Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Geometry-controlled reactivity and dynamics in organic molecules

Abstract

It is well established that strain in organic molecules is linked to having nonideal bond lengths, bond angles and unfavourable non-covalent interactions. The constrained geometries of ring systems are particularly predisposed to creating strain. Recently, there has been increased interest in leveraging this property of rings as a synthetic tool by building strain into substrates to activate a desired bond-cleavage step. However, one could also envisage alternative uses of strain. Here we outline how geometry control can be exploited to ‘switch on’ dynamic processes or stabilize reactive transition states. By designing constrained molecular structures that direct strain on particular bonds or functional groups, transformations that are otherwise energetically uphill can become favoured. This phenomenon can subvert our expectations about the reactivity and properties of organic molecules, giving rise to unusual bonding modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design principles of geometry-controlled transformations or molecular conformations.
Fig. 2: The effect of geometry control on pericyclic reactions.
Fig. 3: Dynamic sp3 stereochemistry.
Fig. 4: Type III geometry control examples.
Fig. 5: Accessing transition-state analogues through type IV geometry control.
Fig. 6: Neutral homoaromaticity through type IV geometry control.
Fig. 7: Emergent phenomena associated with geometry control.

Similar content being viewed by others

References

  1. Gillespie, R. J. & Robinson, E. A. Electron domains and the VSEPR model of molecular geometry. Angew. Chem. Int. Ed. Engl. 35, 495–514 (1996).

    Article  CAS  Google Scholar 

  2. McNaught, A. D. & Wilkinson, A. IUPAC Compendium of Chemical Terminology: The Gold Book (International Union of Pure and Applied Chemistry, 2006).

  3. Fadler, R. E. & Flood, A. H. Rigidity and flexibility in rotaxanes and their relatives; on being stubborn and easy-going. Front. Chem. 10, 856173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deuter, J., Rodewald, H., Irngartinger, H., Loerzer, T. & Lüttke, W. Kristall-und Molekularstruktur von tetrakis(1-methylcyclopropyl)ethylen. Tetrahedron Lett. 26, 1031–1034 (1985).

    Article  CAS  Google Scholar 

  5. Wiberg, K. B. The concept of strain in organic chemistry. Angew. Chem. Int. Ed. Engl. 25, 312–322 (1986).

    Article  Google Scholar 

  6. Brown, F., Davies, T. D., Dostrovsky, I., Evans, O. J. & Hughes, E. D. Steric retardation and steric acceleration. Nature 167, 987–988 (1951).

    Article  CAS  Google Scholar 

  7. Jiang, L. et al. Strain-driven formal [1,3]-aryl shift within molecular bows. Angew. Chem. Int. Ed. 62, e202312238 (2023).

    Article  CAS  Google Scholar 

  8. Wilson, M. R. & Taylor, R. E. Strained alkenes in natural product synthesis. Angew. Chem. Int. Ed. 52, 4078–4087 (2013).

    Article  CAS  Google Scholar 

  9. Sutthasupa, S., Shiotsuki, M. & Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym. J. 42, 905–915 (2010).

    Article  CAS  Google Scholar 

  10. Spence, E. L., Langley, G. J. & Bugg, T. D. H. Cis-trans isomerization of a cyclopropyl radical trap catalyzed by extradiol catechol dioxygenases: evidence for a semiquinone intermediate. J. Am. Chem. Soc. 118, 8336–8343 (1996).

    Article  CAS  Google Scholar 

  11. Sweet, R. M. & Dahl, L. F. Molecular architecture of the cephalosporins. Insights into biological activity based on structural investigations. J. Am. Chem. Soc. 92, 5489–5507 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Turkowska, J., Durka, J. & Gryko, D. Strain release—an old tool for new transformations. Chem. Commun. 56, 5718–5734 (2020).

    Article  CAS  Google Scholar 

  13. Wittig, G. & Krebs, A. Zur Existenz niedergliedriger Cycloalkine, I. Chem. Ber. 94, 3260–3275 (1961).

    Article  CAS  Google Scholar 

  14. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopchuk, J. M. et al. Strain-release heteroatom functionalization: development, scope and stereospecificity. J. Am. Chem. Soc. 139, 3209–3226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, J., Li, L. & Li, Y. o-Silylaryl triflates: a journey of Kobayashi aryne precursors. Chem. Rev. 121, 3892–4044 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Kelleghan, A. V., Bulger, A. S., Witkowski, D. C. & Garg, N. K. Strain-promoted reactions of 1,2,3-cyclohexatriene and its derivatives. Nature 618, 748–754 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Novianti, I., Kowada, T. & Mizukami, S. Clip to click: controlling inverse electron-demand Diels-Alder reactions with macrocyclic tetrazines. Org. Lett. 24, 3223–3226 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Moteki, M., Maeda, S. & Ohno, K. Systematic search for isomerization pathways of hexasilabenzene for finding its kinetic stability. Organometallics 28, 2218–2224 (2009).

