
(abb, acc, bbc, cca, ccb). We determine the frequency of each gamete
under complete RCeS and the frequency under complete RCdS
assuming only double reduced gametes were formed (Equation A2).
Generalized formulas are the sum of these terms multiplied by 1− β
and β, respectively, to obtain the segregation ratio for any given DRR.
For example, for the phenotype, AB, (which could be either genotype
a5b, a4b2, a3b3, a2b4 or ab5), let us assume the genotype is known to be
a3b3. Using Equation 9, we find the expected frequency of the gamete
a3 under RCeS and RCdS are (1− β)/20, and 24/120(β), respectively.
Generalized forms are equal to the sum of these terms (that is,
(1+3β)/20). For this example, there are 22 possible gametic segregation
ratios for 4 possible genotypes and gametes. We followed this
procedure to determine the generalized formulas for all possible
gametes from each of the possible (in Table 1) hexaploid genotypes
(for the complete segregation matrix, see Supplementary Table S8).
For autotetraploids, we used the general formulas for segregation
ratios available elsewhere (Bever and Felber, 1992).
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