    Article  CAS  Google Scholar 

  21. Jensen, F. R. et al. Separation of conformers. II. Axial and equatorial isomers of chlorocyclohexane and trideuteriomethoxycyclohexane. J. Am. Chem. Soc. 91, 3223–3225 (1969).

    Article  CAS  Google Scholar 

  22. Prelog, V. & Wieland, P. Über die Spaltung der Tröger’schen Base in optische Antipoden, ein Beitrag zur Stereochemie des dreiwertigen Stickstoffs. Helv. Chim. Acta 27, 1127–1134 (1944).

    Article  CAS  Google Scholar 

  23. Brunel, J. M. BINOL: a versatile chiral reagent. Chem. Rev. 105, 857–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Rössler, S. L., Petrone, D. A. & Carreira, E. M. Iridium-catalyzed asymmetric synthesis of functionally rich molecules enabled by (phosphoramidite,olefin) ligands. Acc. Chem. Res. 52, 2657–2672 (2019).

    Article  PubMed  Google Scholar 

  25. Smith, O. et al. Control of stereogenic oxygen in a helically chiral oxonium ion. Nature 615, 430–435 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang, M. et al. Molecular-strain engineering of double-walled tetrahedra. Chem 7, 2160–2174 (2021).

    Article  CAS  Google Scholar 

  27. Wu, L. et al. Synthesis of contra-helical trefoil knots with mechanically tuneable spin-crossover properties. Nat. Synth. 2, 17–25 (2023).

    Article  Google Scholar 

  28. Tang, M. et al. Mechanical trapping and in situ derivatization of the porphodimethene intermediate. Mater. Today Chem. 24, 100868 (2022).

    Article  CAS  Google Scholar 

  29. Tang, M., Liang, Y., Liu, J., Bian, L. & Liu, Z. Mechanical trapping of the phlorin intermediate. CCS Chem. 4, 3230–3237 (2022).

    Article  CAS  Google Scholar 

  30. Saha, P. K. et al. Rupturing aromaticity by periphery overcrowding. Nat. Chem. 15, 516–525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bismillah, A. N. et al. Control of dynamic sp3-C stereochemistry. Nat. Chem. 15, 615–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schreiner, P. R. Quantum mechanical tunneling is essential to understanding chemical reactivity. Trends Chem. 2, 980–989 (2020).

    Article  CAS  Google Scholar 

  33. Castro, C. & Karney, W. L. Heavy-atom tunneling in organic reactions. Angew. Chem. Int. Ed. 59, 8355–8366 (2020).

    Article  CAS  Google Scholar 

  34. Tran Ngoc, T., Grabicki, N., Irran, E., Dumele, O. & Teichert, J. F. Photoswitching neutral homoaromatic hydrocarbons. Nat. Chem. 15, 377–385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aricó, F. et al. Templated synthesis of interlocked molecules. Top. Curr. Chem. 249, 203–259 (2005).

    Article  Google Scholar 

  36. Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    Article  CAS  Google Scholar 

  37. Martí-Centelles, V., Pandey, M. D., Burguete, M. I. & Luis, S. V. Macrocyclization reactions: the importance of conformational, configurational and template-induced preorganization. Chem. Rev. 115, 8736–8834 (2015).

    Article  PubMed  Google Scholar 

  38. Galan, A. & Ballester, P. Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 45, 1720–1737 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Feringa, B. L. & Browne, W. R. Molecular Switches 2nd edn (Wiley, 2011).

  40. Pianowski, Z. L. Molecular Photoswitches: Chemistry, Properties and Applications Vol. 2 (Wiley, 2022).

  41. Jung, M. E. Substituent and solvent effects in intramolecular Diels-Alder reactions. Synlett 1990, 186–190 (1990).

    Article  Google Scholar 

  42. McNamara, O. A. & Maguire, A. R. The norcaradiene-cycloheptatriene equilibrium. Tetrahedron 67, 9–40 (2011).

    Article  CAS  Google Scholar 

  43. Vogel, E. Valenzisomerisierungen von Verbindungen mit gespannten Ringen. Angew. Chem. 74, 829–839 (1962).

    Article  Google Scholar 

  44. Schreiber, J. et al. A. Synthese des Colchicins. Helv. Chim. Acta 44, 540–597 (1961).

    Article  CAS  Google Scholar 

  45. Vogel, E., Wiedemann, W., Roth, H. D., Eimer, J. & Günther, H. Ein Beitrag zum Norcaradien–Cycloheptatrien-Strukturproblem. Justus Liebigs Ann. Chem. 759, 1–36 (1972).

    Article  CAS  Google Scholar 

  46. Vogel, E., Wiedemann, W., Kiefer, H. & Harrison, W. F. Über das Norcaradien- und das Vinyloge Bicyclo[6.1.0]nona-2.4.6-trien-system. Tetrahedron Lett. 4, 673–678 (1963).

    Article  Google Scholar 

  47. Berlin, L. et al. Offenkettige und Cyclische Polyene, En-ine (Georg Thieme, 1972).

  48. Cope, A. C. & Hardy, E. M. The introduction of substituted vinyl groups. V. A rearrangement involving the migration of an allyl group in a three-carbon system. J. Am. Chem. Soc. 62, 441–444 (1940).

    Article  CAS  Google Scholar 

  49. Olson, J. A. & Shea, K. M. Critical perspective: named reactions discovered and developed by women. Acc. Chem. Res. 44, 311–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Schneider, M. P. & Ran, A. Synthesis and Cope rearrangement of cis-1,2-dialkenylcyclopropanes. J. Am. Chem. Soc. 101, 4426–4427 (1979).

    Article  CAS  Google Scholar 

  51. Graulich, N. The Cope rearrangement—the first born of a great family. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 172–190 (2011).

    Article  CAS  Google Scholar 

  52. von Eggers Doering, W. et al. A rational synthesis of bullvalene barbaralone and derivatives; bullvalone. Tetrahedron 23, 3943–3963 (1967).

    Article  Google Scholar 

  53. Günther, H., Runsink, J., Schmickler, H. & Schmitt, P. Applications of 13C NMR spectroscopy. 26. Activation parameters for the degenerate Cope rearrangement of barbaralane and 3,7-disubstituted barbaralanes. J. Org. Chem. 50, 289–293 (1985).

    Article  Google Scholar 

  54. Cheng, A. K., Anet, F. A. L., Mioduski, J. & Meinwald, J. Determination of the fluxional barrier in semibullvalene by proton and carbon-13 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 96, 2887–2891 (1974).

    Article  CAS  Google Scholar 

  55. Saunders, M. Measurement of the rate of rearrangement of bullvalene. Tetrahedron Lett. 4, 1699–1702 (1963).

    Article  Google Scholar 

  56. Williams, R. V. Semibullvalenes and related molecules: ever closer approaches to neutral homoaromaticity. Eur. J. Org. Chem. 2001, 227–235 (2001).

    Article  Google Scholar 

  57. Anet, F. A. L. & Schenck, G. E. Temperature-dependent nuclear magnetic resonance spectrum of octamethylsemibullvalene. Tetrahedron Lett. 11, 4237–4240 (1970).

    Article  Google Scholar 

  58. Lambert, J. B. The degenerate Cope rearrangement of tricyclo[3.3.1.04,6]nona-2,7-diene-9-one. Tetrahedron Lett. 4, 1901–1906 (1963).

    Article  Google Scholar 

  59. Moskau, D. et al. Anwendungen der 13C-NMR-spektroskopie, XXVII. Die Aktivierungsparameter der Cope-Umlagerung von Semibullvalen, 1,5-dimethylsemibullvalen und 2,6-dibrom-1,5-dimethylsemibullvalen. Chem. Ber. 122, 925–931 (1989).

    Article  CAS  Google Scholar 

  60. Allerhand, A. & Gutowsky, H. S. Spin-echo nuclear magnetic resonance studies of chemical exchange. VI. Rearrangement of bullvalene and of its silver nitrate complex. J. Am. Chem. Soc. 87, 4092–4096 (1965).

    Article  CAS  Google Scholar 

  61. Williams, R. V., Al-Sehemi, A. G., Meier, A. K., Brown, Z. Z. & Armantrout, J. R. The role of strain in the homoaromatization of semibullvalenes. J. Org. Chem. 82, 4136–4147 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, X., Hrovat, D. A. & Borden, W. T. Calculations predict that carbon tunneling allows the degenerate Cope rearrangement of semibullvalene to occur rapidly at cryogenic temperatures. Org. Lett. 12, 2798–2801 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Schleif, T. et al. Heavy-atom tunneling in semibullvalenes: how driving force, substituents, and environment influence the tunneling rates. Chem. Eur. J. 26, 10452–10458 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Schleif, T. et al. The Cope rearrangement of 1,5-dimethylsemibullvalene-2(4)-d1: experimental evidence for heavy-atom tunneling. Angew. Chem. Int. Ed. 56, 10746–10749 (2017).

    Article  CAS  Google Scholar 

  65. Williams, R. V. et al. 1,5-Dimethyl-2,4,6,8-semibullvalenetetracarboxylic dianhydride: a close approach to a neutral homoaromatic semibullvalene. J. Am. Chem. Soc. 118, 4208–4209 (1996).

    Article  CAS  Google Scholar 

  66. Quast, H. & Seefelder, M. The equilibrium between localized and delocalized states of thermochromic semibullvalenes and barbaralanes—direct observation of transition states of degenerate Cope rearrangements. Angew. Chem. Int. Ed. 38, 1064–1067 (1999).

    Article  CAS  Google Scholar 

  67. Seefelder, M. & Quast, H. Solvent effects on the equilibrium between localized and delocalized states of thermochromic semibullvalenes and barbaralanes. Angew. Chem. Int. Ed. 38, 1068–1071 (1999).

    Article  CAS  Google Scholar 

  68. Bedi, A., Shimon, L. J. W. & Gidron, O. Helically locked tethered twistacenes. J. Am. Chem. Soc. 140, 8086–8090 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Bedi, A., Manor Armon, A. & Gidron, O. Effect of twisting on the capture and release of singlet oxygen by tethered twisted acenes. Org. Lett. 22, 7809–7813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bodwell, G. J., Bridson, J. N., Houghton, T. J., Kennedy, J. W. J. & Mannion, M. R. 1,7-Dioxa[7](2,7)pyrenophane: the pyrene moiety is more bent than that of C70. Chem. Eur. J. 5, 1823–1827 (1999).

    Article  CAS  Google Scholar 

  71. Zhang, X., Mackinnon, M. R., Bodwell, G. J. & Ito, S. Synthesis of a π-extended azacorannulenophane enabled by strain-induced 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. 61, e202116585 (2022).

    Article  CAS  Google Scholar 

  72. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Schramm, V. L. Transition states, analogues and drug development. ACS Chem. Biol. 8, 71–81 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schramm, V. L. Transition states and transition state analogue interactions with enzymes. Acc. Chem. Res. 48, 1032–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Evans, G. B., Schramm, V. L. & Tyler, P. C. The transition to magic bullets—transition state analogue drug design. MedChemComm 9, 1983–1993 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Day, A. C. Aromaticity and the generalized Woodward-Hoffmann rules for pericyclic reactions. J. Am. Chem. Soc. 97, 2431–2438 (1975).

    Article  CAS  Google Scholar 

  77. Krygowski, T. M., Szatylowicz, H., Stasyuk, O. A., Dominikowska, J. & Palusiak, M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem. Rev. 114, 6383–6422 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Shaik, S. S., Hiberty, P. C., Lefour, J. M. & Ohanessian, G. Is delocalization a driving force in chemistry? Benzene, allyl radical, cyclobutadiene and their isoelectronic species. J. Am. Chem. Soc. 109, 363–374 (1987).

    Article  CAS  Google Scholar 

  79. Castro, C., Karney, W. L., McShane, C. M. & Pemberton, R. P. [10]Annulene: bond shifting and conformational mechanisms for automerization. J. Org. Chem. 71, 3001–3006 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. von Ragué Schleyer, P., Jiao, H., Sulzbach, H. M. & Schaefer, H. F. Highly aromatic planar all-cis-[10]annulene derivatives. J. Am. Chem. Soc. 118, 2093–2094 (1996).

    Article  Google Scholar 

  81. Parmar, K., Blaquiere, C. S., Lukan, B. E., Gengler, S. N. & Gravel, M. Synthesis of a highly aromatic and planar dehydro [10]annulene derivative. Nat. Synth. 1, 696–700 (2022).

    Article  Google Scholar 

  82. Bean, D. E. & Fowler, P. W. Effect on ring current of the Kekulé vibration in aromatic and antiaromatic rings. J. Phys. Chem. A 115, 13649–13656 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Bürgi, H. et al. X-ray diffraction evidence for a cyclohexatriene motif in the molecular structure of tris(bicyclo[2.1.1]hexeno)benzene: bond alternation after the refutation of the Mills-Nixon theory. Angew. Chem. Int. Ed. Engl. 34, 1454–1456 (1995).

    Article  Google Scholar 

  84. Jenneskens, L. W. et al. Molecular structure of 8,11-dichloro[5]metacyclophane: a strongly bent benzene ring. Angew. Chem. Int. Ed. Engl. 23, 238–239 (1984).

    Article  Google Scholar 

  85. Jenneskens, L. W. et al. [5]Paracyclophane. J. Am. Chem. Soc. 107, 3716–3717 (1985).

    Article  CAS  Google Scholar 

  86. Matsuura, A. & Komatsu, K. Efficient synthesis of benzene and planar cyclooctatetraene fully annelated with bicyclo[2.1.1]hex-2-ene. J. Am. Chem. Soc. 123, 1768–1769 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Narsaria, A. K., Hamlin, T. A., Lammertsma, K. & Bickelhaupt, F. M. Dual activation of aromatic Diels-Alder reactions. Chem. Eur. J. 25, 9902–9912 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Jenneskens, L. W., de Boer, H. J. R., de Wolf, W. H. & Bickelhaupt, F. Reactivity of 8,11-dihalo[5]metacyclophanes. J. Am. Chem. Soc. 112, 8941–8949 (1990).

    Article  CAS  Google Scholar 

  89. Li, L. et al. Stabilizing a different cyclooctatetraene stereoisomer. Proc. Natl Acad. Sci. USA 114, 9803–9808 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baldridge, K. K. & Siegel, J. S. Quantum mechanical designs toward planar delocalized cyclooctatetraene: a new target for synthesis. J. Am. Chem. Soc. 123, 1755–1759 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Hashemi, M. M., Bratcher, M. S. & Scott, L. T. Corannulene bowl-to-bowl inversion is rapid at room temperature. J. Am. Chem. Soc. 114, 1920–1921 (1992).

    Article  Google Scholar 

  92. Solel, E. et al. Flat corannulene: when a transition state becomes a stable molecule. Chem. Sci. 11, 13015–13025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin, J. C. ‘Frozen’ transition states: pentavalent carbon et al. Science 221, 509–514 (1983).

    Article  CAS  PubMed  Google Scholar 

  94. Yamashita, M. et al. Syntheses and structures of hypervalent pentacoordinate carbon and boron compounds bearing an anthracene skeleton—elucidation of hypervalent interaction based on X-ray analysis and DFT calculation. J. Am. Chem. Soc. 127, 4354–4371 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Griffiths, P. R., Pivonka, D. E. & Williams, R. V. The experimental realization of a neutral homoaromatic carbocycle. Chem. Eur. J. 17, 9193–9199 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Williams, R. V. Homoaromaticity. Chem. Rev. 101, 1185–1204 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Vogel, E., Feldmann, R. & Düwel, H. Synthese des bicyclo[5.4.1]dodecapentaenylium-ions aus cycloheptatrien-1.6-dialdehyd. Tetrahedron Lett. 11, 1941–1944 (1970).

    Article  Google Scholar 

  98. Paquette, L. A., Wingard, R. E. & Russell, R. K. Structural consequences of 2,8 bridging of the semibullvalene nucleus. J. Am. Chem. Soc. 94, 4739–4741 (1972).

    Article  CAS  Google Scholar 

  99. Vogel, E., Brinker, U. H., Nachtkamp, K., Wassen, J. & Müllen, K. Semibullvalenes as potential homoaromatic compounds. Angew. Chem. Int. Ed. Engl. 12, 758–760 (1973).

    Article  Google Scholar 

  100. Tran Ngoc, T., van Der Welle, J., Rüffer, T. & Teichert, J. F. Synthesis of stable neutral homoaromatic hydrocarbons. Synthesis 55, 2658–2669 (2023).

    Article  CAS  Google Scholar 

  101. Colwell, C. E., Price, T. W., Stauch, T. & Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 11, 3923–3930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, Z. et al. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Greer, E. M., Kwon, K., Greer, A. & Doubleday, C. Thermally activated tunneling in organic reactions. Tetrahedron 72, 7357–7373 (2016).

    Article  CAS  Google Scholar 

  105. Nicolaou, K. C., Zuccarello, G., Riemer, C., Estevez, V. A. & Dai, W. M. Design, synthesis and study of simple monocyclic conjugated enediynes. The 10-membered ring enediyne moiety of the enediyne anticancer antibiotics. J. Am. Chem. Soc. 114, 7360–7371 (1992).

    Article  CAS  Google Scholar 

  106. Suffert, J., Abraham, E., Raeppel, S. & Brückner, R. Synthesis of 5-/10-membered ring analogues of the eienediyne core of neocarzinostatine chromophore by palladium(0)-mediated ring-closure reaction. Liebigs Ann. 1996, 447–456 (1996).

    Article  Google Scholar 

  107. Greer, E. M., Cosgriff, C. V. & Doubleday, C. Computational evidence for heavy-atom tunneling in the Bergman cyclization of a 10-membered-ring enediyne. J. Am. Chem. Soc. 135, 10194–10197 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Karmakar, S. & Datta, A. Role of heavy atom tunnelling in Myers-Saito cyclization of cyclic enyne-cumulene systems. J. Phys. Chem. B 120, 945–950 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Sanchez, A. & Maimone, T. J. Taming shapeshifting anions: total synthesis of ocellatusone C. J. Am. Chem. Soc. 144, 7594–7599 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Sanchez, A. et al. A shapeshifting roadmap for polycyclic skeletal evolution. J. Am. Chem. Soc. 145, 13452–13461 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 3rd edn (Wiley, 2009).

  112. Defieber, C., Grützmacher, H. & Carreira, E. M. Chiral olefins as steering ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 47, 4482–4502 (2008).

    Article  CAS  Google Scholar 

  113. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  114. Tantillo, D. J. & Hoffmann, R. Snakes and ladders. The sigmatropic shiftamer concept. Acc. Chem. Res. 39, 477–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Tantillo, D. J. et al. Extended barbaralanes: sigmatropic shiftamers or σ-polyacenes? J. Am. Chem. Soc. 126, 4256–4263 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Bismillah, A. N., Chapin, B. M., Hussein, B. A. & McGonigal, P. R. Shapeshifting molecules: the story so far and the shape of things to come. Chem. Sci. 11, 324–332 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Pomfret, M. N. et al. Stochastic bullvalene architecture modulates structural rigidity in π-rich macromolecules. Angew. Chem. Int. Ed. 62, e202301695 (2023).

    Article  CAS  Google Scholar 

  118. Yahiaoui, O., Pašteka, L. F., Judeel, B. & Fallon, T. Synthesis and analysis of substituted bullvalenes. Angew. Chem. Int. Ed. 57, 2570–2574 (2018).

    Article  CAS  Google Scholar 

  119. Ottonello, A. et al. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proc. Natl Acad. Sci. USA 120, e2208737120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reimers, J. R. et al. Controlling piezoresistance in single molecules through the isomerisation of bullvalenes. Nat. Commun. 14, 6089 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schröder, G., Oth, J. F. M. & Merényi, R. Molecules undergoing fast, reversible valence-bond isomerization. (Molecules with fluctuating bonds). Angew. Chem. Int. Ed. Engl. 4, 752–761 (1965).

    Article  Google Scholar 

  122. Muller, P. Glossary of terms used in physical organic chemistry: (IUPAC recommendations 1994). Pure Appl. Chem. 66, 1077–1184 (1994).

    Article  Google Scholar 

  123. Mitschke, B., Turberg, M. & List, B. Confinement as a unifying element in selective catalysis. Chem 6, 2515–2532 (2020).

    Article  CAS  Google Scholar 

  124. Bürgi, H. B. & Dunitz, J. D. From crystal statics to chemical dynamics. Acc. Chem. Res. 16, 153–161 (1983).

    Article  Google Scholar 

  125. Jana, D. F., Wodrich, M. D. & Corminboeuf, C. Structure-correlation principles connecting ground state properties and reaction barrier heights for the Cope rearrangement of semibullvalenes. J. Org. Chem. 77, 2548–2552 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.K.S. gratefully acknowledges the Engineering and Physical Sciences Research Council (EPSRC) for a Doctoral Training Grant (EP/R513039/1). P.R.M. acknowledges a Leverhulme Trust Research Project Grant (RPG-2023-191) and an EPSRC Fellowship (EP/V040049/2).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the main outline and idea of the Review and contributed to the writing. P.K.S. and T.T.N. prepared the figures.

Corresponding authors

Correspondence to Paul R. McGonigal or Johannes F. Teichert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Ori Gidron and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P.K., Tran Ngoc, T., McGonigal, P.R. et al. Geometry-controlled reactivity and dynamics in organic molecules. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00526-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing